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III. Spin and orbital angular momentum

General Properties of Angular Momenta

Angular momentum plays a very important role in Quantum Mechanics, as it does in
Classical Mechanics. The orbital angular momentum in Classical Mechanics is ~L = ~R× ~P
or in terms of components

Lx = Y Pz − ZPy

Ly = ZPx −XPz

Lz = XPy − Y Px.

In Quantum Mechanics these equations remain valid if P is replaced by the momentum
operator. In addition to the orbital angular momentum we need in Quantum Mechanics
to introduce new angular momenta that are intrinsic to elementary particles, namely spin.
This will be discussed in detail later. There are certain fundamental properties that are
common to all angular momenta (and sums of angular momenta). They all derive from
the commutations relations of the components.

Commutation Relations: Derive the commutation relation for Lx and Ly

[Lx, Ly] = [Y Pz − ZPy, ZPx −XPz]

= [Y Pz, ZPx] − [Y Pz, XPz] − [ZPy, ZPx] + [ZPy, XPz]

Recall
[Ri, Ri] = 0

[Pi, Pj] = 0

[Ri, Pj] = ih̄ δij

where i, j ǫ {x, y, z}.
The last commutator can be evaluated easily:

< ~r|[Z, Pz]|ψ > = Z < ~r|Pz|ψ > −Pz < ~r|Z|ψ >

=
h̄

i
z
∂

∂z
< ~r|ψ > − h̄

i

∂

∂z
(z < ~r|ψ >)

= − h̄
i
< r|ψ >

So
[Z, Pz] = ih̄.

1



Continuing now with the calculation of [Lx, Ly] using this result gives

[Y Pz, ZPx] = Y [Pz, Z]Px = −ih̄Y Px

[Y Pz, XPz] = 0 = [ZPy, ZPx]

[ZPy, XPz] = x[Z, Pz]Py = ih̄XPy

finally gives
[Lx, Ly] = ih̄(XPy − Y Px) = ih̄Lz.

Similarly, for the other components of the angular momentum vector:

[Lx, Ly] = ih̄Lz

[Ly, Lz] = ih̄Lx

[Lz, Lx] = ih̄Ly

These commutation relations can be taken as the general definition of an angular momen-
tum vector. (The relationship to rotations in 3-D is discussed in CDL BV I)

General Properties of an Angular Momentum ~J :
The basic property of an angular momentum vector is:

[Jx, Jy] = ih̄Jz

[Jy, Jz] = ih̄Jx

[Jz, Jx] = ih̄Jy.

From these relations one can easily derive:

[J2, ~J ] = 0 where J2 = J2
x + J2

y + J2
z .

This, together with the commutation relations for the components, means that we can
simultaneously know the total angular momentum and one of its components. The com-
ponent is usually chosen to be Jz .

Instead of working with the Jx and Jy components, it is often easier to define new
linear combinations of those:

J+ ≡ Jx + iJy

J− ≡ Jx − iJy.

The adjoints are J†
+ = J− and J†

− = J+. These linear combinations together with Jz are
the set of operators we need to deal with. The total angular momentum operator can be
rewritten in terms of those three as

J2 =
1

2
(J+J− + J−J+) + J2

z .
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Proof:

J+J− =
(
Jx + iJy

)(
Jx − iJy

)

= J2
x + J2

y + iJyJx − iJxJy

= J2
x + J2

y − i
[
Jx, Jy

]

= J2
x + J2

y + h̄Jz

= J2 − J2
z + h̄Jz

Similarly:
J−J+ = J2 − J2

z − h̄Jz

Adding the two, J+J− + J−J+, gives the above expression for J2.

Let the eigenstates of J2 and Jz be denoted by |jm >. The action of the various
operators on these states (vectors) is:

(1) J2|jm >= j(j + 1)h̄2 |jm > with jǫ[0, 1
2
, 1, 3

2
, ...].

(2) Jz |jm >= mh̄ |jm > where − j ≤ m ≤ j. Total of 2j + 1 values for m.

(3)

J−|jm>=

{

h̄
√

j(j + 1) −m(m− 1) |j,m− 1> if m > −j
0 if m = −j

(4)

J+|jm>=

{

h̄
√

j(j + 1) −m(m+ 1) |j,m+ 1> if m < j
0 if m = j

All these relations can be proved using the commutation relations and operator alge-
bra. The ‘proofs’ of (2) and (3) are sketched as examples:
Prove (2):

First, find norm of J−|jm >:

∣
∣
∣
∣J−|jm >

∣
∣
∣
∣
2

=< jm
∣
∣J†

−J−
∣
∣jm >=< jm

∣
∣J+J−

∣
∣jm >

=< jm
∣
∣J2 − J2

z + h̄Jz

∣
∣jm >=< jm

∣
∣j(j + 1)h̄2 −m2h̄2 +mh̄2

∣
∣jm >

= h̄2
(
j(j + 1) −m(m− 1)

)

= h̄2
(
(j −m+ 1)(j +m)

)

Any norm must be ≥ 0, that is (j −m+ 1)(j +m) ≥ 0 or −j ≤ m ≤ j + 1.
Secondly, we can find the norm of J+|jm > in a similar way:

∣
∣
∣
∣J+

∣
∣jm >

∣
∣
∣
∣
2

= h̄2
(
j(j + 1) −m(m+ 1)

)
.

Therefore (j +m+ 1)(j −m) ≥ 0 or −(j + 1) < m < j
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For both of these inequalities to be valid, we must have −j ≤ m ≤ j.

Prove (3):
Again use

∣
∣
∣
∣J−
∣
∣jm >

∣
∣
∣
∣
2

= h̄2
(
j(j + 1) −m(m− 1)

)
.

This is zero when m = −j. When the norm of a vector is zero, the vector itself must be
zero, so J−|j −j >= 0.

Now assume m > −j: Since [J2, ~J ] = 0 we have [J2, J−] = 0 and therefore the vector
J−|jm > is an eigenvector of J2. Find the eigenvalue:

J2J−|jm >= J−J
2|jm >= j(j + 1)h̄2J−|jm > (using(1)).

The eigenvalue is j(j + 1)h̄2.
Now find JzJ−|jm >: Since

[Jz, J−] = [Jz, Jx − iJy] = ih̄Jy − i(−ih̄)Jx

= −h̄J−
we have

JzJ−|jm > = J−Jz|jm > −h̄J−|jm >

= (m− 1)h̄J−|jm >

So, the vector J−|jm> is an eigenvector of J2 with an eigenvalue of h̄2l(l + 1) and
it is an eigenvector of Jz with eigenvalue (m − 1)h̄. It therefore must be proportional to
the vector |j m−1> The operator J− is called the Lowering Operator because it generates
a vector with one lower value of m. In the proof of (2) the norm of the new vector was
found. Therefore, we have (3).

The proof of (4) is very similar, replacing J− with J+. Again, it can be shown that:

J2J+|jm >= j(j + 1)h̄2J+|jm >

and

JzJ+|jm >=

{

(m+ 1)h̄J+|jm > if m < j
0 if m = j

The operator J+ is called the Raising Operator.
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Stern-Gerlach Experiments:
A beam of hydrogen atoms is prepared by dissociating hydrogen molecules in a res-

onance cavity with a hole from which the atoms emerge. The beam is directed into a
magnetic field that has been prepared in a special way.

If the atoms in the beam have magnetic moment ~M then their potential energy inside
the magnet with field ~B is W = − ~M · ~B. The magnetic moment can, for example, be
due to the orbital angular momentum of electrons, ~M ∝ ~L. Then the force acting on the
atoms in the magnetic field is:

~F = −~∇W = ~∇( ~M · ~B)

The magnet is made in such a way that the magnetic field vector ~B uniformly points in
the same direction inside the magnet. We choose a coordinate system such that ~B||ẑ, i.e.

Bx = By = 0, so ~F = ~∇(MzBz).

Classically: The angular momentum vector (and therefore also ~M) will rotate about
the z axis with constant angle θ according to the equation of motion

d~L

dt
∝ d ~M

dt
∝ ~M × ~B.

The quantity on the right hand side is the torque. This equation relating the rate of change
of angular momentum to the applied torque is analogous to the Newton equation relating

the rate of change of linear momentum to the applied force d~P
dt = ~F .

So, Mz is constant but Mx and My oscillate rapidly and will average to zero over the time
that the atom spends inside the magnet. Therefore:

~F = ~∇(MzBz) ∼= Mz
~∇Bz

The magnet for this kind of experiment is made in such a way that
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∂Bz

∂x
=
∂Bz

∂y
= 0

Therefore, the force on the atom is parallel to ẑ and is given by Mz
∂Bz

∂z . The gradient ∂Bz

∂z
is a property of the magnet used in the experiment and can be found by calibration.

The deflection of the atom from the initial trajectory is therefore proportional to Mz.
By measuring where the atom lands on the screen Mz and, by proportionality, Lz, can be
determined.

When a beam of hydrogen atoms is used in this experiment two well defined subbeams
of hydrogen are detected on the screen (see figure above). This result is very different from
the predictions of Classical Mechanics which is one broad distribution of atoms because
~M can be pointing in any direction in the beam. The experiment, therefore, demonstrates
quantization of the orientation of angular momentum. Furthermore, if ~M results from
orbital angular momentum ~L, then the Quantum Mechanical prediction is that an odd
number of subbeams will be formed:

if ℓ = 0 then one (m = 0)
if ℓ = 1 then three (m = −1, 0, 1)
if ℓ = 2 then five (m = −2,−1, 0, 1, 2).

The Stern-Gerlach experiment therefore points to another source of magnetic mo-
mentum, quite different from what arises from the orbital angular momentum. From this
and other experiments it has been concluded that each elementary particle has intrinsic
angular momentum which is called spin and typically is denoted ~S. Spin is a new degree
of freedom in addition to the spacial coordinates (x, y, z). Note that spin cannot be due
to the rotation of the electron about its own axis. Rotation in (x, y, z) space would lead
to an odd number of subbeams just like the orbital angular momentum.

Unlike the spatial coordinates, spin can only take a discrete set of values. Proportional
to the spin angular momentum is a magnetic momentum, ~Ms ∝ ~S. The deflection of the
hydrogen atoms is due to the spin of the electron. The proton also has spin of equal
magnitude, but the magnetic momentum due to the proton spin is much smaller and can
be neglected in this experiment. The experiment was actually done originally by Stern and
Gerlach on a beam of silver atoms. This also splits up into two subbeams because of the
single unpaired valence electron. The magnetic momentum due to the spin of the paired
core electrons cancels.

Since spin is an angular momentum it must satisfy the commutation relations

[Sx, Sy] = ih̄Sz

[Sy, Sz] = ih̄Sx

[Sz, Sx] = ih̄Sy

and therefore all the general relations for angular momentum are satisfied, in particluar

S2|sm>= s(s+ 1)h̄2|sm>
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Sz|sm>= mh̄|sm> .

Each elementary particle has a fixed magnitude of the spin vector, given by the quan-
tum number s. However, the projection of the spin onto one axis, typically chosen to be
the z-axis, is needed in addition to the coordinates (or momenta) to fully specify the state
of the particle. A complete description of spin requires relativistic Quantum Mechanics.

Spin 1
2 : Pauli Theory

Electrons, protons and neutrons have spin with s = 1
2 . This can be incorporated in

non-relativistic Quantum Mechanics in a rather simple way. The projection onto the z
axis can in that case only take two values, m = −1

2 or m = 1
2 . We can therefore introduce

a new variable, ǫ, where ǫ only can take two values + and - (or ↑ and ↓). The full set of
coordinates of the electron or neutron is (X, Y, Z, ǫ).

The spin operators S2, Sz, S+ and S− only act on the spin variable and therefore
commute with any operator acting on (X,Y,Z) space. The operators S2 and Sz form a
complete set of commuting operators in spin variable space. The eigenvectors of S2 and
Sz can be specified as:

|+>z≡ |+>≡ |1
2

1

2
>

(

j =
1

2
, m =

1

2

)

and

|−>z≡ |−>≡ |1
2

− 1

2
>

(

j =
1

2
, m = −1

2

)

By default the projection is taken along the z axis. The eigenvectors are orthonormal:

< +|−>= 0

< +|+>=< −|−>= 1

and form a complete basis for spin state space:

|+>< +| + |−>< −| = 1

So, a general spin state can be written as:

|χ>= c+ |+> +c− |−>
As for any angular momentum vector, the raising and lowering operators can be

defined:
S± ≡ Sx ± iSy

and have the properties

S+|+>= 0 S+|−>= h̄|+>

S−|+>= h̄|−> S−|−>= 0.
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(Recall

J+|j m>= h̄
√

j(j + 1) −m(m+ 1)|j m+ 1>

here

j =
1

2
.

For example set

m = −1

2
.

Then

S+|
1

2
− 1

2
>= h̄

√

1

2

3

2
+

1

2
· 1

2
|1
2

1

2
>= h̄|1

2

1

2
> or S+|−>= h̄|+> .)

Having chosen |+ > and |− > as our basis vectors, we can describe any spin state
|χ
〉

= c+|+> +c−|−> as a vector:

|χ>=

(
c+
c−

)

In particular:

|+>=

(
1
0

)

and |−>=

(
0
1

)

.

All the spin operators S+, S−, Sz and S2 can be represented as 2x2 matrices.

Find the Sz Matrix:

Sz|+>=
h̄

2
|+> So :

(
a b
c d

)(
1
0

)

=
h̄

2

(
1
0

)

This gives a = h̄
2 and c = 0.

Similarly

Sz|−>= − h̄
2
|−> So :

(
a b
c d

)(
0
1

)

= − h̄
2

(
0
1

)

.

This gives b = 0 and d = − h̄
2
. Therefore (definition of σz):

Sz =
h̄

2

(
1 0
0 −1

)

≡ h̄

2
σz

Find the S+ Matrix: In a similar way:

S+|+>= 0 So :

(
a b
c d

)(
1
0

)

= 0
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This gives a = 0 and c = 0.

S+|−>= h̄|+> So :

(
a b
c d

)(
0
1

)

= h̄

(
1
0

)

.

This gives b = 1 and d = 0. Therefore,

S+ = h̄

(
0 1
0 0

)

.

The S− matrix turns out to be:

S− = h̄

(
0 0
1 0

)

.

Now we can find Sx and Sy:

Sx =
1

2
(S+ + S−) from definition of S+ and S−

=
1

2
h̄

[(
0 1
0 0

)

+

(
0 0
1 0

)]

=
h̄

2

(
0 1
1 0

)

≡ h̄

2
σx

and Sy = − i

2
(S+ − S−) =

h̄

2

(
0 −i
i 0

)

≡ h̄

2
σy

Pauli matrices:
The matrices ~σ = (σx, σy, σz) are called the Pauli matrices. We have

~S =
h̄

2
~σ.

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

Any 2x2 matrix can be written as a linear combination of the Pauli matrices and the
identity matrix.

Example: We can apply Sx to a spin pointing in the positive z direction, |+>:

Sx|+>=
h̄

2

(
0 1
1 0

)(
1
0

)

=
h̄

2

(
0
1

)

=
h̄

2
|− > .

But the resulting state represents spin pointing in the negative z direction. Therefore,
|+ > is not eigenvector of Sx. We cannot know the x and z component of an angular
momentum vector simultaneously. Appluing the Sx operator again gives

S2
x|+>=

h̄

2

h̄

2

(
0 1
1 0

)(
0
1

)

=
h̄2

4

(
1
0

)
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Therefore, |+> is an eigenstate of S2
x. Similarly

S2
y |+>= S2

z |+>=
h̄2

4

(
1
0

)

.

Applying S2 gives

S2|+>= S2
x + S2

y + S2
z |+>=

3h̄2

4

(
1
0

)

=
1

2

(
1

2
+ 1

)

h̄2

(
1
0

)

.

Although we cannot know the value of Sx when the particle is in the state |+ >≡
|+ >z , we can ask what the expectation value is, i.e., the average value after repeated
measurements on equivalent particles:

< Sx> =< χ|Sx|χ>

=< +|Sx|+>= (1, 0)

(
0 1
1 0

)(
1
0

)

= (1, 0)

(
0
1

)

= 0

There is no polarization in the x direction in the state |+ >.
We can use Stern-Gerlach apparatus to polarize the beam in any direction we want.

If we polarize the spin in the positive x direction, i.e., |χ>= |+>x, how can we represent
the spin state in terms of our basis |+>z and |−>z ? Let |+>x= (a, b). Then

Sx|+>x=
h̄

2
|+>x or

h̄

2

(
0 1
1 0

)(
a
b

)

=
h̄

2

(
a
b

)

Therefore, we must have b = a.
So, with the proper normalization:

|+>x=
1√
2
(|+>z + |−>z) =

(
1√
2

1√
2

)

Similarly, when polarized in the negative x direction

|−>x=
1√
2
(|+>z −|−>z).

If the beam is polarized in the y direction we get

|±>y=
1√
2
(|+>z ±i|−>z)
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Arbitrary Orientation of the Spin:

It can be advantageous to use spherical polar coordinates. A unit vector pointing in
the direction (θ, φ) can be represented in cartesian coordinates as

û = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ .

The u component of the spin is:

Su = ~S · û = Sx sin θ cosφ+ Sy sin θ sinφ+ Sz cos θ

=
h̄

2

[(
0 sin θ cosφ

sin θ sinφ 0

)

+

(
0 −i sin θ sinφ

i sin θ sinφ 0

)

+

(
cos θ 0

0 − cos θ

)]

=
h̄

2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)

What are the eigenvectors of Su? Those correspond to polarization in the + and −
direction along the û axis.

Su|+>u=
h̄

2
|+>u

h̄

2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)(
a
b

)

=
h̄

2

(
a
b

)

(
cos θ − 1 sin θe−iφ

sin θeiφ − cos θ − 1

)(
a
b

)

= 0

( − sin2 θ
2

cos θ
2

sin θ
2
e−iφ

cos θ
2

sin θ
2
eiφ − cos2 θ

2

)(
a
b

)

= 0

Multiply out:

−a sin2 θ

2
+ b cos

θ

2
sin

θ

2
e−iφ = 0

a = b
cos θ

2

sin θ
2

e−iφ

This gives the direction of the eigenvector in the (|+>, |−>) plane but not its length.

Now use the normalization condition: |a|2 + |b|2 = 1 This gives

|b|2 cos2 θ
2

sin2 θ
2

+ |b|2 = 1
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|b|2 = sin2 θ

2

Choose the phase to be φ
2

so

b = sin
θ

2
eiφ/2

and

a = cos
θ

2
e−iφ/2.

The final expression for the |+>u state is

|+>u = cos
θ

2
e−iφ/2 |+>z + sin

θ

2
eiφ/2 |−>z .

(Check: Choose û = x̂, then θ = π
2 , φ = 0 and get |+>x = 1√

2
(|+>z + |−>z)

which is correct.)

General Spin State:
An arbitrary spin state can be represented as

|ψ> = α |+> + β |−> .

We assume this vector is normalized, < ψ|ψ>= 1, so

|α|2 + |β|2 = 1

The coefficients α and β are in general complex numbers that can be written in terms of
magnitude and phase as

α = |α|eiArg(α) and β = |β|eiArg(β)

Given that the overall phase of Ψ is arbitrary and by making use of the normaliza-
tion condition above, two real numbers θ and φ can be used instead of α and β. The
normalization condition is satisfied if we choose a θ such that

cos

(
θ

2

)

= |α| and sin

(
θ

2

)

= |β|

Defining φ and χ as
φ ≡ Arg(β) − Arg(α)

χ ≡ Arg(β) +Arg(α)

we have

Arg(β) =
χ+ φ

2
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Arg(α) =
χ− φ

2

The state can then be written as

|ψ>= eiχ/2

(

cos
θ

2
e−iφ/2 |+> +sin

θ

2
eiφ/2 |−>

)

.

Comparing with the |+>u expression, this is spin pointing in the (θ, φ) direction. This
shows that any spin state can be interpreted as a vector (the spin) pointing in a definite
direction (θ, φ).

Example:
Prepare a beam of atoms with spin in the (θ, φ) direction. Now direct the beam into

an analyzer that measures the spin along the x axis.
Find the probability of measuring + h̄

2 :

xP+ = |x < +|ψ> |2 with |+>x=
1√
2
(|+> +|−>)

So:

xP+ =

∣
∣
∣
∣

1√
2
(1, 1)

(
cos θ

2e
−iφ/2

sin θ
2
eiφ/2

) ∣
∣
∣
∣

2

=
1

2

(

cos2
θ

2
+ sin

θ

2
cos

θ

2
(e−iφ + eiφ) + sin2 θ

2

)

=
1

2

(

1 + sin
θ

2
cos

θ

2
2 cosφ

)

.

Find the expectation value: < Sx>

< ψ|Sx|ψ> =
h̄

2

(

cos
θ

2
eiφ/2, sin

θ

2
e−iφ/2

)(
0 1
1 0

)(
cos θ

2
eiφ/2

sin θ
2
eiφ/2

)

=
h̄

2

(

cos
θ

2
sin

θ

2
eiφ + cos

θ

2
sin

θ

2
e−iφ

)

=
h̄

2
sin θ cosφ

(Check: if û = x̂, θ = π
2 , φ = 0, < Sx>= h̄

2 ). You can verify that < Sx>= h̄
2 (xP+ −x P−).

This is just the x component of a vector of length h̄
2

that points in the (θ, φ) direction.

So, although any one measurement on one particle can only give ± h̄
2

the average behaves
like a classical angular momentum vector in (x, y, z) space.

Larmor Precession:

In a uniform magnetic field the oreintation of the spin changes periodically. Assume
the uniform magnetic field is pointing in the ẑ direction, ~B0 = | ~B0|ẑ. The magnetic

13



moment associated with the spin, ~M = γ ~S (the proportionality constant, γ, is called the
gyromagnetic ratio) interacts with the field. The potential energy is

W = − ~M · ~B0

= −MzB0

= −γB0Sz

It is convenient to define ω0 ≡ −γB0. This quantity has the units of frequency, i.e.
time−1.

If we ignore the other degrees of freedom (x, y, z) or treat them classically, then

H = W = ω0 Sz.

The stationary states (eigenvectors of H) are the eigenstates of Sz since [H,Sz] = 0:

H|±> = ± h̄wo

2
|±>

E± = ± h̄w0

2
∆E = h̄w0

However, Sx and Sy do not commute with H so < Sx> and < Sy> are not constants
of the motion.

Let the initial direction of the spin be (θ0, φ0), so

|ψ(0)>= cos
θ0
2
e−iφ0/2

∣
∣+> + sin

θ0
2
eiφ0/2

∣
∣−> .

The time evolution of this state can be found as follows. Since the Hamiltonian is time
independent, time separates from the other degrees of freedom and we can expand in the
stationary states. The stationary states correspond to a certain energy, En, and can be
written as |χnτ >. It is possible to have more than one state with this same energy, so a
second index τ is needed to label the various states of same energy En. Then the time
dependent state can be written as

|ψ(t)>=
∑

n

∑

τ

cnτ e
−iEnt/h̄ |χnτ > .
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The first sum is over energy levels, n, and the second sum is over states τ with energy En.
Here we only have two energy levels and one state for each level, so

∣
∣ψ(t)> = cos

θ0
2
e−iφ0/2 e−iE+t/h̄

∣
∣+>

+ sin
θ0
2
eiφ0/2 e−iE

−
t/h̄
∣
∣−>

= cos
θ0
2
e−i(φ0+w0t)/2

∣
∣+> + sin

θ0
2
ei(φ0+w0t)/2

∣
∣−> .

In this linear combination of stationary states, the phase of the expansion coefficients
changes with time. Comparing this with the form for the state with an arbitrary spin
direction, we see that the state |ψ(t) > corresponds to a spin pointing in a direction
(θ(t), φ(t)) with

θ(t) = θ0

φ(t) = φ0 + w0t.

A calculation of the expectation values gives

< Sz>(t) =< ψ(t)|Sz|ψ(t)>=
h̄

2
cos θ0 (time independent)

< Sx>(t) =< ψ(t)|Sx|ψ(t)>=
h̄

2
sin θ0 cos(φ0 + w0t)

< Sy>(t) =< ψ(t)|Sy|ψ(t)>=
h̄

2
sin θ0 sin(φ0 + w0t)

The expectation values behave like components of a classical momentum vector in coordi-
nate space that precesses about the z axis. This time dependence of the spin in a uniform
magnetic field is called Larmor Precession.

Rabi’s formula

In a uniform magnetic field ~B that points in an arbitrary direction, the Hamiltonian
of a spin 1/2 particle is

H = −γ ~B · ~S = −γ(BxSx +BySy +BzSz)

or, using the Pauli matrices

= −γh̄
2

(
Bz Bx − iBy

Bx + iBy −Bz

)

.

Alternatively, we can define a unit vector û in the direction of the field, ~B||û. Using polar
and azimuthal angles (θ, φ) to give the direction, the Hamiltonian becomes

H = −γ|B|
︸ ︷︷ ︸

def ω

Su =
ωh̄

2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)

15



The angles θ and φ can be obtained from the components of the field as

tan θ =
|B⊥|
|Bz|

=

√

B2
x +B2

y

|Bz|
0 ≤ θ < π

tanφ =
By

Bx
0 ≤ φ < 2π

The eigenstates of the Hamiltonian H = ωSu are |+ >u and |− >u with energy E+ and
E− with an energy gap of h̄ω = E+ − E−.

A useful problem to analyze is the following: We start with a uniform magnetic field
~B0 in the ẑ direction and the spin is initially in the |+ > state. Then another field ~b is

added perpendicular to ~B0. The question is: After how long a time is the spin in the |− >

state? After the field ~b has been turned on the eigenstates are no longer |+ > and |− >

but rather |+ >u and |− >u where û points in the direction of the total field ~B = ~B0 +~b.

The spin up state in the û direction is

|+ >u= cos
θ

2
e−iφ/2|+ > +sin

θ

2
eiφ/2|− > .

The negative u direction is (π − θ, φ+ π) so the spin down state is:

|− >u = sin
θ

2
e−iφ/2e−iπ/2|+ > +cos

θ

2
eiφ/2eiπ/2|− >

= i
(
− sin

θ

2
e−iφ/2|+ > +cos

θ

2
eiφ/2|− >

)

These are the stationary states. The initial state is not a stationary state

|ψ(0) >= |+ >

after the field ~b is turned on. We will have Larmor precession about the total field ~B =

16



~B0 +~b with angular velocity ω = −γ|B|.

If at time t the spin vector makes an angle α with the z axis, then

|ψ(t) > = cos
α

2
eiβ/2 |+ > + sin

α

2
eiβ/2 |− >

(where β is some phase) and the probability of finding it in the state |− > (i.e. that a
measurement of the projection of the spin onto the z axis gives − h̄

2 ) is

P+−(t) = sin2 α

2
.

The subscript here on the probability (+−) indicates first the initial state (+) and then
the final state (−). A trigonometic relation gives

cosα = cos2 θ + sin2 θ cosω

so

P+−(t) =
1

2
sin2 θ(1 − cosωt).

Recall the definition of ω

ω =
E+ − E−

h̄
.

This result is sometimes called Rabis Formula.

Magnetic Resonance:

If the field ~b is time varying within the xy plane

~b(t) = b0(cosωt x̂+ sinωt ŷ)

representing, for example, the magnetic field in an electromagnetic wave, then the prob-
ability of the spin having gone from |+ > to |− > will be large for certain times t if

ω ≃ ω0 (ω0 is the Larmor angular velocity of the ~B0 field). Then even a very weak rotat-

ing field ~b(t) is able to reverse the direction of the spin. This is because the applied field
is in resonance with the Larmor precession. This can be seen in the following way: The
Hamiltonian is

H(t) = ω0Sz + ω1(cosωt Sx + sinωt Sy)

17



where ω0 ≡ −γ| ~B0| and ω1 ≡ −γ|~b|. The time dependent spin state can be represented in
the |+ >, |− > basis as

|ψ(t) > = a+(t) |+ > + a−(t) |− >

=

(
a+(t)
a−(t)

)
.

The time dependence of the state manifests itself in the time dependence of the expansion
coefficients. Using the Pauli matrices for Sz, Sx, and Sy the Hamiltonian can be written
in matrix form as

H =
h̄

2





ω0 ω1e
−iωt

ω1e
iωt ω0



 .

The time dependent Schrödinger equation

ih̄
d

dt
|ψ(t) >= H|ψ(t) >

can be written in matrix form as:

ih̄

( da+(t)
dt

da
−

(t)
dt

)

=
h̄

2





ω0 ω1e
iωt

ω1e
iωt ω0









a+(t)

a−(t)





Multiplying this out gives two equations:

i
da+(t)

dt
=
ω0

2
a+(t) +

ω1

2
eiωta−(t)

and

i
da−(t)

dt
=
ω1

2
eiωta+(t) −

ω0

2
a−(t).

The problem is reduced to finding the functions a+(t) and a−(t). The time dependence in
the coefficients of the two equations can be eliminated by defining new functions

c+(t) ≡ eiωt/2a+(t)

c−(t) ≡ eiωt/2a−(t)

This transformation corresponds to going to a coordinate system that rotates with angular
velocity ω about the z axis. Substituting this into the two equations (1) and (2) gives

i
d

dt
c+(t) = −∆ω

2
c+(t) +

ω1

2
c−(t)

and

i
d

dt
c−(t) =

ω1

2
c+(t) +

∆ω

2
c−(t)

18



where ∆ω is defined as the difference between the frequency of the applied field and the
Larmor precession in the stationary field, ∆ω ≡ ω − ω0. By analogy with procedure
used above to reduce the time dependent Schrödinger equation to two coupled differential
equations in time, but now applying that procedure in reverse, we can see that this set of
equations corresponds to a time dependent Schrödinger equation

ih̄
d

dt
|ψ̃(t) >= H̃|ψ̃(t) >

for the state
|ψ̃(t) >= c+(t)|+ > +c−(t)|− >

where the Hamiltonian is time independent

H̃ =
h̄

2

(
−∆ω ω1

ω1 ∆ω

)

.

This Hamiltonian corresponds to a fixed, time independent field in the new rotating co-
ordinate system. Again we ask the question: Given that the state of the spin is |+ > at
time t = 0, what is the probability P+−(t) that we will find this spin in the state |− > at
time t? Since initially we have

|ψ(0) >= |+ >

then a+(0) = 1 and a−(0) = 0. By definition of c+ and c− we also have

|ψ̃(0) >= |+ > .

At time t, the probability is

P+−(t) = | < −|ψ(t) > |2 = |a−(t)|2

= |c−(t)|2 = | < −|ψ̃(t) > |2

but this is given by Rabi’s formula

P+−(t) =
1

2
sin2 θ

(

1 − cos

(
E+ − E−

h̄

)

t
)

= sin2 θ sin2
[
(
E+ −E−

)
t

2h̄

]

.

By comparing the Hamiltonian H̃ to the Hamiltonian for the previous case where the
applied field ~b is time independent, we get

sin2 θ =
ω2

1

ω2
1 + ∆ω2

and
E+ −E−

h̄
=
√

ω2
1 + ∆ω2
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So, finally

P+−(t) =
ω2

1

ω2
1 + ∆ω2

sin2

(√

ω2
1 + ∆ω2

t

2

)

If ∆ω = 0 the probability becomes 1 at certain times irrespective of how large ω1 is. That
means even a very small applied time dependent field can reverse the spin if the frequency
is right. This corresponds to a resonance between the applied field ~b and the Larmor
precession of the spin in the uniform external field. Away from resonance, P+− is never
large. For example, if ∆ω = 3ω1, then P+−(t) is never larger than 0.1.

Two Level Systems:
The formalism developed for a spin 1

2 particle and results such as Rabi’s formula can
be used whenever the quantum problem at hand is such that we can confine ourselves to
two states and ignore all others. Using the two states |φ1 > and |φ2 > as a basis and
taking the origin of energy scale to be (H11 +H22)/2), the Hamiltonian becomes

H =

(
1
2

(
H11 −H22

)
H12

H21 −1
2 (H11 −H22) .

)

This is analogous to the Hamiltonian of a spin 1
2 in a magnetic field where

H11 −H22 ↔ −γh̄Bz

|H21| ↔ −γh̄B⊥/2

Some examples of such systems are: the H+
2 molecule (see CDL p. 412) and the inversion

of the NH3 molecule (CDL GIV ).

Spinors:

We have so far been discussing spin while ignoring other degrees of freedom (or, by
assuming they can be treated classically such as the translational motion in a Stern-Gerlach
experiment). More generally, we need to work with a wavefunction that is a function of
all coordinates, the spacial coordinates and the spin. That is, we need to incorporate spin
into the wave function.

Before: Now, with Spin:
|~r > | ~r ǫ >
ψ(~r) =< ~r| ψ > ψǫ(~r) =< ~r ǫ | ψ >

For spin 1
2

particles, we can expand ψǫ(~r) in terms of the two basis states for spin

ψǫ(~r) = ψ+(~r) |+ > + ψ−(~r) |− > .

With the understanding that |+> and |−> is the basis, the wave function can be repre-
sented as a vector

[ψ](~r) =

(
ψ+(~r)
ψ−(~r)

)

.
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This is called a spinor.
If the Hamiltonian does not involve the spin, then the spinor factorizes into a spatial

part and a spin part
[ψ](~r) = φ(~r)χ(ǫ)

= φ(~r)

(
c+
c−

)

using the expansion χ(ǫ) = c+|+ > +c−|− > .
Example: A free particle A free particle with polarization in the positive x direction is
represented by the spinor

[ψ](~r) =
(
Aei~k·~r +Be−i~k·~r) 1√

2
(|+ > + |− >).

A free particle spinor with an arbitrary spin polarization is

[ψ](~r) =
(
Aei~k·~r +Be−i~k·~r) 1√

2
(c+|+ > + c−|− >).

We can easily calculate the expectation values for the spin components, for example

< Sx > =
< ψ|Sx|ψ>
< ψ|ψ>

where

< ψ|Sx|ψ> =
1

2
(c∗+c

∗
−)
h̄

2

(
0 1
1 0

) (
c+
c−

)

and

< ψ|ψ> =
1

2

(
|c+|2 + |c−|2

)

so

< Sx > =
h̄

2

c∗+c− + c∗−c+

|c+|2 + |c−|2 .

Note that if |ψ > is not normalized it is necessary to divide by the norm < ψ|ψ > so that
the value of < Sx > is between − h̄

2 and h̄
2 .

More generally, the Hamiltonian couples ~r and the spin. This happens for example
when the potential is different for the two spin components V = Vǫ(~r) or the Hamiltonian
explicitly involves the spin operators, such as ω0Sz. When the Hamiltonian is diagonal
in the |+>, |−> basis, the problem simplifies greatly. Then we can solve the Schrödinger
equation separately for each of the two spin components to obatin the functions ψ+(~r) and
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ψ−(~r). The full spinor is then found as a linear combination of those functions in such a
way as to satisfy boundary conditions.
Example: H atom scattering from a surface with uniform magnetic field.

Interpretation of Spinors: Given a spinor

[ψ](~r) =

(
ψ+(~r)
ψ−(r̂)

)

we can find the probability that the particle is in an infinitesimal volume element around
~r with spin up in the ẑ direction as

dP (~r,+)

d3r
= | < ~r,+|ψ > |2 = |ψ+(~r)|2.

Similarly we can ask about the polarization in the positive x̂ direction by left multiplying
by

1√
2
(|~r,+ > +|~r,− >)

instead of |~r,+>. If we do not care about the spin and simply ask about the probability
of finding the particle at ~r, then we must sum over the spin components:

d3P (~r)

dr3
= |ψ+(~r)|2 + |ψ−(~r)|2
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