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C.  Numerical Solution of Rate Equations
C1  Solution using ode45
Matlab has on offer many ordinary differential equation (ode) solvers, each using a different numerical 
method. ode45 is the one that should be used first and is usually sufficient for most problems.  For most 
differential equations an analytical solution cannot be obtained but a numerical solution can almost always 
be obtained. The arguments for ode45 are the not the same as those one would use for dsolve. The initial 
values are defined separately and the range for which the differential equations are solved is also defined 
within the function. Open the help file for ode45 to learn more.  Returning to the sequential first order 
reactions

which was solved analytically in the previous exercise, the numerical solution can be obtained in the 
following way.  Note that a numerical value to all constants need to be given first before calling ode45.

First we define a function that calculates dA/dt, dB/dt and dC/dt from the concentration of each species. This 
is the system of differential equations, y' = f(t,y), that is mentioned in the help file. These are the same 
equations that we used in the last exercise.

--------------------------------------------------------------
function dy=hvarfabc(t,y)

k1=1;
k2=0.1;
km1=0.05;
km2=0.1;

dy = zeros(3,1);    % a column vector

dy(1)=-k1*y(1)+km1*y(2);
dy(2)=k1*y(1)-km1*y(2)-k2*y(2)+km2*y(3);
dy(3)=k2*y(2)-km2*y(3);
--------------------------------------------------------------

Now we can use the ode45 function to see what happens between t=0 and t=30, with only species A present 
at t=0.

EDU>> [t,y]=ode45(@hvarfabc,[0,30],[1,0,0])

The @ symbol creates a function handle. A function handle basically captures all the information about a 
function that Matlab needs to execute that function. The output is time column vector, followed by a matrix 
containing 3 concentration column vectors. We can now plot these results in the normal way.

EDU>> plot(t,y(:,1),t,y(:,2),t,y(:,3))

Q1:   Do a calculation of the concentrations as a function of time for the reaction

assuming that only chemical A is present initially at a concentration of [A]0=1.  It would not be practical to 
solve this problem analytically.  Remember to define and give numerical value to all rate constants.  Choose 
some reasonable values for the rate constants (on the order of 0.1 to 10).

C2  Solution using Euler's Method; a simple first order 



reaction
It is instructive to see how numerical methods for solving differential equations work. This way you will be 
able to write a program yourself for solving differential equations.  Here you will learn how to use a simple 
finite difference algorithm for solving some of the kinetics equations discussed previously.

By using a finite difference approximation for the first derivative

where h is a small and yet not too small time interval (the so called 'time step'), the first order rate law for the 
reaction A -> products

                

becomes a recursion relation

which can be used to generate a numerical value for the concentration A at points in time t = nh.  The 
calculation can be carried out in Matlab in many different ways, but as usual it is useful to employ the "for-
loop" here because then the Matlab code can easily be extended to more complex reactions.  Note that it is 
essential to choose a numerical value for all constants before the calculation, since this is strictly a 
numerical solution of the differential equation.  The total number of steps needed to cover the requested total 
time interval is evaluated by dividing the time with the time step and rounding off to nearest integer, then 
adding 1 because the first entry into the arrays corresponds to t=0.

--------------------------------------
clear k h nsteps a n t
close

k=0.05;
totaltime=100;
h=1;
a(1)=1;
t(1)=0;
nsteps=round(totaltime/h)+1;

for n=2:nsteps
    a(n)=a(n-1)-h*k*a(n-1);
    t(n)=t(n-1)+h;
end

plot(t,a)
xlabel('t')
ylabel('[A]')
--------------------------------------

Note that the data consists of discrete points, not a continuous curve.

Q2:  It is essential to check how small the step size, h, needs to be in order to get accurate enough results. 
Repeat the calculation above for a smaller step size of h=0.5 and a larger step size of h=2.  Plot the results 
in the same graph. For example you could do this by creating a function of h that creates vectors a and t by 
modifying the mfile above. 
Note what value of the concentration of A is obtained at time t = 100 in each case.  Let's assume that you are 
willing to accept an error of 0.001 in the concentration.  Try using a very small step size, such as h = 0.02 
and check what value of the concentration is obtained at t = 100. How small a step size do you need to use?  
Evaluate what concentration the analytical solution predicts at t = 100 and compare with your numerical 



results.

C3  Sequential first order reactions with no back 
reactions
The numerical procedure above can rather easily be generalized to more complex reactions.  For example, 
for the sequential first order reaction

the finite difference algorithm can be executed using the for loop in the following way

--------------------------------------------------------
clear k k1 k2 h nsteps a b c n t
close

k1 = 0.01;
k2 = 0.2;
totaltime=100;
h=0.5;
a(1)=1;
b(1)=0;
c(1)=0;
t(1)=0;
nsteps=round(totaltime/h)+1;

for n=2:nsteps
    a(n)=a(n-1)-h*k1*a(n-1);
    b(n)=b(n-1)+h*(k1*a(n-1)-k2*b(n-1));
    c(n)=c(n-1)+h*k2*b(n-1)
    t(n)=t(n-1)+h;
end

plot(t,a,t,b,t,c)
xlabel('t')
ylabel('M')
--------------------------------------------------------

C4  Solution using Euler's Method; sequential 
reversible reactions
Q3:   Extend the Matlab code in section C3 to include back reactions.  Calculate and plot the solution for a 
few different values of the back reaction rate constants.


