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Classical trajectories
In this exercise, you will use the velocity Verlet algorithm to calculate classical trajectories.  First of all (in part 
A), you will gain familiarity with the algorithm and study its properties by applying it to the dynamics of a 
diatomic molecule.  You will then (in part B) study the collision of an atom with a diatomic molecule to see, in 
particular, whether an exchange reaction takes place.  Two different potential surfaces will be used to 
describe the interaction between the atoms, one could be used to describe interaction between rare gase 
(and possibly metal) atoms while the other describes a situation where only one chemical bond can be 
formed in the system, for example halogen and/or hydrogen atoms.  You will see how features of the 
potential energy surface affect the dynamics of an exchange reaction. In some cases the probability of an 
exchange reaction is increased more when energy is added to the vibrational degree of freedom rather than 
the translational degree of freedom.  In other cases, the translational degree of freedom enhances the 
reactivity more than the vibration.

A:  Diatomic molecules
A1. The Lennard-Jones pair potential
The simplest and probably most frequently used potential function for describing the interaction of two atoms 
is the Lennard-Jones (L-J) potential

where r is the distance between the two atoms. The zero of energy is chosen here to equal the limiting value 
of the potential energy as the atoms are brought infinitely far apart, v(r) -> 0 as r -> ∞.  The attractive part of 
the potential (the second term) is consistent with a London interaction (induced dipole - induced dipole), but 
the form of the repulsive part (the first term) is chosen to be the 12-th power of the inverse distance merely 
for mathematical convenience. It would be more realistic for most molecules to use an exponential form for 
the repulsive part but it leads to a problem at very short distances since the diverging -1/r6 attractive part will 
eventually dominate, leading to a collapse of the two atoms.  There are ways around this, but they make the 
potential form much more complicated.  The L-J potential function describes quite well the interaction 
between rare gas atoms, such as Ar-Ar.  The Morse potential which has exponential attractive part and 
exponential repulsive part is more appropriate for describing the interaction between atoms forming a 
chemical bond.  We will use the L-J potential here and, first of all, we will use Matlab to gain more familiarity 
with the L-J potential function. (The Morse potential is used in next weeks exercise). First, define a Matlab 
function for the potential. It is convenient to choose units of energy and length in such a way that both 
parameters in the L-J potential, ε and σ, get the numerical value of unity. 

-------------------------------------------------------
function y=potent(r)
epsilon=1;
sigma=1;
y=4*epsilon*((sigma./r).^12-(sigma./r).^6);
-------------------------------------------------------

The potential can then be plotted with the plot function 

>> r=[0:0.02:3];
>> plot(r,potent(r))
>> axis([0 3 -2 6])

Note that epsilon is the well depth (here -1) and sigma is the distance at which the potential is zero.  What is 
the optimal distance between the two atoms?  The optimal distance corresponds to minimum potential 



energy.  We can use Matlab to find it. 

>> xmin=fminbnd(@potent,0.6,1.5)

Here @ is a function handle. It is used to retrieve all the information about a function that Matlab needs.

Q1: Verify that this is indeed the value that gives the local minimum, by differentiating the potential function 
by hand and then making it equal to zero.

The force on the atoms reflects the tendency to move towards lower potential energy.  For any distance, r, 
the force is simply the negative derivative of the potential function. It can be convenient to use Matlab to take 
the derivative and define a force function.  While the L-J potential is simple enough that this can as easily be 
done by hand, more realistic potential functions can be quite complicated and the process of taking the 
derivative tedious.  You will see an example of that in part B. We first take the derivative here with respect to 
a symbolic variable rr and then replace rr with the value of the distance, r, for which the force should be 
evaluated

--------------------------------
function y=force(r)

syms rr

difansw=-diff(potent(rr));

rr=r;

y=subs(difansw);
--------------------------------

It is a good idea to test and see if the force function has been defined correctly by asking Matlab what the 
form of the function is by typing (compare this with the expression for the derivative in Q1)

>> syms r
>> force(r)

Q2:   Plot the force and the potential on the same graph. Note that the force is zero at the potential minimum.  
Identify which curve is which.

Q3:   Imagine initially holding the atoms at rest with a separation of 1.0.  How will the atoms move when they 
are released?  What is the sign of the force when the distance between them is 1.0?  Is it consistent with 
your answer to the first question (a positive force will act to increase the distance, a negative force will act to 
decrease the distance).

As the symbolic differentiation takes a lot of processing time, it is prudent to define a new force function.

---------------------------------------------------------------------------
function y=force(r)

epsilon=1;

sigma=1;

y=-4*epsilon*(-12*sigma^12*r.^-13+6*sigma^6*r.^-7);
---------------------------------------------------------------------------

The task is now to calculate the classical trajectory of the two atoms.  No forces act on the center of mass 
and we take it to be stationary, so the goal is to get the distance between the two atoms, the relative 
coordinate, as a function of time, r(t). The method is based on discretizing time and using an iterative finite 
difference algorithm, the so called velocity Verlet algorithm (see lecture notes). Time is advanced by one 
time step for each iteration of the algorithm. It is a good idea to clear all the variables so that we start off with 
a clean slate.



>> clear all

First of all, the time step size is defined, h, and total time specified, from which the total number of time steps 
can be calculated.

Secondly, the initial values of the distance, the force and the velocity can be specified. Here a distance of r = 
2 and a velocity of - 0.1 are chosen

Then, the velocity Verlet algoritm can be applied 'nsteps' times to generate the distance, force and velocity at 
time points n*h:

---------------------------------------------------
h=0.02;
totaltime=10.0;
nsteps=round(totaltime/h)+1

r(1)=2;
f(1)=force(r(1));
v(1)=-0.1;

for n=2:nsteps
    r(n)=(r(n-1))+h*v(n-1)+h^2*f(n-1)/2;
    f(n)=force(r(n));
    v(n)=v(n-1)+h*(f(n)+f(n-1))/2;
end
---------------------------------------------------

It can be instructive to list the values of the various quantities for each time step.  First, evaluate the kinetic 
energy from the velocity (the unit of mass is chosen here to give unit reduced mass for the two atom system) 
and then the total energy

>> kineticen=0.5*v.^2;
>> totalen=kineticen+potent(r);

It is informative to plot the data.  First of all, a plot of the distance between the two atoms as a function of time

--------------------
t=[1:nsteps]*h;

plot(t,r)   
xlabel('t')
ylabel('r')
--------------------

Q4:  Interpret the shape of the r vs. t curve in terms of the motion of the atoms.  Why is the curve pointed for 
small r and smooth for large r?

The motion of the two atoms can be animated (animations will become even more useful later when you 
simulate collisions involving three atoms). Choosing the origin to be right in between the two atoms, the 
position of atom A is -r/2 and the position of atom B is r/2. The following commands will produce the 
animation.

-------------------------------------------------------------------
nres=5;

% This loop picks out every fith set of coordinates
for n=1:nres:nsteps
    ptA((n-1)/5+1)=-r(n)/2;
    ptB((n-1)/5+1)=r(n)/2;
end



nanimate=round(nsteps/nres);

for t=1:nanimate
    plot(ptA(t),0,'ob',ptB(t),0,'ok','MarkerSize',69)
    axis([-3 3 -3 3])
    axis off
    M(t) = getframe;
end

movie(M,5)
-------------------------------------------------------------------

The trajectory gets repeated over and over again.  Since the distance and velocity at the end of the trajectory 
happened to be the same as at the beginning of the trajectory in this case, the repeated animations give the 
impression of seemles continuation.

The most important check on a numerical calculation of a classical trajectory is the conservation of the total 
energy.  If Newton's equation is satisfied, then the total energy is constant.  This will only be true 
approximately in the finite difference calculation (recall the higher order terms in the Taylor expansion that 
were neglected in the derivation of the Verlet algorithm) but the energy conservation will become better and 
better as the time step size is made smaller (until round-off errors start showing up for very small step size). 

Q5:   Make a plot of the total energy as a function of time.  Note that any deviation from the initial total energy 
is an error in the energy.  For what configuration of the atoms is the error largest?  Recall the derivation of 
the Verlet algorithm with Taylor expansions.  When is the neglected higher order term largest? 

Notice the remarkable stability of the Verlet algorithm.  An error made at one step tends to decrease in later 
steps. In contrast, an unstable algorithm will tend to magnify errors at later steps.

Q6:    Repeat the calculation of the trajectory using a smaller time step size, for example half as large.  Then 
plot the total energy again.  How does the error in the energy change as the step size is changed?

It turns out that the global error in the energy, i.e. the error over an extended interval in time, goes as the 
second power of the step size.  That is, if a trajectory spanning some total time T is calculated for different 
time step sizes, then a plot of the error made (for example the root mean square error in the energy over the 
whole trajectory) vs. time step size squared would be linear. This is a good test to see if the Verlet algorithm 
has been programmed correctly.   (Optional:  carry out this test).

Q7:   Repeat the calculation of the trajectory for a higher energy.  One way to increase the energy is to 
increase the initial velocity.  Try for example an initial velocity of -0.2 and -0.5.  Check the energy 
conservation (plot energy vs. time).  Note that the energy is less well conserved the higher the energy is.  
This means that you need to choose a smaller time step size at larger energy in order to have similar 
accuracy in the velocity Verlet algorithm.  Why is that?


