
Addition of Angular Momenta

What we have so far considered to be an ’exact’ solution for the many electron problem,
should really be called ’exact non-relativistic’ solution. A relativistic treatment is needed
to properly introduce spin and a relativistic term in the Hamiltonian then also appears,
the so-called spin-orbit coupling. While this is a rather small correction for most atoms,
especially the smaller ones, it is important to be aware of this. Most importantly, it means
that the total orbital angular momentum and the total spin are no longer constants of the
motion, i.e. conserved quantities that can be used to characterize the system. This is an
example of the problem of ’adding angular momenta’ in quantum mechanics.

Constants of the Motion
It is particularly valuable to know any property of the system that does not change

with time. Such properties are called ’constants of the motion’. One example is the total
energy. For a closed system, the total energy is a constant. The angular momentum of
a rotating, classical object is another example. In a system of two or more interacting
objects, it is the total angular momentum that is conserved. As mentioned above, for an
electron in an atoms, one needs to add the angular momentum due to the motion of the
electron around the nucleus of the atom and the angular momentum due to the spin of the
electron to get the total angular momentum, which is conserved. Identifying such constants
of the motion is important whether one is dealing with classical mechanics or quantum
mechanics. In quantum mechanics it is, furthermore, useful to work with eigenfunctions of
operators that correspond to constants of the motion. Such operators commute with the
Hamiltonian as can be seen from the following calculation.

The expectation value of an arbitrary operator Ω has time dependence:

d

dt
< ψ

∣
∣Ω

∣
∣ψ> =

d < ψ|
dt

Ω
∣
∣ψ> + < ψ

∣
∣
dΩ

dt

∣
∣ψ> + < ψ

∣
∣Ω

d|ψ>
dt

where
d|ψ>
dt

=
1

ih̄
H

∣
∣ψ>

and
d < ψ|
dt

=
1

−ih̄ < ψ
∣
∣H.

When the operator, Ω, itself is not explicitly time dependent, the middle term vanishes,
dΩ/dt = 0. Then

d

dt
< ψ

∣
∣Ω

∣
∣ψ>=

i

h̄
< ψ

∣
∣HΩ − ΩH

∣
∣ψ> .

The observable < ψ|Ω|ψ> is, therefore, a constant of the motion if [H,Ω] = 0.

As an example, the orbital angular momentum ~L of an electron in a spherically sym-
metric potential (such as an electron interacting with a heavy nucleus) satisfies [H, ~L] = 0

and, therefore, is a constant of the motion. It is natural to use the eigenfunctions of ~L,
the spherical harmonics Y m

ℓ (θ, φ), to represent the (θ, φ) dependence. The r dependence
separates and we are left with solving a one-dimensional problem. Recall the discussion of
the hydrogen-like atoms.
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When two angular momenta are present and when there is an interaction between
them, then each one separately will not be a constant of the motion. It is then advantageous
to define a new vector, the total angular momentum, which in the absence of external
perturbations, is a constant of the motion. Following is a discussion of two simple but
important examples that illustrate this.

Example 1: Two particles interacting via spherically symmetric potential (for example
the two electrons in a He atom).

The Hamiltonian is

H = H1 +H2 + v

where

H1 = − h̄2

2m
∇2

1 + V (r1)

H2 = − h̄2

2m
∇2

2 + V (r2)

v = v(r12) = v(|~r2 − ~r1|).

We are assuming that each particle is in a force field with spherical symmetry,

V (r1) = V (|~r1|) and V (r2) = V (|~r2|).

Therefore, the orbital angular momentum and the Hamiltonian for each particle commute

[L1, H1] = [L2, H2] = 0.

We also have

[L1, H2] = [L2, H1] = 0

(L1 and H2 act on different variables, and similarly L2 and H1). Therefore, the individual
angular momenta L1 and L2 would be constants of the motion, i.e. [L1, H] = [L2, H] = 0,
if the interaction v(r12) were absent.

Even when the interaction, v, is present, a combination of ~L1 and ~L2 can be found
that is a constant of the motion as long as v only depends on the scalar distance between
the particles

r12 = |~r1 − ~r2| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 .

Find: [L1z, H]:

Using the definition of L1z

L1z =
h̄

i
(x1

∂

∂y1
− y1

∂

∂x1
)
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and the product rule for differentiation gives

[L1z, H] ψ(~r1, ~r2) = [L1z, v] ψ = L1zvψ − vL1zψ

=
h̄

i

(

x1
∂(vψ)

∂y1
− y1

∂(vψ)

∂x1

)

− v
h̄

i

(

x1
∂ψ

∂y1
− y1

∂ψ

∂x1

)

=
h̄

i

(

x1
∂v

∂y1
ψ + x1v

∂ψ

∂y1
− y1

∂v

∂x1
ψ − y1v

∂ψ

∂x1
− x1v

∂ψ

∂y1
+ y1v

∂ψ

∂x1

)

=
h̄

i

(

x1
∂v

∂y1
− y1

∂v

∂x1

)

ψ(~r1, ~r2)

=
h̄

i

(

x1
y1 − y2
r12

v′(r12) − y1
x1 − x2

r12
v′(r12)

)

ψ(~r1, ~r2)

=
h̄

i
(y1x2 − x1y2)

v′(r12)

r12
ψ(~r1, ~r2).

The derivatives of v can be found using the chain rule

∂v(r12)

∂y1
=
∂r12
∂y1

∂v(r12)

∂r12
=
y1 − y2
r12

v′(r12)

with v′ denoting the derivative of the potential function v(α) with respect to the argument
α. Therefore, in operator form,

[
L1z, H

]
=
h̄

i
(Y1X2 −X1Y2)

v′(r12)

r12

6= 0.

When the interaction v(r12) is present, L1z is no longer a constant of the motion. Similarly,

[
L2z, H

]
=
h̄

i
(Y2X1 −X2Y1)

v′(r12)

r12
.

However, if the two results are added together to obtain a commutator for L1z + L2z

[
L1z + L2z, H

]
=
h̄

i

v(r12)

r12
(Y1X2 −X1Y2 + Y2X1 −X2Y1)

= 0.

The sum L1z + L2z is a constant of the motion. Similarly we could show that L1y + L2y

and L1x + L2x are also constants of the motion. Therefore, we can define a new vector
~L ≡ ~L1 + ~L2 which is a constant of the motion. The commutation relations for the
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components of this new vector are

[Lx, Ly] = [L1x + L2x, L1y + L2y]

= [L1x, L1y] + [L1x, L2y] + [L2x, L1y] + [L2x, L2y]

= ih̄ L1z + ih̄ L2z

= ih̄ Lz

and, similarly,

[Ly, Lz] = ih̄ Lx

and

[Lz, Lx] = ih̄ Ly.

So, by definition, ~L is an angular momentum. It is the total angular momentum. If the two
particles start out in an eigenstate of ~L, they will remain in that state unless the system
is perturbed. The problem of ’adding angular momenta’ involves finding those states in
terms of the eigenstates of ~L1 and ~L2.

In classical mechanics the situation is analogous. Total angular momentum of two
interacting particles is constant but not the angular momentum of each particle separately
if the two interact. But, we usually do not have the problem of basis set transformations
in classical mechanics.

Example 2: A particle with spin moving in a central potential v(r) in the presence of
spin-orbit coupling.

First of all, if the Hamiltonian is simply

H = − h̄2

2m
∇2 + v(r)

then [~L,H] = 0 and [~S,H] = 0. That is, the two angular momenta are separately constants

of the motion if the Hamiltonian does not couple ~L and ~S.
But in relativistic quantum mechanics the spin and orbital angular momenta turn out

to be interacting, or, equivalently, they are coupled together. The interaction is called
spin-orbit coupling and has the form

~L · ~S = LxSx + LySy + LzSz.

In the electronic states of atoms, this leads to the various terms and term symbols which
are a more rigorous description of the state of the atom than electron configuration. The
electron configuration does not take into account spin-orbit coupling. It turns out that
the coupling strength is a function of the distance to the origin, ζ(r). Thus, the full
Hamiltonian including spin-orbit coupling can be written as

H = − h̄2

2m
∇2 + v(r) + ζ(r)~L · ~S.
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Due to the spin-orbit coupling the orbital angular momentum ~L is no longer a constant
of the motion. The commutator for the z component, for example, is

[Lz, H] = ζ [Lz, LxSx + LySy + LzSz]

= ζ (Sx[Lz, Lx] + Sy[Lz, Ly] + Sz[Lz, Lz])

= ζ (Sxih̄Ly + Sy(−ih̄Lx))

= ζ ih̄(SxLy − SyLx)

6= 0

Similarly, the spin ~S is no longer a constant of the motion.

[Sz, H] = ζ ih̄(LxSy − LySx)

6= 0.

However, the z-component of the sum of the two angular momentum vectors, ~Lz + ~Sz ,
is a constant of the motion as can be seen by adding the two commutators above,

[Lz + Sz, H] = 0.

Similar calculation can be done for the x and y components. Therefore, the total angular
momentum ~J ≡ ~L + ~S is a constant of the motion. Again, we can easily show that ~J
satisfies the commutation relations that define an angular momentum vector

[Jx, Jy] = ih̄Jz, etc.

The Hamiltonians in examples 1 and 2 are common. Working with the eigenstates of
the total angular momentum rather than the eigenstates of the individual angular momenta
greatly simplifies calculations is such cases. The problem of ‘addition of angular momenta’
therefore involves more than just addition of two vectors, we need to find the eigenstates of
the total angular momentum and express them in terms of the already known eigenstates
of the individual angular momenta.

Definition of Clebsch-Gordan coefficients:
The general problem can be stated in the following way: Given two angular mo-

menta ~L and ~S (not necessarily orbital and spin angular momenta, here ~L and ~S are
used as general symbols for any two angular momenta) and their eigenkets |ℓmℓ > and
|sms>, a complete set of eigenkets for the combined system can be constructed by direct
multiplication

|ℓsmℓms>≡ |ℓmℓ> ⊗|sms> .

This is a complete set and forms a basis but these kets do not correspond to a constant
of the motion. Instead, one would like to transform to a new set of kets |jm > that
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correspond to eigenstates of J2, Jz, L
2 and S2 where the total angular momentum is

defined as ~J ≡ ~L+ ~S. That is, the new kets should satisfy

J2|jm>= j(j + 1)h̄2|jm>

Jz|jm>= mh̄|jm>

L2|jm>= ℓ(ℓ+ 1)h̄2|jm>

and

S2|jm>= s(s+ 1)h̄2|jm> .

The new vectors can be constructed from the direct product basis

|jm>=
ℓ∑

mℓ=−ℓ

s∑

ms=−s

aℓsmℓms;jm|ℓsmℓms>

and the problem reduces to finding the linear combination coefficients aℓsmℓms;jm =<
ℓsmℓms |jm> which are called Clebsch-Gordan coefficients. They have been tabulated in
may books and are also preprogrammed in various mathematical software packages.

Solution for Two Spin 1/2 Particles:

The general method for finding eigenstates of the total angular momentum is a bit
involved and it is worthwhile to illustrate the essence of the problem in the simple but
important case of two spin 1

2
angular momenta. Here a straight forward application of

linear algebra will do the job. Later, this same problem will be solved using the general
method, and finally the general solution will be presented.

The total spin angular momentum is ~S ≡ ~S1 + ~S2. We want to find a set of states
|sm > such that ~S2|sm >= s(s + 1)h̄2|sm > and Sz|sm >= mh̄|sm >. We will express

them as linear combinations of the direct products of eigenstates of ~S1 and eigenstates of
~S2:

|sm>= a | + +> + b | + −> + c | − +> + d | − −> .

The direct product states satisfy

S1z| + +> =
h̄

2
| + +>

S1z| + −> =
h̄

2
| + −>

S1z| − +> = − h̄
2
| − +>

S1z| − −> = − h̄
2
| − −>
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and similar relationships for S2z. The length of the two spin vectors is necessarily the same

S2
1 | ± ±> = S2

2 | ± ±> =
3h̄2

4
| ± ±> .

Using the direct product states as basis (in the same order as above), the state |sm>
can be expressed in vector notation as

|sm>=






a
b
c
d




 .

First, we will find 4x4 matrices representing the operators S2 and Sz and then by
diagonalizing, get the eigenvectors |sm>.

Matrix for Sz:
We need to evaluate all the matrix elements of Sz in this basis.

Sz =






< + + |Sz| + +> < + + |Sz| + −> < + + |Sz| − +> < + + |Sz| − −>
< + − |Sz| + +> < + − |Sz| + −> . . . . . .
< − + |Sz| + +> . . . . . . . . .
< −− |Sz| + +> . . . . . . < −− |Sz| − −>




 .

First, applying the operator to | + + >

Sz| + +>= S1z| + +> +S2z| + +>=

(
h̄

2
+
h̄

2

)

| + +>= h̄| + +>

the first column is
< + + |Sz| + +> = h̄

< + − |Sz| + +> = 0

< − + |Sz| + +> = 0

< −− |Sz| + +> = 0.

The second and third columns only have zeros because

Sz| + −> =

(
h̄

2
− h̄

2

)

| + −>= 0

and

Sz| − +> =

(

− h̄
2

+
h̄

2

)

| − +>= 0.

The fourth column has one non-zero element just like the first column,

Sz| − −> =

(

− h̄
2
− h̄

2

)

| − −>= −h̄ | − −> .
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The full matrix is

Sz =






h̄ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −h̄




 .

This is already diagonal, i.e., the basis vectors | ± ±> are eigenvectors of Sz. Any linear
combination that only mixes the | + −> and | − +> vectors will also be an eigenvector.

Matrix for S2:
By definition of the total angular momentum, we have

S2 = ~S · ~S = (~S1 + ~S2) · (~S1 + ~S2) = S2
1 + S2

2 + 2~S1 · ~S2.

The action of the S2
1 and S2

2 operators can be readily evaluated but we need a convenient

expression for ~S1 · ~S2 so that the action of this operator on the direct basis functions can
be evaluated. Written in terms of the Cartesian components

~S1 · ~S2 = S1xS2x + S1yS2y + S1zS2z

The action of the last term, S1zS2z, on the direct product states can easily be evaluated, but
the first two terms involving the x and y components are not as straight forward because
the direct product states are not eigenstates of those operators. Since we have chosen to
know the projection of the spin on the z-axis, the projection onto the y− and x−axes is
not known. It is convenient here to make use of the raising and lowering operators for
angular momentum to rewrite S1x and S1y as

S1x =
1

2
(S1+ + S1−)

S1y =
1

2i
(S1+ − S1−)

and similarly for the S2x and S2y operators. Using this, the ~S1 · ~S2 operator can be written
as

~S1 · ~S2 ==
1

2
(S1+S2− + S1−S2+) + S1zS2z.

First find the matrix representation for the S1zS2z part:

S1zS2z| + +> =

(
h̄

2

) (
h̄

2

)

| + +>=

(
h̄

2

)2

| + +>

S1zS2z| + −> =

(
h̄

2

) (

− h̄
2

)

| + −>= −
(
h̄

2

)2

| + −>

S1zS2z| − +> =

(

− h̄
2

)(
h̄

2

)

| − +>= −
(
h̄

2

)2

| − +>

S1zS2z| − −> =

(

− h̄
2

)(

− h̄
2

)

| − −>=

(
h̄

2

)2

| − −> .
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Left multiplying with each of the basis vectors gives a diagonal matrix

S1zS2z =

(
h̄

2

)2






1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




 .

Then, find the matrix representation of the (S1+S2−+S1−S2+) part: The first column
only has zeros, since

(S1+S2− + S1−S2+) | + +> = S1+S2− | + +> +S1−S2+ | + +>

= h̄S1+ | + −> + 0

= 0 .

Similarly, the fourth column only has zeros,

(S1+S2− + S1−S2+) | − −> = 0 .

However the second and third column have one non-zero element

(S1+S2− + S1−S2+) | + −> = S1+S2− | + −> +S1−S2+ | + −>
= 0 + h̄S1− | + +>

= h̄2 | − +>

and

(S1+S2− + S1−S2+) | − +> = S1+S2− | − +> +S1−S2+ | − +>

= h̄S1+ | − −> +0

= h̄2 | + −> .

Left multiplying with each of the basis vectors gives the matrix

S1+S2− + S1−S2+ =






0 0 0 0
0 0 h̄2 0
0 h̄2 0 0
0 0 0 0






The S2
1 and S2

2 matrices are simple:

S2
1 = S2

2 =
3

4
h̄2






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




 .

Adding the various contributions finally gives:

S2 = h̄2






2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




 .

31



We need to find linear combinations of the | ±±> that make both the Sz and the S2

matrices diagonal. We will diagonalize the S2 matrix and find that the eigenvectors heppen
to be also eigenvectors of Sz. Let |sm > denote the eigenvectors and define λ ≡ s(s+ 1).
Then S2|sm> −λh̄2|sm>= 0, or in matrix form

h̄2






2 − λ 0 0 0
0 1 − λ 1 0
0 1 1 − λ 0
0 0 0 2 − λ











a
b
c
d




 = 0 .

This has non-trivial solutions (i.e. (abcd) 6= 0) when

det






2 − λ 0 0 0
0 1 − λ 1 0
0 1 1 − λ 0
0 0 0 2 − λ




 = 0.

Expanding the determinant gives

(2 − λ)2 det

(
1 − λ 1

1 1 − λ

)

= 0

(2 − λ)2((1 − λ)2 − 1) = 0.

This is a fourth order equation for λ, with four roots. From the first factor we get twice
the solution λ = 2 which gives s = 1. From the second factor we get 1 − 2λ+ λ2 − 1 = 0,
i.e., λ = 0 meaning s = 0 and λ = 2 meaning s = 1 once more. So s has two possible
values: 0 which is non-degenerate, and 1 which is threefold degenerate.

Find the corresponding eigenvectors:
For s = 0: (λ = 0)






2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2











a
b
c
d




 = 0.

This gives a = 0, d = 0 and b+ c = 0, i.e., b = −c.
Normalized, the eigenvector is

1√
2






0
1
−1
0




 =

1√
2

(| + −> − | − +>).

Since only the | + − > and | − + > states get mixed here, this new vector remains an
eigenvector of Sz. This nondegenerate eigenstate is called the singlet.

For s = 1: (λ = 2)
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




0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 (2 − 2)











a
b
c
d




 = 0.

This gives b− c = 0.
Since this is a threefold degenerate eigenvalue, we need three linearly independent

eigenvectors. Given that there is no constraint on a, we can easily generate one normalized
eigenvector by taking a = 1 and b = c = d = 0. This is simply the |++> state. Similarly,
we can take d = 1 and a = d = c = 0. This is the | −−> state. For the third eigenvector,
we must have a = 0 and b = 0 since it must be linearly independent of the first two. We
are then left with the condition b = c, and the normalized vector is 1√

2
(|+−> +| −+>).

Again, since only the | + −> and | − +> states get mixed here, this is vector is also an
eigenvector of Sz. This triply degenerate eigenvalue is called the triplet.

Summary:
The solutions are the states |sm> with the following values for the quantum numbers

and expansions in the direct product basis vectors:
The singlet state, s = 0 has m = 0 and is |00>= 1√

2
(| + −> −| − +>).

The triplet state, s = 1 has

m = 1 |11> = | + +>

m = 0 |10> =
1√
2

(| + −> + | − +>)

m = −1 |1 − 1> = | − −> .

These four vectors form a basis and are simultaneously eigenvectors of both S2 and
Sz (as well as S2

1 and S2
2).

Time Evolution of Coupled Spin 1/2 Particles: (CDL FX)
To illustrate the significance of the preceding result, consider two spin 1

2 particles that

are coupled by the interaction a~S1 · ~S2, i.e., the Hamiltonian is:

H = H1 +H2 + a~S1 · ~S2.

The direct product states | ± ±> are eigenstates of the independent particle Hamiltonian
H0 = H1 + H2. However, when the interaction W is turned on, those are no longer
eigenstates. Therefore, even if the state of the system is, for example, as | + −> at time
t = 0, the orientations of the spins will have reversed some time later and the system can
be described as | − +>. This can be illustrated with a simple calculation.

The time independent, stationary states are the eigenstates of the total angular mo-
mentum |sm>= |00>, |11>, |10> and |1 − 1>. In order to express the time evolution of

33



an arbitrary state, we need the energies of the stationary states. We need to evaluate the
coupling term which can be rewritten as

W = a~S1 · ~S2 =
a

2

[
S2 − S2

1 − S2
2

]
=
a

2

[

S2 − 3

2
h̄2

]

Since there are two possible values for s, s = 0 and s = 1, there are two distinct energy
levels:

W |00>=
a

2

[

0 − 3

2
h̄2

]

|00>= −3a

4
h̄2 |00>≡ E− |00>

and

W |1m>=
a

2

[

2h̄2 − 3

2
h̄2

]

=
a

4
h̄2 |1m>≡ E+ |1m> .

The higher energy level, E+ = ah̄2/4, is threefold degenerate while the lower level E− =
−3ah̄2/4, is non-degenerate.

Lets assume that initially, at t = 0, the state is

|ψ>(0)= | + −> .

From the previous result, we can see that this can be rewritten in terms of the stationary
states as

1√
2

(|10> + |00>) .

At a later time t the state is

|ψ>(t) =
1√
2

[

e−iah̄t/4 |10> + ei3ah̄t/4 |00>
]

.
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In particular, at time t = π/ah̄ we have

|ψ>(π/ah̄) =
[

e−iπ/4 |10> + ei3π/4 |00>
]

=
1√
2
e−iπ/4 [|10> +eiπ |00>]

=
1√
2
e−iπ/4 [|10> −|00>]

= e−iπ/4 | − +>

i.e., the spins have reversed their orientation from the initial state at t = 0.

General Method:
The direct diagonalization used above to solve the problem involving two spin 1

2
par-

ticles does not lend itself well to generalizations. The solution for adding any two angular
momentum vectors can be expressed more explicitly by using another, somewhat more in-
volved procedure. This procedure makes use of the fact that the total angular momentum
satisfies the general properties of angular momenta, in particular the restrictions on the
possible values of the quantum numbers s and m. It is most simply illustrated by solving
again the addition of two angular momenta with s1 = s2 = 1

2 .

Example: Again, do two spin 1
2 particles.

As we saw in the previous solution to this problem, the vectors |++>, |+−>, |−+>
and |−−> (the direct product vectors) are already eigenstates of Sz. The eigenvalues are
m = m1 +m2. Here m can be −1, 0 and 1, with 0 being twofold degenerate.

In forming the linear combinations

|sm>= a | + +> + b | + −> + c | − +> + d | − −>

we must not mix states with unequal m, otherwise the resulting vector will not be eigen-
vector of Sz. This means we can only mix | + −> and | − +>. The possible values of m
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are therefore the same as the values of m1 +m2. Letting m1 and m2 run over all possible
values, the value of m1 +m2 is 1 once, −1 once and 0 twice.

No value of m is larger than 1. Since we know that m will take any value in the
range −s ≤ m ≤ s, this means we cannot have s larger than 1. The value m1 +m2 = 1
does appear once, so we must have one total angular momentum state with m = 1. This
means states with s = 1 exist with |11> being one of them. The expansion of this state
in the direct product basis is easy to find since only one of those has m1 + m2 = 1,
a = 1, b = c = d = 0. Therefore, |11>= |++>. Again, using the fact that m will take all
values in the range −s ≤ m ≤ s, we must have two other states corresponding to s = 1,
namely |10> and |1−1 >. We can obtain both of these by applying the lowering operator
S− to |11>. From the general properties of angular momenta we get:

S−|11>= h̄
√

1(1 + 1) − 1(1 − 1) |10>= h̄
√

2 |10> .

Equivalently, applying the lowering operator in the direct product representation gives

S−|11>= (S1− + S2− | + +>= h̄ (| − +> + | + −>).

Subtracting the two equations gives the m = 0 state

|10>=
1√
2

(| − +> + | + −>).

Applying S− again gives the m = −1 state:

S−|10>= h̄
√

1(1 + 1) − 0(0 − 1) |1 − 1>= h̄
√

2 |1 − 1>

Equivalently, using the direct product basis

S−|10> = (S1− + S2−)
1√
2

(| − +> + | + −>)

=
h̄√
2

(| − −> + | − −>) = h̄
√

2 | − −> .

Subtracting the two equations, we have

|1 − 1> = | − −> .

There is only one more state to be found (the total must be four) and the only one of
the possible values of m not accounted for is the second occurance of m1 +m2 = 0 = m.
This state must have s = 0 and is therefore the |00> state. Expressed in terms of the
direct product basis, only the m = 0 states, namely | + −> and | − +>, can be involved.
Say

|00> = α | + −> + β | − +> .
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Choosing |00> to be normalized < 00|00>= 1 = |α|2 + |β|2. Furthermore, this state must
be orthogonal to the other states |11>, |10>, and |1 − 1>. In particular, |00> must be
orthogonal to the other m = 0 state

< 00|10> = 0

=
1√
2

(α∗ β∗)

(
1
1

)

Therefore α = −β and

|00>=
1√
2

(| + −> −| − +>).

The General Solution: ~J ≡ ~L+ ~S
Given the direct product basis |ℓsmℓms>, the task is to find eigenvectors of J2,Jz,L

2

and S2 denoted |jm> as linear combinations:

|jm>=
∑

mℓ

∑

ms

aℓsmℓms;jm|ℓsmℓms> .

Since the new states are eigenvectors of L2 and S2 with given eigenvalues ℓ and s, the
linear compbination can only involve direct product vectors with those values of ℓ and
s. The total number of states is (2ℓ + 1)(2s + 1). The direct product states |ℓsmℓms >
are already eigenvectors of Jz with eigenvalues m = mℓ + ms where −ℓ ≤ mℓ ≤ ℓ and
−s ≤ ms ≤ s. Therefore, m can take the values (ℓ+ s), (ℓ+ s− 1), . . . ,−(ℓ+ s).

Example: ℓ = 2 and s = 1

No value of m is larger than ℓ+ s. Therefore, we cannot have j larger than ℓ+ s. We
have one state with m = ℓ+ s and since we can only mix states with equal m, that state
must be

j = ℓ+ s , m = ℓ+ s :
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| ℓ+ s
︸ ︷︷ ︸

j

ℓ+ s
︸ ︷︷ ︸

m

>= |ℓ s ℓ
︸︷︷︸

mℓ

s
︸︷︷︸

ms

> .

The choice of phase is arbitrary here. This choice, taking the Clebsch-Gordan coefficient
to be real and positive, will ensure that all the coefficients are real.

By applying the lowering operator we can generate 2(ℓ+ s)+1 states with j = ℓ+ s,

|ℓ+s ℓ+s−1> = J− |ℓ s ℓ s> .

By repeated application of J− we finally get to the m = −(ℓ+ s) state.
Since the total number of states is (2ℓ+ 1)(2s+1), we still have to find (2ℓ+1)(2s+

1)−(2(ℓ+s)+1) more. The states that are left have a maximum m value of m = ℓ+s−1
(since the m = ℓ + s state has already been determined). Therefore, we must have states
with j = ℓ + s − 1. We can find the j = ℓ + s − 1, m = ℓ + s − 1 state by taking a
linear combination of the two direct product states that have m = ℓ+ s−1. Choosing this
state to be normalized and orthogonal to the j = ℓ + s, m = ℓ + s − 1 state determines
the expansion coefficients. Then we can apply J− repeatedly to generate the full set of
2(ℓ+ s− 1) + 1 states corresponding to j = ℓ+ s− 1, and so on.

What is the smallest value of j? Just counting the number of states, which must be
the same in the direct product basis as in the total angular momentum basis, gives an
equation that can be solved to give the minimum j value, denoted here as j0

ℓ+s∑

j=j0

(2j + 1) = (2ℓ+ 1)(2s+ 1)

(ℓ+ s)(ℓ+ s+ 1) − (j0 − 1)j0 + ℓ+ s− (j0 − 1) = 4ℓs+ 2ℓ+ 2s+ 1

j20 = ℓ2 − 2ℓs+ s2 = (ℓ− s)2.

Therefore the minimum value for j is j0 = |ℓ− s|.
The final result is that j can take the values (ℓ + s), (ℓ + s − 1), . . . , |ℓ − s|. This

means that j must be such that a triangle can be formed with sides l, s, j. Therefore, this
limitation on the range of j is called the ‘triangle rule’. Tables of the expansion coefficients,
the Clebsch-Gordan coefficients, aℓsmℓms;jm can be found in books on angular momentum
(Edmonds, or Rose, or Condon & Shortley). Several computer programs provide the
values of the the Clebsch-Gordan coefficients, for example Mathematica. Recursion and
orthogonality relations can be derived for the Clebsch-Gordan coefficients, see CLD BX .
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