
II. Perturbation Theory:

When the task is to estimate properties of a system that cannot be solved easily but is
similar to one of the systems that has known solutions, such as the harmonic oscillator, the
method of choice is perturbation theory. The discussion here is limited to bound stationary
states (i.e. the solutions to the time independent Schroedinger equation). Perturbation
theory can also be applied to scattering states and gives the Born expansion.

Assume H0 is a simple time independent Hamiltonian that can be solved and let |uk >
denote the stationary states:

H0|uk >= Ek|uk >

Let
H ≡ H0 +H ′

be the full time independent Hamiltonian where the H ′ term makes the problem too
complicated to be solved exactly. Imagine turning H ′ on gradually:

H = H0 + λH ′

where
λ ∈ [0, 1].

In the end we will let λ→ 1.
fig.

Example: The vibration of a diatomic molecule is a good example for the use of
perturbation theory. The zeroth order problem is the harmonic approximation and anhar-
monicity is then introduced as a perturbation.

Let the equilibrium separation between the atoms be r0 and Taylor expand the po-
tential about that distance:

v(r) = v(r0) + (r − r0)v
′(r0) +

(r − r0)
2

2
v′′(r0) +

(r − r0)
3

3!
v′′′(r0) + ...

= ar̃2 + br̃3 + ...
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Here we have chosen v(r0) = 0, used the fact that v′(r0) = 0 (minimum at r0) and defined
r̃ ≡ r − r0. Only the first term is included in H0

H0 = −
h̄2

2µ

d2

dr̄2
+ ar̃2

which gives the harmonic oscillator Hamiltonian, and then the rest of the terms are treated
as a perturbation:

H ′ = br̃3 + ...

One clear effect of the perturbation is that ∆n = ±2 transitions become possible when the
perturbation H ′ is turned on while they are not allowed for the pure harmonic oscillator.

fig.

We want to find the eigenstates |ψ > and eigenvalues W such that

H|ψ >= W |ψ > .

Assume H ′ is small and expand both |ψ > and W in a power series expansion:

|ψ >= |ψ0 > +λ|ψ1 > +λ2|ψ2 > +λ3|ψ3 > +...

W = W0 + λW1 + λ2W2 + λ3W3 + ...

These expansions do not always converge, but there are many cases where they converge
so fast that we only need to include the first few terms. The trick is often to find a
zeroth order Hamiltonian H0 such that H ′ is sufficiently small. Substitute this into the
Schrödinger equation:

H
︷ ︸︸ ︷

(H0 + λH ′)

ψ
︷ ︸︸ ︷

(ψ0 + λψ1 + λ2ψ2 + ...) =

W
︷ ︸︸ ︷

(W0 + λW1 + λ2W2 + ...)

ψ
︷ ︸︸ ︷

(ψ0 + λψ1 + λ2ψ2 + ...)
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This equation holds for any value of λ, so we can equate coefficients of equal powers of λ:
To 0-th order:

H0|ψ0 >= W0|ψ0 > or (H0 −W0)|ψ0 >= 0.

To 1-st order:
λ(H0|ψ1 > +H ′|ψ0 >) = λ(W1|ψ0 > +W0|ψ1 >)

or
(H0 −W0)|ψ1 >= (W1 −H ′)|ψ0 > .

To 2-nd order:

λ2(H0|ψ2 > +H ′|ψ1 >) = λ2(W0|ψ2 > +W1|ψ1 > +W2|ψ0 >)

or
H0 −W0)|ψ2 >= (W1 −H ′)|ψ1 > +W2|ψ0 > .

etc.
To zeroth Order: We just get the Schrödinger equation for the unperturbed problem.

So we choose any one of the unperturbed eigenstates as the zeroth order approximation:

|ψ0 >= |um >

W0 = Em

In order to obtain the corrections to the state m due to the perturbation, we must
treat separately the case when the energy level Em is not degenerate (case A) and the
more complex case when the level is degenerate (case B).

Case A: (non-degenerate level)
We will assume for now that Em is non-degenerate. Note that we can add any multiple

of |ψ0 > to any of the other terms |ψs > and the equations remain unchanged because

(H0 −W0)|ψ0 >= 0.

For example, if |ψ1 > is a solution to the first order equation then so is (|ψ1 > +a|ψ0 >):

(H0 −W0)(|ψ1 > +a|ψ0 >) = (H0 −W0)|ψ1 > +a(H0 −W0)|ψ0 >

= (H0 −W0)|ψ1 >

= (W1 −H ′)|ψ0 > .

Therefore, we can choose |ψs > such that < ψ0|ψs >= 0 when s > 0.
We can find an expression for the s−th correction to the eigenvalue by left multiplying

the equations with < ψ0|. The left hand side is always zero

< ψ0|H0 −W0|ψs > =< ψ0|H0|ψs > −W0 < ψ0|ψs >

= W0 < ψ0|ψs >

= 0 for any s > 0.
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Applying this general result to the equation for the 1st order correction (after left
multiplying with < ψ0| gives:

0 =< ψ0|W1 −H ′|ψ0 >

= W1 < ψ0|ψ0 > − < ψ0|H
′|ψ0 >

So : W1 =
< ψ0|H

′|ψ0 >

< ψ0|ψ0 >
.

Applying this to the equation for the second order correction gives:

0 =< ψ0|W1 −H ′|ψ1 > +W2 < ψ0|ψ0 >

= 0− < ψ0|H
′|ψ1 > +W2 < ψ0|ψ0 >

So : W2 =
< ψ0|H

′|ψ1 >

< ψ0|ψ0 >
.

Generally, for any s > 0:

Ws =
< ψ0|H

′|ψs−1 >

< ψ0|ψ0 >
.

Note that it is sufficient to know |ψ > to order s− 1 in order to finding W to order s.
Similarly, one can find the perturbation corrections to the wave function, i.e. the state

vector. The first order correction, |ψ1 >, is expanded in the set of orthonormal eigenstates
of H0

|ψ1 >=
∑

n

an|un > .

This can be done because the eigenstates of H0 form a complete set for functions satisfying
the same boundary conditions and therefore also the first order correction. The expression
above assumes that all the eigenstates of H0 are bound states, i.e. only discrete spectrum.
(More generally, there could also be a continuous part of the spectrum and the expansion
would then be of the form

|ψ1 >=
∑

n

an|un > +

∫ ∞

0

dk ak|uk > .

The
∑

n includes the discrete spectrum of the eigenstates and the integral
∫ ∞

0
includes

the continuum spectrum).
Substitution of the expansion of |ψ1 > into the first order equation gives:

(H0 −W0)|ψ1 >= (W1 −H ′)|ψ0 > .

We are studying how much the Em level changes when the perturbation H ′ is applied, so
we take W0 = Em, |ψ0 >= |um >

∑

n6=m

an(En − Em)|un >= (W1 −H ′)|um >
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The n = m term is left out in the summation because we must have am = 0 since
< ψ1|ψ0 >= 0, i.e., < ψ1|um >= 0. Left multiplying with < uℓ| gives

∑

n6=m

an(En −Em)< uℓ|un >
︸ ︷︷ ︸

δℓn

= W1 < uℓ|um > − < uℓ|H
′|um >

aℓ(Eℓ − Em) = − < uℓ|H
′|um >

aℓ =
< uℓ|H

′|um >

Em −Eℓ
ℓ 6= m

Having obtained an explicit expression for the first order correction to the state vector,
it is now possible to write the second order correction to the eigenvalue only in terms of
the solution to the known, zeroth order quantities. The second order equation, obtained
from the λ2 terms, is

(H0 −W0)|ψ2 >= (W1 −H ′)|ψ1 > +W2|ψ0 >

To get the second order correction to the energy, we left multiply by < ψ0|

0 =< ψ0|H
′|ψ1 > +W2 < ψ0|ψ0 >

W2 =
< ψ0|H

′|ψ1 >

< ψ0|ψ0 >

The second order correction to the energy can now be written more explicitly in terms of
the zeroth-order states. Using the solution for |ψ1 > and choosing |ψ0 >= |m >,

|ψ1 >=
∑

n6=m

an|n > with an =
< n|H ′|m >

Em − En
,

gives

W2 =< m|H ′|
∑

n6=m

< n|H ′|m >

Em − En
|n >

=
∑

n6=m

< m|H ′|n >< n|H ′|m >

Em − En
.

Using the fact that H ′ is Hermitian gives

W2 =
∑

n6=m

| < n|H ′|m > |2

Em − En
.

The second order correction to the state vector is again obtained by expanding in the
eigenstates of H0

|ψ2 >=
∑

n6=m

a(2)
n |n >
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and substituting into the λ2 equation

∑

n6=m

(En −Em)a(2)
n |n >=

∑

ℓ6=m

a
(1)
ℓ (W1 −H ′)|ℓ > +W2|m > .

Left multiplying by < k| gives

a
(2)
k =

∑

n6=m

< k|H ′|n >< n|H ′|m >

(Em −Ek)(Em − En)
−
< k|H ′|m >< m|H ′|n >

(Em − Ek)2
.

Case B: (degenerate energy levels)
Assume now that the energy level we are studying is two-fold degenerate

W0 = Em = Eℓ.

The unperturbed state is any linear combination of the two:

|ψ0 >= am|m > +aℓ|ℓ > .

Substitute this into the first order equation:

(H0 −W0)|ψ1 > = (W1 −H ′)|ψ0 >

= (W1 −H ′)(am|m > +aℓ|ℓ >)

(1) Left multiply by < m|:

(Em−W0) < m|ψ1 >= W1(am < m|m > +aℓ < m|ℓ >)−(am < m|H ′|m > +aℓ < m|H ′|ℓ >)

Similar to the non-degenerate case, we choose |ψ1 > to be orthogonal to |m > and |ℓ >.
So:

0 = W1am − am < m|H ′|m > −aℓ < m|H ′|ℓ >

or
(< m|H ′|m > −W1)am+ < m|H ′|ℓ > aℓ = 0

(2) Similarly, left multiply by < ℓ|: get

< ℓ|H ′|m > am + (< ℓ|H ′|ℓ > −W1)aℓ = 0

This set of coupled equations for am and aℓ only has nontrivial solutions when the
determinant vanishes:

∣
∣
∣
< m|H ′|m > −W1 < m|H ′|ℓ >

< ℓ|H ′|m > < ℓ|H ′|ℓ > −W1

∣
∣
∣ = 0

12



This determines the first order correction to the energy. By expanding the determinant
we get

W 2
1 − (< m|H ′|m > + < ℓ|H ′|ℓ >)W1+ < m|H ′|m >< ℓ|H ′|ℓ > −

∣
∣ < m|H ′|ℓ >

∣
∣
2

= 0 .

There are two solutions to this quadratic equation

W1± =
1

2

[

< m|H ′|m > + < ℓ|H ′|ℓ >) ±
√

(< m|H ′|m > − < ℓ|H ′|ℓ >)2 + 4| < m|H ′|ℓ > |2 .

If the square root is non-zero, the states are no longer degenerate, i.e. the degeneracy is
lifted.
fig.

If < m|H ′|m > + < ℓ|H ′|ℓ >= 0, the splitting is symmetric |W1+| = |W1−|. Under
H0 the system can be in a state that is any linear combination of |m > and |ℓ >. As H ′

is turned on, only two linear combinations are allowed. After determining W1+ and W1−,
the expansion coefficients a+

m, a
+
ℓ and a−m, a

−
ℓ can be found from equations (1) and (2)

above.
The first order correction to the state can again be found by expanding in the complete

set of zeroth order solutions
|ψ1 >=

∑

n 6=m

6=ℓ

an|n > .

The ℓ and m terms are excluded in the sum since |ψ1 > has been chosen to be orthogonal
to those states. The first order equation is

(H0 −W0)|ψ1 >= (W1 −H ′)|ψ0 > .

Left multiplying by < k| gives

∑

n

(Ek − Em)a

δkn

︷ ︸︸ ︷

< k|n > = W1 < k|ψ0 > − < k|H ′|ψ0 >

(Ek − Em)ak = − < k|H ′|m > am− < k|H ′|ℓ > aℓ

ak =
< k|H ′|m > am+ < k|H ′|ℓ > aℓ

Em − Ek
.

If
< m|H ′|m >=< ℓ|H ′|ℓ >

and
< m|H ′|ℓ >= 0

then the degeneracy is not lifted, W1− = W1+, and we need to go to second order.
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