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Approximate Methods

1. Variational Calculations

Few problems can be solved exactly analytically. This is true in Quantum Mechanics
just as in Classical Mechanics. The variational method is one of the two most commonly
used approximate methods in Quantum Mechanics. It is most often applied to bound
states, and the discussion here will be restricted to those cases. (A variational method for
scattering states, the Kohn variational principle, does exist and has become quite widely
used in atom and molecule scattering calculations in the last few years.)

Given a time-independent Hamiltonian, H, with eigenstates |φn >

H|φn >= En|φn >

where n = 0 for the ground state, n = 1 for excited state, etc, then for any arbitrary state
vector |ψ > in the space spanned by the eigenstates, i.e.

|ψ >=
∑

n

cn|φn > ,

(|ψ > must satisfy the same boundary conditions as the |φn >’s). We have

< H >=
< ψ|H|ψ >
< ψ|ψ > ≥ E0 .

This says that the expectation value for the energy using the arbitrary state vector |ψ >
can never be lower than the true ground state energy E0. This is called the variational

principle. It can be used to get an estimate of E0 and |φ0 >.

‘Proof:’ We assume the eigenstates |φn > are normalized

< φk|φn >= δkn .

Substituting the above expansion of |ψ > into the expression for < H >, first the denom-
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inator and then the numerator, gives

< ψ|ψ > =
∑

n

c∗
n
< φn|

∑

k

ck|φk >=
∑

n

|cn|2

< ψ|H|ψ > =
∑

n

c∗
n
< φn|H|

∑

k

ck|φk >

=
∑

n

∑

k

c∗nck < φn|H|φk >

=
∑

n

∑

k

c∗
n
ckEkδnk

=
∑

n

|cn|2En = |c0|2E0 + |c1|2E1 + |c2|2E2 + . . .

≥ |c0|2E0 + |c1|2E0 + |c2|2E0 + . . . = E0

∑

n

|cn|2 .

The inequality follows from using E0 ≤ EN . Taking the ratio gives

< H > ≥ E0

∑

n
|cn|2

∑

n
|cn|2

= E0

The equality < H >= E0 only holds when c1 = c2 = c3 . . . = 0 . Then |ψ >= |φ0 >,
i.e., |ψ > is the true ground state.

The variational principle can be used to obtain an approximate ground state energy
and wavefunction in the following way: Choose a family of functions ψα =< r|ψα > that
satisfy the right boundary conditions and depend on some parameter, α, for example,

ψα(x) = e−αx
2

,

calculate < H >α and find the value of α, say α = αm, that minimizes < H >α. Then
< H >αm

is an estimate of the ground state |φ0 >. The family of functions < x|ψα > is
called the trial functions and the more flexible it is, the better the estimates will be.

Example: Harmonic Oscillator:

H = − h̄2

2m

d2

dx2
+

1

2
mω2x2.

A. First choice of trial functions:

< x|ψα >= ψα(x) = e−αx
2

(α > 0).

The normalizing denomenator is

< ψα|ψα >=

∫ ∞

−∞

dxe−2αx
2

=

√
π

2α
.
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The numerator is

< ψα|H|ψα >=

∫ ∞

−∞

dxe−αx
2
[

− h̄2

2m

d2

dx2
+
mω2

2
x2

]

e−αx
2

.

Perform the derivative in the first term of the integrand

d2

dx2
e−αx

2

=
d

dx

(
− 2αxe−αx

2)

= −2αe−αx
2

+ 4α2x2e−αx
2

.

This gives

< ψα|H|ψα > =

∫ ∞

−∞

dx

[

h̄22α

2m
+

(
− h̄24α2

2m
+
mω2

2

)
x2

]

e−2αx
2

=
h̄2α

m

√
π

2α
+

(

− 2h̄2α2

m
+
mω2

2

) 1

4α

√
π

2α
︸ ︷︷ ︸

∫
∞

−∞

x2e−2αx
2
dx

=
( h̄2α

2m
+
mω2

8α

)
√

π

2α
.

Taking the ratio gives

< H >α=

(
h̄
2
α

2m
+ mω

2

8α

)√
π

2x
√

π

2α

=
h̄2α

2m
+
mω2

8α
.

Figure 1. < H >α as a function of α. The minimum corresponds to the best approximation.

Now we need to minimize < H >α with respect to α. For any extremum we have

d

dα
< H >α

∣
∣
∣
α=αm

= 0

h̄2

2m
− mω2

8α2
m

= 0 .
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This gives an optimal value for α

α2
m

=
m2ω2

4h̄2

αm =
mω

2h̄
.

This value of α indeed gives a minimum in < H >α. An estimate for the ground state
energy can now be obtained by using the optimal value α = αm

< H >αm
=

h̄2

2m

(mω

2h̄

)

+
mω2

8

( 2h̄

mω

)

=
h̄ω

2

=
1

2
h̄ω .

Here we happen to get exactly the right ground state energy because the family of trial
functions we chose, ψα(x) = e−αx

2

, includes the exact wave function.

B. Second choice of trial functions:

< x|ψα >=
1

x2 + α
(α > 0)

< ψα|ψα > =

∫ ∞

−∞

dx

(x2 + α)2
=

π

2α
√
α

< H >α =
h̄2

4m

1

α
+

1

2
mω2α .

Minimizing with respect to α
d < H >α

dα

∣
∣
∣
α=αm

= 0

gives

αm =
1√
2

h̄

mω

and

< H >αm
=

1√
2
h̄ω .

Here the estimate of the ground state energy is off by 20% of the h̄ω quantum. Considering
how different the trial wave functions are from the true ground state wave function, this
is perhaps a surprisingly good estimate of the energy. It turns out that it is always much
easier to get good estimates of the energy than the wavefunction. This is because the
energy extrema are insensitive to small changes in the wave function, δ < H > /δψ = 0.

The quality of the approximation provided by the variational method is determined by
how well the chosen family of trial functions can mimic the true eigenfunction. Experience
and intuition are important in making a good choice of trial functions.
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How about excited states?

Given an estimate of the ground state wave function, |ψα0
m

>, we can choose a family
of functions |ψ′

α > that satisfy
< ψα0

m

|ψ′
α
>= 0.

Carrying out similar analysis as above, but now with c0 = 0, gives

< H >=
< ψ′|H|ψ′ >

< ψ′|ψ′ >
≥ E1 .

Example: Continuing with case A in the harmonic oscillator example, we can now
choose

ψ′
α
(x) = xe−αx

2

as trial functions. These functions are odd, so they are guaranteed to be orthogonal to the
ground state wave function, which is even,

< ψα0
m

|ψ′
α >=

∫ ∞

−∞

dx xe−(α+α
0

m
)x2

= 0 .

Here we can use symmetry to choose a valid family of trial functions without having to know
the exact ground state wavefunction. After evaluating the numerator and denominator,
we get

< H >α=
< ψ′

α
|H|ψ′

α
>

< ψ′
α
|ψ′

α
>

=
3h̄2

2m
α+

3

8

mω2

α
.

Minimizing this expectation value of the energy with respect to α gives

< H >αm
=

3

2
h̄ω .

Again, the variational calculation gives exactly the right value here, because we happened
to choose a set of trial functions that includes the true eigenfunction.

General variation of the trial function

It is possible to minimize the expectation value of the energy without reference to any
explicit form of the wavefunction. We then need to minimize with respect to a function,
namely the wave function, rather than a variable. The value of the function at each point
on a grid of points becomes a variational parameter. This can be done with the so called
calculus of variation. If we make an infinitesimal change in the function

|ψ > → |ψ > +|δψ >

then the expectation value < H > will change

< H > → < H > +δ < H > .
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Figure 2. An arbitrary, infinitesimal change |δψ > to the trial function.

We will show now that if |ψ > is such that δ < H >= 0 for any small change in the
function, |δψ >, then

H|ψ >=< H > |ψ >
i.e., |ψ > is an eigenvector of H with an eigenvalue < H >. Note that this is true for
the excited states as well as the ground state. Therefore, any extremum in < H > is an
eigenvalue.

‘Proof:’ By definition of < H > we have:

< H >< ψ|ψ >=< ψ|H|ψ >
for any |ψ >. After a small change in |ψ > to a state |ψ + δψ > this becomes

(
< H > +δ < H >

)
< ψ + δψ|ψ + δψ >=< ψ + δψ|H|ψ + δψ > .

Multiply this out:
(
< H > +δ < H >

)(
< ψ|ψ > + < δψ|ψ > + < ψ|δψ > + < δψ|δψ >

)

= < ψ|H|ψ > + < δψ|H|ψ > + < ψ|H|δψ > + < δψ|H|δψ >
The change δψ is infinitesimal so second order terms, such as < δψ|δψ > and < δψ|H|δψ >
can be neglected,

< H >< ψ|ψ >+ δ < H >< ψ|ψ > + < H >
(
< δψ|ψ > + < ψ|δψ >

)

=< ψ|H|ψ > + < δψ|H|ψ > + < ψ|H|δψ >

δ < H > =
1

< ψ|ψ >
(
< δψ|H|ψ > + < ψ|H|δψ >

)
− < H >

(
< δψ|ψ > + < ψ|δψ >

)
.

So, if δ < H >= 0 we get the condition

< δψ|H− < H > |ψ > + < ψ|H− < H > |δψ >= 0.

This is true for any infinitesimal |δψ >. In particular we can choose

|δψ >= δλ |χ >
with |χ > defined to be

|χ >≡ (H− < H >)|ψ > .

Using the fact that H is hermitian, H† = H, we can write

< ψ|(H− < H >) ≡< χ|.
The above condition then becomes

2δλ < χ|χ >= 0,

that is
< χ|χ >= 0.

When the modulus is zero, the vector itself must be zero, so |χ >= 0. By definition of
|χ > this means

(H− < H >)|ψ >= 0.

Since this result is independent of |δψ > it must be true irrespective of what choice we
make for |δψ >. Therefore

H|ψ >=< H > |ψ > .
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