
EE3 2008
Solution to the Last Homework Set

Problem 1: Finite Difference Approximation

Derive a finite difference approximation to the Schrödinger equation for a particle
moving in a potential V (x)

−
~

2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x)

that can be used to calculate iteratively the wavefunction over all space if the value of the
energy is known as well as the value of the wave function at two adjacent discretization
points on the x-axis.

Answer:

It is convenient to first rewrite the Schrödinger equation to reduce the number of
known constants. Let ǫ = 2mE/~2 and v(x) = 2mV (x)/~2. After moving the potential
energy term to the right hand side, the equation becomes

ψ′′(x) = (v(x) − ǫ)ψ(x)

Now discretize the x-axis, i.e. divide it up into segments of length h and use the standard,
central finite difference to express the second derivative of ψ in terms of values of ψ at
adjacent grid points

ψ′′(x) =
ψ(x+ h) + ψ(x− h) − 2ψ(x)

h2

Rearrange to leave only ψ(x+ h) on the left hand side of the equation

ψ(x+ h) =
[

2 + h2(v(x) − ǫ)
]

ψ(x) − ψ(x− h)

Each time this equation is iterated, the value of the wave function is found one step
further along the x-axis.

Problem 2: Vibrational (normal) modes

Find the vibrational frequency and atomic displacement vectors for the stretching
modes of the CO2 molecule by doing an eigenvalue calculation of the motion of the

1



atoms along the molecular axis (i.e. a 1-dimensional approximation which does not
include the bends). The interaction between each of the O-atoms and the central C-atom
can be approximated by a Morse potential function

V (r) = D
(

e−2β(r−rb) − 2e−β(r−rb)
)

with parameters taken to represent a C-O bond. A rough approximation for the well
depth and bond length can be obtained from the properties of the CO molecule, which is
found to have a bond energy of 11 eV and bond length of 1.1 Ångstrøm. Adjust the value
of the parameter β to get a best fit of the measured vibrational excitations of CO2 which
correspond to: 2349 cm−1, 1333 cm−1 and 667 cm−1. Note that one of these values
refers to the two bending modes (which one?) and is not relevant for this discussion.

Answer:

The effect of varying the parameter β can be seen in fig. 1. The two values used there
are β = 2.0Å −1 and β = 2.5Å −1. Note that the curvature and, thereby, the vibrational
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Figure 1: Morse potential energy curves for C − O stretch where D = −11 eV and
rb = 1.1Å . The dark blue curve corresponds to β = 2.0Å −1 and the light blue curve
corresponds to β = 2.5Å −1. The larger β is, the larger the curvature and higher the
vibrational frequency.

frequency increases as β increases. A normal mode analysis needs to be done to calculate
the frequency of the symmetric and asymmetric stretches. The two higher wave numbers,
2349 cm−1 and 1333 cm−1, correspond to excitation of the stretches, the lowest wave
number corresponds to the two bends. In analogy with the example discussed in the
lecture notes (where all three masses were the same) we can expect the asymmetric
stretch to have higher frequency than the symmetric stretch. By multiplying with the
speed of light, we get the vibrational frequencies: νa = 3.0 · 1010 cm/s · 2349 cm−1 =

7.405 · 1013 s−1 and νs = 3.0 · 1010 cm/s · 1333 cm−1 = 4.00 · 1013 s−1.
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The matrix consisting of the three equations of motion for a linear triatomic molecule
is (see lecture notes)







−kAB

mA

kAB

mA

0
kAB

mB
−kAB

mB
− kBC

mB

kBC

mB

0 kBC

mC
−kBC

mC










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xB
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

 = −ω2





xA

xB

xC



 (1)

Here, for the CO2 molecule, this simplifies because kAB = kBC = k and for a the Morse
potential k = d2V

dr2 |r=rb
= 2β2D. Also, mA = mC = 16 amu and mB = 12 amu = 3

4
mA.

After dividing through by k
mA

and defining λ ≡ −mAω
2/k this becomes





−1 1 0

4/3 −8/3 4/3

0 1 −1









xA

xB

xC



 = λ





xA

xB

xC



 (2)

A non-trivial solution to this eigenvalue problem can only be found when the determinant
of the matrix





−(1 + λ) 1 0

4/3 −(8/3 + λ) 4/3

0 1 −(1 + λ)



 (3)

vanishes. Expanding the determinant gives the quation for the roots of the cubic poly-
nomial for λ

−(1 + λ)

[

(
8

3
+ λ)(1 + λ) −

4

3

]

+ (1 + λ)(
4

3
) = 0

which has the solutions: λ = 0 for translation, λ = −1 for symmetric stretch, and
λ = −11/3 for asymmetric stretch.

The ratio of the frequency for the symmetric and asymmetric stretches is fixed in
this model and is independent of the free parameter β. The ratio is

√

11/3 = 1.91 while
the ratio of the measured frequencies is 2349/1333 = 1.76 which is quite acceptable
agreement for such a simple potential form for the atomic interactions.

The calculated frequency of the symmetric stretch is νs = −ω/2π = (1/2π)
√

k/mA =

(1/2π)
√

2β2D/mA. One way to determine β is to set this calculated expression, which
depends on β, equal to the measured frequency of the symmetric stretch

β = 2πνs

√

mA/2D = 2π4.00 · 1013 ·
√

16/2 · 11 sec−1
√

amu/eV = 2.14 A−1

In the last unit conversion, the approximate relationship
√

eV /(amu A2) = 1.0 ×

1014 sec−1 was used. A better choice for β would be one that gives roughly the
same error in both the stretch frequencies, rather than reproducing one accurately
(the symmetric stretch) and leaving a significant error in the other (8% too large fre-
quency for the asymmetric stretch). This can be done by reducing beta by 4%, to
β = 2.14 A−1/1.04 = 2.06 A−1. Then, the calculated frequency for the symmetric
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stretch is 4% too small and the calculated frequency for the asymmetric stretch is 4%
too large.

Problem 3: Classical trajectories on a 2-dimensional PES

Use the contour plot of the LEPS potential energy surface for a tri-atomic molecule
in one-dimension shown below. Assume rAB is on the y-axis and rBC on the x-axis, and
the unit length of the axes is one Ångstrøm. (Compare with figure 9.25 in the text book
by Laidler et al. and the relevant text in section 9.11).
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Figure 2: Contour plot of a LEPS potential surface for three atoms placed along a line
where each atom can only form one bond.

Sketch classical trajectories for the following situations (assuming the total energy
of the molecule is constant, i.e. no connection with a heat bath):

(a) Atom A is initially 3 Å away from the center of a BC molecule and is moving
towards the molecule, collides with it, and an exchange reaction occurs. The BC molecule
is initially vibrating with an amplitude of 0.1 A.
(b) Same as part (a) except that an exchange reaction does NOT occur.
(c) Which degree of freedom is more efficient in promoting an exchange reaction, the
translational energy of the A-atom or the vibrational energy of the BC-molecule?
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Answer:

For the answer to part (a) see Fig. 3. For the answer to part (b) see Fig. 4.
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Figure 3: Trajectory where the B-C distance has been reduced by 0.1Å from the optimal
distance and atom A is 2.63 Å from the center of the B-C molecule (3 Å from the B
atom). The initial velocity of the A atom is 0.21 Å/fs. An exchange reaction occurs.
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Figure 4: Trajectory where the B-C distance has been reduced by 0.1Å from the optimal
distance and atom A is 2.63 Å from the center of the B-C molecule (3 Å from the B
atom). The initial velocity of the A atom is 0.15 Å/fs. An exchange reaction does not
occur and atom A gets reflected back from the B-C molecule.

Answer to (c):
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The vibration of the B-C molecule gives the trajectory the right direction to get
over the barrier, while the translation of the A-atom simply sends the trajectory up
the repulsive wall of the A-BC interaction. Note that the importance vibration vs.
translation is reversed for the reverse direction, that is translational energy of a C atom
is more efficient in inducing exchange reaction than vibration of a A-B molecule.

Problem 4: Transition state theory (TST)

(a) What are the four basic assumptions of TST? What should the shape of the potential
energy surface be like in order for TST to give a good approximation to the rate constant
of a transition?

Answer to part (a):

The four basic assumptions are: (1) The Born-Oppenheimer approximation is valid,
i.e. the time scale of the motion of electrons is so much shorter than the time scale of the
motion of atoms that we can solve for the electronic degrees of freedom for fixed position
of the nuclei. This gives a potential energy surface (PES) for the motion of the nuclei.
(2) The dynamics of the nuclei can be described by Newton’s equations of motion, i.e.
classical dynamics. (3) The transitions are slow enough that a Boltzmann distribution
of energy is established and maintained for each degree of freedom of the reactant(s).
(4) If the system makes it to the transition state dividing surface and the velocity is
pointing towards the region of configuration space associated with the products, then
the system will continue to go towards the energy well associated with the products and
will stay there for an extended time - long compared with vibrational periods. A reactive
trajectory must cross the transition state dividing surface that separates reactants and
products, but the trajectory should only cross the transition state once. If a trajectory
crosses the tranistion state twice, it will end up in the reactant region i.e. is non-reactive,
but gets counted as being reactive in the TST estimate of the rate constant. Also, if a
trajectory crosses the transition state three times, it gets counted as two reactive events
by the fourth assumption of TST. Any recrossing of the transition state leads to an
overestimate of the rate constant in the TST approximation. In order to reduce the
probability of recrossings, the potential surface should have a narrow and simple barrier
in between the initial and final state (without dips and without significant curvature of
the minimum energy path). Then TST can be expected to give a good approximation
for the rate constant.

(b) A hydrogen atom adsorbed on the surface of a metal crystal can diffuse by hopping
from one binding site to another. The atom can be considered to be a particle moving on
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a periodic potential surface (PES) while the metal atoms can be taken to be stationary.
This is a good first approximation because the metal atoms are so much heavier than
the hydrogen atom. For a hydrogen atom on the (001) surface of an FCC metal, the
potential energy of the hydrogen atom can be approximated by the function

V (x, y, z) = Vs

(

e−cos(2πx/b)−cos(2πy/b)−2αz − 2e−αz
)

where Vs is 0.2 eV, b is 3 Å and α = 2 Å−1. The normal to the crystal surface lies along
the z-axis.

(Note on units: It is convenient to use the following, approximate relationship
√

eV /(amu A2) = 1.0 × 1014 sec−1).

Evaluate the rate constant for diffusion hops using the harmonic approximation to
TST. Here are the steps you need to take in order to do that (see lecture notes):

(1) Identify the minima and saddle points on the potential energy surface. You
should do this first of all by making a contour plot of the potential surface in the plane
of the surface (x,y), using for example Matlab. By inspecting the plot, you can get the x
and y coordinates of the minima and the saddle points. Then, you need to minimize the
energy with respect to z given these values of x and y.

(2) Differentiate the potential function with respect to x, y and z and show that each
one of the derivatives is zero at a minimum and at a saddle point. This verifies that you
have found the right coordinates. The activation energy is obtained from the difference
in the potential energy at the saddle point and at the minimum.

(3) In order to evaluate the prefactor of the rate constant, do a Taylor expansion
of the potential energy function up to second order at a minimum and at a saddle point.
You can use Matlab to do that. Get the frequency of each vibrational mode. Note
that one of the modes at the saddle point corresponds to negative curvature (imaginary
frequency). The ratio of products of the vibrational frequencies gives the prefactor (see
lecture notes).

Answer to part (b):
A contour plot of the potential energy surface in the z=0 plane is shown in fig. 5.

From the contour plot one can see that the periodically replicated minima are located at
(x, y, z) = (ib, jb, zmin), where i and j are integers. For example, focus on the i = j = 0

minimum. By finding the minimum of the function V (0, 0, z) with respect to z, it can
be seen that zmin = −2/α = −1Å and the value of the potential energy at the minimum
is Vmin = −Vse

2 = −1.48 eV . The saddle points on the PES are of two types. One half
of them is a maximum with respect to variation along the x-axis but a minimum with
respect to variation in y and z. These are located at (x, y, z) = ((i+ 1/2)b, jb, zsp). The
other half is a maximum with respect to variation in the y-direction but minimum along
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Figure 5: Contour plot of a potential surface for an H-atom on a frozen metal surface.

the other two directions. These saddle points are located at (x, y, z) = (ib, (j+1/2)b, zsp).
One saddle point of the former type is, for example, at x = b/2 and y = 0. Minimization
of the function V (b/2, 0, z) with respect to z, gives zsp = 0 and the energy at the saddle
point is VSP = −Vs = −0.2eV . The activation energy for diffusion hops (ignoring
quantum effects) is, therefore, Ea = −0.2 + 1.48 = 1.28eV . This is a rather large
activation energy. The temperature dependence of the HTST approximation to the rate
constant can then be obtained as kHTST ∼ exp(−1.28eV/kBT ).

Note, that the z coordinate of the minima and the saddle points is not the same.
Fig. 6 shows the potential energy as a function of z at a location in the (x, y) plane
that corresponds to a minimum in the PES, i.e. the function V (0, 0, z), as well as the
potential energy as a function of z for a saddle point location in the (x, y) plane, i.e.
the function V (b/2, 0, z).

The full expression for the rate constant in the HTST approximation is

kHTST =
Π3

i νR,i

Π2
i ν‡,i

e−(VSP−Vmin)/kBT

The prefactor of the rate constant (i.e. the factor in front of the exponential) can be
evaluated by finding the normal modes of vibration at the minimum and at the saddle
point. The prefactor is ΠD

i νR,i/Π
D−1
i ν‡,i where the νR,i are the normal mode frequencies

at the reactant state minimum on the PES, the ν‡,i are the frequencies of the stable
normal modes at the saddle point and D is the number of degrees of freedom in the
system. A Taylor expansion up to second order of the PES around the minimum at

8



-1.5 -1 -0.5 0.5 1 1.5 2

-1

1

2

Figure 6: Fig. 6: Variation of the potential energy along the z-direction for (x,y)=(0,0),
a location that includes a minimum, and for (x,y)=(b/2,0), a location that includes a
saddle point on the PES. The figure illustrates how different the optimal value of z is at
the two locations in the (x,y) plane.

(0,0,-1) gives (after setting b = 3Å and α = 2Å−1)

V (x, y, z) = Vse
2

(

−1 + 4(z + 1)2 +
2π2

9
y2 +

2π2

9
x2

)

and an expansion around the saddle point at (b/2,0,0) gives

V (x, y, z) = Vs

(

−1 + 4z2 +
2π2

9
y2 −

2π2

9
(x− 1.5)2

)

The Taylor expansion around the minimum shows that the matrix of second deriva-
tives is already diagonal, that is all the mixed second derivatives are zero. Only ∂2V

∂x2 ,
∂2V
∂y2 and ∂2V

∂z2 are non-zero. The Cartesian coordinates are, therefore, the normal mode
coordinates and there is no need in this case to solve a matrix eigenvalue problem. Each
of the three equations of motion for the hydrogen atom only involves one of the Carte-
sian coordinates. The frequency of the motion in the x-direction is ωx =

√

kxx/m where
kxx = ∂2V

∂x2 . Plugging in the expression for the second derivative (twice the coefficient of

x2 in the Taylor expansion above) gives ωx =
√

0.8eπ
3

√

eV
amu A2 . So, the vibrational fre-

quency is ωx = 2.5× 1014 sec−1. The frequency of motion in the y-direction is the same
since the second derivative is the same (as it has to be by symmetry). The frequency of

motion in the z-direction, however, is larger by a ratio of
√

kzz/kxx =
√

4
2π2/9

= 1.35,

that is ωz = 3.4 × 1014 sec−1.
At the saddle point at (b/2,0,0), there are only two stable modes, the vibration in

y-direction and vibration in z-direction. The motion in x-direction corresponds to going
over the potential barrier and the corresponding second derivative of the potential is
negative, as can be seen from the Taylor expansion above. The frequency of the two
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stable modes is the same as for the minimum except for a factor of 1/e since the second
derivatives of the potential are the same except for the missing factor of e2 in front
of the bracket in the Taylor expansion at the minimum, so ωy = 9.3 × 1013 sec−1 and
ωz = 1.3 × 1014 sec−1.

The prefactor in the HTST estimate of the rate constant is

Π3
i νR,i

Π2
i ν‡,i

=
1

2π

Π3
iωR,i

Π2
iω‡,i

=
(2.5 × 1014)2 3.4 × 1014

0.93 × 1014 · 1.3 × 1014/e
= 2.8 × 1014 sec−1

Finally, the HTST approximation to the rate constant is

kHTST = 2.8 × 1014 sec−1 e−1.28eV/kBT .

(c) What is the average length of time in between diffusion hops at room temperature,
at 400 K and at 500 K? Notice the dramatic change as the temperature is increased.

Answer to part (c):
At room temperature, kBT = 0.025 eV (approximately) and the rate constant then

has the value of kHTST = 1.6 × 10−8sec−1. The average time between diffusion hops is
then τ = 1/k = 6.1 × 107 sec. That is about two years! The hydrogen atoms therefore
hardly diffuse at all on our time scale at room temperature.

It the temperature is raised to 400 K, then kBT = 0.025 × 4/3 eV = 0.033 eV and
the rate constant becomes kHTST = 0.004 sec−1 and the time in between hops is on the
average 4 minutes. Note the dramatic increase in hopping rate as the temperature is
raised from 300 K to 400 K.

If the temperature is further increased to 500 K, then the rate constant becomes
kHTST = 16 sec−1, that is the atoms hops on average 16 times per second.
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