
Physial Chemistry 4 Hannes Jónsson andUniversity of Ieland Finnbogi ÓskarssonNormal Modes of VibrationThe atoms in moleules are onstantly moving. The distane between any pairof atoms and bond angles is onstantly hanging with time, although the average bondlength and bond angles are well de�ned and remain the same for long periods of time. Atroom temperature, this motion is mostly small amplitude osillations, so alled mole-ular vibration. Chemial reations our on a muh longer time sale than vibration(many orders of magnitude). Eah degree of freedom of the moleule has on averagean energy of kBT where kB is the Boltsmann onstant and T is the temperature. Itis important to understand vibrational motion of moleules for many reasons. Vibra-tional motion is an important soure and sink of kineti energy in hemial reations.Also, by using infrared spetrosopy whih probes the vibrational motion, one an learnabout moleular struture and the hemial omposition of unknown samples. Sharppeaks in the IR absorption an be assoiated with partiular moleules, or fragmentsof moleules. Eah peak orresponds to a `vibrational mode' of the moleule. In mostases the vibrational modes an be well approximated by so-alled `normal modes' ofvibration.Vibration of a diatomi moleuleIn a diatomi moleule, the vibrational motion orresponds to osillations in thebond length. The interation potential funtion may, for example, be approximated bya Morse potential
V (r) = D

(

e−2α(r−rb) − 2e−α(r−rb)
)This form of the potential funtion often gives a good representation of the potentialenergy of ovalently bonded atoms. Under typial onditions - reasonably strong bondsand room temperature - the deviations of the bond length from its optimal value issmall, on the order of 0.1 or less. For suh small displaements of the atoms, thepotential energy an often be well desribed by a harmoni osillator approximation. Theappropriate harmoni approximation an be found by Taylor expansion the potentialfuntion about the minimum energy. Let x denote the deviation, x = r − r0, from theoptimal distane between the atoms. The Taylor expansion about x = 0 is

V (x) = V (0) + xV ′(0) +
x2

2
V ′′(0) + h.o.t.Sine V (x) has a minimum at x = 0, V ′(0) = 0. Negleting the higher order terms, we1



have
V (x) − V (0) =

1

2
V ′′(0) x2 =

1

2
k x2Here, k denotes the so alled spring onstant (the harmoni osillator potential funtionis appliable to a spring with sti�ness given by the spring onstant). The fore atingon the harmoni osillator is

F (x) = −
d

dx
V (x) = −kxThe lassial trajetory of a harmoni osillator an be obtained from the equation ofmotion (Newton's seond law)

F (x) = mẍ(t)

−kx(t) = mẍ(t)

ẍ(t) = −(k/m) x(t)The notation ẍ(t) means seond derivative of x with respet to t. This di�erentialequation has the general solution
x(t) = Asin(ωt) + Bcos(ωt)where ω =

√

k/m. A and B are onstants that need to be evaluated from the initialonditions. Another way to write the general solution is
x(t) = Csin(ωt + φ)The deviation of the bond length from the optimal value varies in a sinusoidal way intime with frequeny, ω.Quantum mehanially, the harmoni osillator has bound state energy levels spaedapart by ∆E = ~ω. The vibrational motion an be exited by the absorption of a quan-tum of light, a photon, with energy ∆E = hν = ~ω. The seletion rule for vibrationalexitations in the harmoni approximation is ∆ν = ±1, i.e. the system an only beexited by absorption of a photon to the next higher level, or de-exited by emissionof a photon to the next lower level. Within the harmoni approximation, the absorp-tion spetrum therefore has just one peak This frequeny typially orresponds to theinfrared radiation.Polyatomi moleulesFor larger moleules, the trajetory of an atom is in general not a simple sinusoidalfuntion orresponding to one frequeny. Also, even if the moleule is initially distortedin suh a way that only one of the bonds is strethed, all the bond lengths will even-tually be hanging with time. Speial modes, so-alled normal modes, an under some2



irumstanes be de�ned so that if only one mode is exited initially, then the othermodes will not be exited. In that sense the simpliity of the diatomi is reovered inmoleules with many atoms.A simple system whih illustrates this is a linear triatomi moleule where the atomsan only move along a line (a one-dimensional system). Even if only atom A is displaedinitially, the motion of atom A, xA(t), is not just a sinusoidal funtion orresponding toa single frequeny. After a while, the B-C bond starts vibrating also. The vibrationalmotion of the three atoms is oupled together.
AB BC

mA mB Cm
kkFigure 1: A simple model of a moleule. The three atoms A, B, and C, with mass mA,

mB og mC , are on�ned to move along a line. The hemial bonds an be approximatedby springs with spring onstants kAB and kBC.The lassial equation of motion (Newton's seond law) an be solved exatly forpolyatomi moleules if the interation potential is approximated as a quadrati fun-tion (a multidimensional harmoni osillator). The solutions are alled `normal modes'and they give the harateristi frequenies whih are the dominant features in typialabsorption spetra of polyatomi moleules. Let xA(t) be the displaement of atom Aat time t from the optimal, lowest potential energy position of the atom, and similarlyfor xB(t) and xC(t). Analogous to the ase of a diatomi moleule, a Taylor expansionof the potential energy about the optimal on�guration of the atoms gives
V (xA, xB, xC) =

kAB

2
(xB − xA)2 +

kBC

2
(xC − xB)2 (1)if third order and higher terms are negleted. This is the harmoni approximation tothe full potential energy surfae. The spring onstants kAB and kBC are diretly relatedto the seond derivative of the potential energy with respet to the distane betweenatoms.The equation of motion for eah one of the atoms is

Fi = miẍi (2)where i is A, B or C. Using the fat that the fore is the negative derivative of thepotential energy, the three equations an be written as
−

∂V

∂xi

= miẍi (3)3



where the partial derivative, ∂V

∂xi
, denotes di�erentiation with respet to xi while theother variables are kept �xed. In the ase of the linear, triatomi moleule the fore oneah atom is



























∂V

∂xA
= −kAB(xB − xA)

∂V

∂xB
= kAB(xB − xA) − kBC(xC − xB)

∂V

∂xC
= kBC(xC − xB).

(4)
Inserting this form of the fore into the equations of motion, and dividing by the massof the atom gives



























kAB

mA

(xB − xA) = ẍA

−
kAB

mB
(xB − xA) +kBC

mB
(xC − xB) = ẍB

−
kBC

mC
(xC − xB) = ẍC .

(5)
The problem is to solve this set of three, oupled di�erential equations. One anattempt to �nd a solution where all the atoms osillate with the same frequeny, i.e.



























ẍA = −ω2xA

ẍB = −ω2xB

ẍC = −ω2xC .

(6)
Here, ω is some frequeny whih has the same value in all three equations. To testif this will work, this form for ∆ẍA an be inserted into the equation of motion to give(after swithing left and right hand sides of eah equation)
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xC = −ω2 xC .

(7)
This set of linear equations an be written in a matrix form as4
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 (8)This is a matrix eigenvalue problem. The task is to determine the eigenvalue −ω2 andorresponding eigenvetor. As will be disussed below, three di�erent eigenvalues −ω2
iand eigenvetors vi an be found in this ase. A non-trivial solution exists only whenthe determinant of the matrix
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 (9)is zero. This gives a third order polynomial equation for ω2 whih has three roots.A speial ase: A moleule of the type A − A − AThe alulation is simpli�ed greatly if the mass of all three atoms is taken to be thesame, i.e. mA = mB = mC ≡ m, and the two spring onstants are taken to be the same,i.e. kAB = kBC ≡ k. Then the eigenvalue problem beomes
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 . (10)After dividing through by k

m
and de�ning λ ≡ −mω2/k this beomes





−1 1 0

1 −2 1

0 1 −1









xA

xB

xC



 = λ





xA

xB

xC



 (11)whih is easy to solve by hand. The determinant is the third order polynomial
p(λ) = (−1 − λ)(−2 − λ)(−1 − λ) − (−1 − λ) − (−1 − λ)

= −λ(λ + 1)(λ + 3)
(12)whih has roots at λ1 = 0, λ2 = −1, and λ3 = −3. By inserting the eigenvalues into theeigenvalue equation one an �nd the orresponding eigenvetors. They are
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 .Note that the length of the eigenvetors is arbitrary, all they say is what the relativedisplaements of the atoms are, not how muh they get displaed. The interpretationof the three solutions are as follows: 5



• The �rst solution orresponds to zero frequeny and all three atoms are displaedin the same way xA = xB = xC . This is simply uniform translation.
AB BC

mA mB Cm
kk

• The seond solution orresponds to frequeny ω2 =
√

k/m. The eigenvetor showsthat atom B does not move at all, while A and C move equally muh but inopposite diretion. This is the so-alled symmetri streth.
AB BC

mA mB Cm
kk

• The third solution orresponds to ω3 =
√

3k/m a higher frequeny than thesymmetri streth. The eigenvetor shows that while atoms A and B are displaedequally muh in the same diretion, atom B is displaed twie as muh in theopposite diretion. This is the so-alled asymmetri streth.
AB BC

mA mB Cm
kkA general solution for the dynamis of the three atoms is a linear ombination ofthese three normal mode solutions. But, the three normal modes are independent, i.e.there is no energy �ow from one mode to another. If the moleule is vibrating in suha way that only one mode is ative, then the moleule will ontinue to move aordingto that one normal mode. The others never ome into play. Reall, that the entralapproximation here is that the interation potential is harmoni. For more realistianharmoni interation potentials, suh as the Morse potential, the independent normalmodes are only approximate solutions, but typially they represent the dominant featurein the absorption spetrum.SpetrosopyIn absorption spetrosopy, the moleule absorbs energy from the osillating eletriand magneti �eld in the eletromagneti wave only if the frequeny mathes that of thevibrational osillations (suh mathing of frequenies is alled resonane). The energyof the absorbed photon is

Ei = hνi =
hωi

2π
=

h
√

k

m

2π
. (13)6



A polyatomi moleule has more than one normal mode of vibration. Eah normalmode has a di�erent frequeny and there is, in priniple, an absorption peak for eahone of the modes. No peak is observed, however, if the normal mode displaements donot lead to a hange in the dipole moment of the moleule.where h = 6, 626 × 10−34 J·s, is Plank's onstant and νi = ωi/2π is the frequeny.More omplex situationsWhen the mass of the atoms is not the same, for example CO2, the solution ofthe eigenvalue problem is a little more ompliated, but the normal modes are still asymmetri streth and an antisymmetri streth. Also, when the spring onstant for thetwo bonds is not the same, as in OCS, the alulation is muh more tedious and thesolutions do not have any symmetry (or antisymmetry). These problems an, however,easily be solved using Mathematia and similar tools.ReferenesP.W. Atkins: Moleular Quantum Mehanis, hapters 11.5-11.8.C.N. Banwell: Fundamentals of Moleular Spetrosopy, hapters 3.1 og 3.5.
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