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Normal Modes of Vibration

The atoms in molecules are constantly moving. The distance between any pair
of atoms and bond angles is constantly changing with time, although the average bond
length and bond angles are well defined and remain the same for long periods of time. At
room temperature, this motion is mostly small amplitude oscillations, so called molec-
ular vibration. Chemical reactions occur on a much longer time scale than vibration
(many orders of magnitude). Each degree of freedom of the molecule has on average
an energy of kgl where kg is the Boltsmann constant and T is the temperature. It
is important to understand vibrational motion of molecules for many reasons. Vibra-
tional motion is an important source and sink of kinetic energy in chemical reactions.
Also, by using infrared spectroscopy which probes the vibrational motion, one can learn
about molecular structure and the chemical composition of unknown samples. Sharp
peaks in the IR absorption can be associated with particular molecules, or fragments
of molecules. Each peak corresponds to a ‘vibrational mode’ of the molecule. In most
cases the vibrational modes can be well approximated by so-called ‘normal modes’ of
vibration.

Vibration of a diatomic molecule

In a diatomic molecule, the vibrational motion corresponds to oscillations in the
bond length. The interaction potential function may, for example, be approximated by
a Morse potential
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This form of the potential function often gives a good representation of the potential
energy of covalently bonded atoms. Under typical conditions - reasonably strong bonds
and room temperature - the deviations of the bond length from its optimal value is
small, on the order of 0.1 or less. For such small displacements of the atoms, the
potential energy can often be well described by a harmonic oscillator approximation. The
appropriate harmonic approximation can be found by Taylor expansion the potential
function about the minimum energy. Let x denote the deviation, x = r — rg, from the
optimal distance between the atoms. The Taylor expansion about z = 0 is

V(z) = V(0) + zV'(0) + %QV”(O) + h.o.t.

Since V' (z) has a minimum at = = 0, V'(0) = 0. Neglecting the higher order terms, we



have
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Here, k denotes the so called spring constant (the harmonic oscillator potential function
is applicable to a spring with stiffness given by the spring constant). The force acting

on the harmonic oscillator is
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The classical trajectory of a harmonic oscillator can be obtained from the equation of
motion (Newton’s second law)

F(x) = mi(t)
—kx(t) = mi(t)

#(t) = —(k/m) x(t)
The notation #(t) means second derivative of x with respect to ¢. This differential
equation has the general solution

x(t) = Asin(wt) + Bcos(wt)

where w = y/k/m. A and B are constants that need to be evaluated from the initial
conditions. Another way to write the general solution is

z(t) = Csin(wt+ ¢)

The deviation of the bond length from the optimal value varies in a sinusoidal way in
time with frequency, w.

Quantum mechanically, the harmonic oscillator has bound state energy levels spaced
apart by AE = hw. The vibrational motion can be excited by the absorption of a quan-
tum of light, a photon, with energy AE = hv = hw. The selection rule for vibrational
excitations in the harmonic approximation is Arv = =+1, i.e. the system can only be
excited by absorption of a photon to the next higher level, or de-excited by emission
of a photon to the next lower level. Within the harmonic approximation, the absorp-
tion spectrum therefore has just one peak This frequency typically corresponds to the
infrared radiation.

Polyatomic molecules

For larger molecules, the trajectory of an atom is in general not a simple sinusoidal
function corresponding to one frequency. Also, even if the molecule is initially distorted
in such a way that only one of the bonds is stretched, all the bond lengths will even-
tually be changing with time. Special modes, so-called normal modes, can under some



circumstances be defined so that if only one mode is excited initially, then the other
modes will not be excited. In that sense the simplicity of the diatomic is recovered in
molecules with many atoms.

A simple system which illustrates this is a linear triatomic molecule where the atoms
can only move along a line (a one-dimensional system). Even if only atom A is displaced
initially, the motion of atom A, x4(t), is not just a sinusoidal function corresponding to
a single frequency. After a while, the B-C bond starts vibrating also. The vibrational
motion of the three atoms is coupled together.

Figure 1: A simple model of a molecule. The three atoms A, B, and C, with mass m4,
mp og m¢, are confined to move along a line. The chemical bonds can be approzimated
by springs with spring constants kg and kpc.

The classical equation of motion (Newton’s second law) can be solved exactly for
polyatomic molecules if the interaction potential is approximated as a quadratic func-
tion (a multidimensional harmonic oscillator). The solutions are called ‘normal modes’
and they give the characteristic frequencies which are the dominant features in typical
absorption spectra of polyatomic molecules. Let z4(t) be the displacement of atom A
at time ¢ from the optimal, lowest potential energy position of the atom, and similarly
for z5(t) and xc(t). Analogous to the case of a diatomic molecule, a Taylor expansion
of the potential energy about the optimal configuration of the atoms gives
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if third order and higher terms are neglected. This is the harmonic approximation to
the full potential energy surface. The spring constants k45 and kg¢ are directly related
to the second derivative of the potential energy with respect to the distance between
atoms.

The equation of motion for each one of the atoms is

where 7 is A, B or C. Using the fact that the force is the negative derivative of the
potential energy, the three equations can be written as
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other variables are kept fixed. In the case of the linear, triatomic molecule the force on

where the partial derivative, denotes differentiation with respect to x; while the

each atom is
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L Bax—vc = ]{ZBc(flfc—fL’B).

Inserting this form of the force into the equations of motion, and dividing by the mass
of the atom gives

( 5,;4—5(%3 —x4) = Ia
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L —%(l’c — ZL’B) = Zi’c.

The problem is to solve this set of three, coupled differential equations. One can
attempt to find a solution where all the atoms oscillate with the same frequency, i.e.
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Here, w is some frequency which has the same value in all three equations. To test
if this will work, this form for AZ4 can be inserted into the equation of motion to give
(after switching left and right hand sides of each equation)

_kap kap 2
e A +mA TB = W Tg
kap _ (kaB 4 kBc kpc — 2
AL 1y <mB +22) vp +P% 00 = —wup (7)
kpc kBc 2
L p B p o = —W” Zc.

This set of linear equations can be written in a matrix form as
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This is a matrix eigenvalue problem. The task is to determine the eigenvalue —w? and
corresponding eigenvector. As will be discussed below, three different eigenvalues —w?
and eigenvectors v; can be found in this case. A non-trivial solution exists only when

the determinant of the matrix
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is zero. This gives a third order polynomial equation for w? which has three roots.

A special case: A molecule of the type A—A— A

The calculation is simplified greatly if the mass of all three atoms is taken to be the
same, i.e. my = mpg = mg = m, and the two spring constants are taken to be the same,
i.e. kap = ke = k. Then the eigenvalue problem becomes
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After dividing through by % and defining A\ = —mw?/k this becomes
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which is easy to solve by hand. The determinant is the third order polynomial

PAA) = (F1=X(2- (1= - (-1=-A) = (=1-1)
“AA+1)(A+3)
which has roots at A\ = 0, \s = —1, and A3 = —3. By inserting the eigenvalues into the
eigenvalue equation one can find the corresponding eigenvectors. They are
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Note that the length of the eigenvectors is arbitrary, all they say is what the relative
displacements of the atoms are, not how much they get displaced. The interpretation
of the three solutions are as follows:



e The first solution corresponds to zero frequency and all three atoms are displaced
in the same way x4 = xp = x¢. This is simply uniform translation.

e The second solution corresponds to frequency ws = 1/k/m. The eigenvector shows
that atom B does not move at all, while A and C' move equally much but in
opposite direction. This is the so-called symmetric stretch.

e The third solution corresponds to w3z = \/W a higher frequency than the
symmetric stretch. The eigenvector shows that while atoms A and B are displaced
equally much in the same direction, atom B is displaced twice as much in the
opposite direction. This is the so-called asymmetric stretch.

A general solution for the dynamics of the three atoms is a linear combination of
these three normal mode solutions. But, the three normal modes are independent, i.e.
there is no energy flow from one mode to another. If the molecule is vibrating in such
a way that only one mode is active, then the molecule will continue to move according
to that one normal mode. The others never come into play. Recall, that the central
approximation here is that the interaction potential is harmonic. For more realistic
anharmonic interaction potentials, such as the Morse potential, the independent normal
modes are only approximate solutions, but typically they represent the dominant feature
in the absorption spectrum.

Spectroscopy

In absorption spectroscopy, the molecule absorbs energy from the oscillating electric
and magnetic field in the electromagnetic wave only if the frequency matches that of the
vibrational oscillations (such matching of frequencies is called resonance). The energy
of the absorbed photon is
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A polyatomic molecule has more than one normal mode of vibration. Each normal
mode has a different frequency and there is, in principle, an absorption peak for each
one of the modes. No peak is observed, however, if the normal mode displacements do
not lead to a change in the dipole moment of the molecule.
where h = 6,626 x 1073* J-s, is Planck’s constant and v; = w;/27 is the frequency.

More complex situations

When the mass of the atoms is not the same, for example CQO,, the solution of
the eigenvalue problem is a little more complicated, but the normal modes are still a
symmetric stretch and an antisymmetric stretch. Also, when the spring constant for the
two bonds is not the same, as in OCS, the calculation is much more tedious and the
solutions do not have any symmetry (or antisymmetry). These problems can, however,
easily be solved using Mathematica and similar tools.
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