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al Chemistry 4 Hannes Jónsson andUniversity of I
eland Finnbogi ÓskarssonNormal Modes of VibrationThe atoms in mole
ules are 
onstantly moving. The distan
e between any pairof atoms and bond angles is 
onstantly 
hanging with time, although the average bondlength and bond angles are well de�ned and remain the same for long periods of time. Atroom temperature, this motion is mostly small amplitude os
illations, so 
alled mole
-ular vibration. Chemi
al rea
tions o

ur on a mu
h longer time s
ale than vibration(many orders of magnitude). Ea
h degree of freedom of the mole
ule has on averagean energy of kBT where kB is the Boltsmann 
onstant and T is the temperature. Itis important to understand vibrational motion of mole
ules for many reasons. Vibra-tional motion is an important sour
e and sink of kineti
 energy in 
hemi
al rea
tions.Also, by using infrared spe
tros
opy whi
h probes the vibrational motion, one 
an learnabout mole
ular stru
ture and the 
hemi
al 
omposition of unknown samples. Sharppeaks in the IR absorption 
an be asso
iated with parti
ular mole
ules, or fragmentsof mole
ules. Ea
h peak 
orresponds to a `vibrational mode' of the mole
ule. In most
ases the vibrational modes 
an be well approximated by so-
alled `normal modes' ofvibration.Vibration of a diatomi
 mole
uleIn a diatomi
 mole
ule, the vibrational motion 
orresponds to os
illations in thebond length. The intera
tion potential fun
tion may, for example, be approximated bya Morse potential
V (r) = D

(

e−2α(r−rb) − 2e−α(r−rb)
)This form of the potential fun
tion often gives a good representation of the potentialenergy of 
ovalently bonded atoms. Under typi
al 
onditions - reasonably strong bondsand room temperature - the deviations of the bond length from its optimal value issmall, on the order of 0.1 or less. For su
h small displa
ements of the atoms, thepotential energy 
an often be well des
ribed by a harmoni
 os
illator approximation. Theappropriate harmoni
 approximation 
an be found by Taylor expansion the potentialfun
tion about the minimum energy. Let x denote the deviation, x = r − r0, from theoptimal distan
e between the atoms. The Taylor expansion about x = 0 is

V (x) = V (0) + xV ′(0) +
x2

2
V ′′(0) + h.o.t.Sin
e V (x) has a minimum at x = 0, V ′(0) = 0. Negle
ting the higher order terms, we1



have
V (x) − V (0) =

1

2
V ′′(0) x2 =

1

2
k x2Here, k denotes the so 
alled spring 
onstant (the harmoni
 os
illator potential fun
tionis appli
able to a spring with sti�ness given by the spring 
onstant). The for
e a
tingon the harmoni
 os
illator is

F (x) = −
d

dx
V (x) = −kxThe 
lassi
al traje
tory of a harmoni
 os
illator 
an be obtained from the equation ofmotion (Newton's se
ond law)

F (x) = mẍ(t)

−kx(t) = mẍ(t)

ẍ(t) = −(k/m) x(t)The notation ẍ(t) means se
ond derivative of x with respe
t to t. This di�erentialequation has the general solution
x(t) = Asin(ωt) + Bcos(ωt)where ω =

√

k/m. A and B are 
onstants that need to be evaluated from the initial
onditions. Another way to write the general solution is
x(t) = Csin(ωt + φ)The deviation of the bond length from the optimal value varies in a sinusoidal way intime with frequen
y, ω.Quantum me
hani
ally, the harmoni
 os
illator has bound state energy levels spa
edapart by ∆E = ~ω. The vibrational motion 
an be ex
ited by the absorption of a quan-tum of light, a photon, with energy ∆E = hν = ~ω. The sele
tion rule for vibrationalex
itations in the harmoni
 approximation is ∆ν = ±1, i.e. the system 
an only beex
ited by absorption of a photon to the next higher level, or de-ex
ited by emissionof a photon to the next lower level. Within the harmoni
 approximation, the absorp-tion spe
trum therefore has just one peak This frequen
y typi
ally 
orresponds to theinfrared radiation.Polyatomi
 mole
ulesFor larger mole
ules, the traje
tory of an atom is in general not a simple sinusoidalfun
tion 
orresponding to one frequen
y. Also, even if the mole
ule is initially distortedin su
h a way that only one of the bonds is stret
hed, all the bond lengths will even-tually be 
hanging with time. Spe
ial modes, so-
alled normal modes, 
an under some2




ir
umstan
es be de�ned so that if only one mode is ex
ited initially, then the othermodes will not be ex
ited. In that sense the simpli
ity of the diatomi
 is re
overed inmole
ules with many atoms.A simple system whi
h illustrates this is a linear triatomi
 mole
ule where the atoms
an only move along a line (a one-dimensional system). Even if only atom A is displa
edinitially, the motion of atom A, xA(t), is not just a sinusoidal fun
tion 
orresponding toa single frequen
y. After a while, the B-C bond starts vibrating also. The vibrationalmotion of the three atoms is 
oupled together.
AB BC

mA mB Cm
kkFigure 1: A simple model of a mole
ule. The three atoms A, B, and C, with mass mA,

mB og mC , are 
on�ned to move along a line. The 
hemi
al bonds 
an be approximatedby springs with spring 
onstants kAB and kBC.The 
lassi
al equation of motion (Newton's se
ond law) 
an be solved exa
tly forpolyatomi
 mole
ules if the intera
tion potential is approximated as a quadrati
 fun
-tion (a multidimensional harmoni
 os
illator). The solutions are 
alled `normal modes'and they give the 
hara
teristi
 frequen
ies whi
h are the dominant features in typi
alabsorption spe
tra of polyatomi
 mole
ules. Let xA(t) be the displa
ement of atom Aat time t from the optimal, lowest potential energy position of the atom, and similarlyfor xB(t) and xC(t). Analogous to the 
ase of a diatomi
 mole
ule, a Taylor expansionof the potential energy about the optimal 
on�guration of the atoms gives
V (xA, xB, xC) =

kAB

2
(xB − xA)2 +

kBC

2
(xC − xB)2 (1)if third order and higher terms are negle
ted. This is the harmoni
 approximation tothe full potential energy surfa
e. The spring 
onstants kAB and kBC are dire
tly relatedto the se
ond derivative of the potential energy with respe
t to the distan
e betweenatoms.The equation of motion for ea
h one of the atoms is

Fi = miẍi (2)where i is A, B or C. Using the fa
t that the for
e is the negative derivative of thepotential energy, the three equations 
an be written as
−

∂V

∂xi

= miẍi (3)3



where the partial derivative, ∂V

∂xi
, denotes di�erentiation with respe
t to xi while theother variables are kept �xed. In the 
ase of the linear, triatomi
 mole
ule the for
e onea
h atom is
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











∂V

∂xA
= −kAB(xB − xA)

∂V

∂xB
= kAB(xB − xA) − kBC(xC − xB)

∂V

∂xC
= kBC(xC − xB).

(4)
Inserting this form of the for
e into the equations of motion, and dividing by the massof the atom gives


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



kAB

mA

(xB − xA) = ẍA

−
kAB

mB
(xB − xA) +kBC

mB
(xC − xB) = ẍB

−
kBC

mC
(xC − xB) = ẍC .

(5)
The problem is to solve this set of three, 
oupled di�erential equations. One 
anattempt to �nd a solution where all the atoms os
illate with the same frequen
y, i.e.



























ẍA = −ω2xA

ẍB = −ω2xB

ẍC = −ω2xC .

(6)
Here, ω is some frequen
y whi
h has the same value in all three equations. To testif this will work, this form for ∆ẍA 
an be inserted into the equation of motion to give(after swit
hing left and right hand sides of ea
h equation)
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−
kAB

mA

xA +kAB

mA

xB = −ω2 xA

kAB

mB
xA −

(

kAB

mB
+ kBC

mB

)

xB +kBC

mB
xC = −ω2 xB

kBC

mC
xB −

kBC

mC
xC = −ω2 xC .

(7)
This set of linear equations 
an be written in a matrix form as4









−
kAB

mA

kAB

mA
0

kAB

mB
−

kAB

mB
−

kBC

mB

kBC

mB

0 kBC

mC
−

kBC

mC











xA

xB

xC



 = −ω2





xA

xB

xC



 (8)This is a matrix eigenvalue problem. The task is to determine the eigenvalue −ω2 and
orresponding eigenve
tor. As will be dis
ussed below, three di�erent eigenvalues −ω2
iand eigenve
tors vi 
an be found in this 
ase. A non-trivial solution exists only whenthe determinant of the matrix







−
kAB

mA
+ ω2 kAB

mA
0

kAB

mB
−

kAB

mB
−

kBC

mB
+ ω2 kBC

mB

0 kBC

mC

−
kBC

mC

+ ω2











xA

xB

xC



 (9)is zero. This gives a third order polynomial equation for ω2 whi
h has three roots.A spe
ial 
ase: A mole
ule of the type A − A − AThe 
al
ulation is simpli�ed greatly if the mass of all three atoms is taken to be thesame, i.e. mA = mB = mC ≡ m, and the two spring 
onstants are taken to be the same,i.e. kAB = kBC ≡ k. Then the eigenvalue problem be
omes




−
k

m

k

m
0

k

m
−

k

m
−

k

m

k

m

0 k

m
−

k

m









xA

xB

xC



 = −ω2





xA

xB

xC



 . (10)After dividing through by k

m
and de�ning λ ≡ −mω2/k this be
omes





−1 1 0

1 −2 1

0 1 −1









xA

xB

xC



 = λ





xA

xB

xC



 (11)whi
h is easy to solve by hand. The determinant is the third order polynomial
p(λ) = (−1 − λ)(−2 − λ)(−1 − λ) − (−1 − λ) − (−1 − λ)

= −λ(λ + 1)(λ + 3)
(12)whi
h has roots at λ1 = 0, λ2 = −1, and λ3 = −3. By inserting the eigenvalues into theeigenvalue equation one 
an �nd the 
orresponding eigenve
tors. They are





1

1

1


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



−1

0

1



 ,





1

−2

1



 .Note that the length of the eigenve
tors is arbitrary, all they say is what the relativedispla
ements of the atoms are, not how mu
h they get displa
ed. The interpretationof the three solutions are as follows: 5



• The �rst solution 
orresponds to zero frequen
y and all three atoms are displa
edin the same way xA = xB = xC . This is simply uniform translation.
AB BC

mA mB Cm
kk

• The se
ond solution 
orresponds to frequen
y ω2 =
√

k/m. The eigenve
tor showsthat atom B does not move at all, while A and C move equally mu
h but inopposite dire
tion. This is the so-
alled symmetri
 stret
h.
AB BC

mA mB Cm
kk

• The third solution 
orresponds to ω3 =
√

3k/m a higher frequen
y than thesymmetri
 stret
h. The eigenve
tor shows that while atoms A and B are displa
edequally mu
h in the same dire
tion, atom B is displa
ed twi
e as mu
h in theopposite dire
tion. This is the so-
alled asymmetri
 stret
h.
AB BC

mA mB Cm
kkA general solution for the dynami
s of the three atoms is a linear 
ombination ofthese three normal mode solutions. But, the three normal modes are independent, i.e.there is no energy �ow from one mode to another. If the mole
ule is vibrating in su
ha way that only one mode is a
tive, then the mole
ule will 
ontinue to move a

ordingto that one normal mode. The others never 
ome into play. Re
all, that the 
entralapproximation here is that the intera
tion potential is harmoni
. For more realisti
anharmoni
 intera
tion potentials, su
h as the Morse potential, the independent normalmodes are only approximate solutions, but typi
ally they represent the dominant featurein the absorption spe
trum.Spe
tros
opyIn absorption spe
tros
opy, the mole
ule absorbs energy from the os
illating ele
tri
and magneti
 �eld in the ele
tromagneti
 wave only if the frequen
y mat
hes that of thevibrational os
illations (su
h mat
hing of frequen
ies is 
alled resonan
e). The energyof the absorbed photon is

Ei = hνi =
hωi

2π
=

h
√

k

m

2π
. (13)6



A polyatomi
 mole
ule has more than one normal mode of vibration. Ea
h normalmode has a di�erent frequen
y and there is, in prin
iple, an absorption peak for ea
hone of the modes. No peak is observed, however, if the normal mode displa
ements donot lead to a 
hange in the dipole moment of the mole
ule.where h = 6, 626 × 10−34 J·s, is Plan
k's 
onstant and νi = ωi/2π is the frequen
y.More 
omplex situationsWhen the mass of the atoms is not the same, for example CO2, the solution ofthe eigenvalue problem is a little more 
ompli
ated, but the normal modes are still asymmetri
 stret
h and an antisymmetri
 stret
h. Also, when the spring 
onstant for thetwo bonds is not the same, as in OCS, the 
al
ulation is mu
h more tedious and thesolutions do not have any symmetry (or antisymmetry). These problems 
an, however,easily be solved using Mathemati
a and similar tools.Referen
esP.W. Atkins: Mole
ular Quantum Me
hani
s, 
hapters 11.5-11.8.C.N. Banwell: Fundamentals of Mole
ular Spe
tros
opy, 
hapters 3.1 og 3.5.
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