
Interaction between atoms and molecules

I. The long range van der Waals Interaction - Application of both perturbation
and variational methods.
fig.

Consider two hydrogen atoms, A and B, separated by ~R. We will calculate the
interaction between the two atoms when the distance between them is large enough so that
the electron clouds do not overlap, R >> a0. The interaction turns out to be attractive
and is, for example, responsible for the condensation of rare gases into liquids and solids.
It is present in the interaction of all atoms and molecules and is referred to as the van der

Waals interaction or the dispersion interaction.
Consider two hydrogen atoms as an example. The discussion can easily be extended

to larger atoms. An essential assumption here is that the distance between the atoms is
large enough that the overlap of the electron wavefunctions can be neglected. Then there is
no ’chemical’ bond. At shorter, range where the overlap is significant, the problem is much
harder and will be treated later (Hartree-Fock and beyond). For two hydrogen atoms with
opposite spin, there will be an attractive bonding interaction which is much larger than
the van der Waals interaction. But, for two hydrogen atoms with the same spin, the van
der Waals interaction is the only attraction, the short range interaction is purely repulsive.

The Hamiltonian of the two atom system can be written as:

H = H0A +H0B +H ′

where

H0A ≡ − h̄2

2m
∇2

1 −
e2

r1A

is the A atom Hamiltonian and

H0B ≡ − h̄2

2m
∇2

2 −
e2

r2B

is the B atom Hamiltonian, and the last part

H ′ ≡ e2

R
+

e2

r12
− e2

r2A
− e2

r1B

is the one that gives rise to interaction between the two atoms. Note that the vectors ~r1
and ~r2 do not refer to the same origin.
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We will first get an estimate of the interaction energy using perturbation expansion.
It turns out that we can quite easily get a lower bound for the leading contribution to
the van der Waals interaction in second order. Then variational calculations are used to
obtain an upper bound. These kinds of calculations have been very successful in predicting
the interaction of rare gas atoms and are currently being extended to more complicated
systems.

Perturbation Calculation

The zeroth order Hamiltonian can be taken to be

H0 = H0A +H0B .

Then the zeroth order eigenstates are product states since the ~rA dependence separates
from the ~rB dependence. Each factor is simply a hydrogen atom wave function:

U(~rA, ~rB) = Unlm(~rA)Un′ℓ′m′(~rB) =< rA|nlm >< rB |n′ℓ′m′ > .

We assume the hydrogen atoms are in their ground state, n = 1, ℓ = 0, m = 0, that is,
the state vector for each atom is |100 > and

U0(~rA, ~rB) = U100(~rA)U100(~rB) .

The function U0 is an eigenfunction of H0

H0U0 = E0U0

with eigenvalue
E0 = −2EI

where EI is the ionization energy of a hydrogen atom. The last part of the Hamiltonian,
H ′, which includes all the interactions between particles in different atoms, is treated as
a perturbation. Since the distance between the atoms is assumed to be large, we can use
an asymptotic form for the perturbation, obtained by expanding it in powers of 1/R (we

take the molecular axis, ~R, to be parallel to ẑ):

1

r2A
=

1

|~R+ ~r2|
=

1
√

R2 + r22 + 2~r2 · ~R

=
1

√

R2 + r22 + 2z2R

=
1

R

1
√

1 + 2z2

R + ( r2

R )2

Similarly:
1

r1B
=

1

|~r1 − ~R|
=

1

R

1
√

1 − 2z1

R
+ ( r1

R
)2
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and
1

r12
=

1

|~r1 − (~R+ ~r2)|
=

1

|(~r1 − ~r2) − ~R|

=
1

|R+ (~r2 − ~r1)|
=

1

R

1
√

1 + 2(z2−z1)
R

+ (~r2−~r1)(~r2−~r1)
R2

.

Since R >> a0 ≈ |r1| ≈ |r2| we can Taylor expand:

1√
1 + ǫ

= 1 − ǫ

2
+

3ǫ2

8
(h.o.t.)

Retaining all terms up to second order in the coordinates gives, for example,

1

r2A
≈ 1

R

(

1 − z2
R

− 1

2

(r2
R

)2

+
3

2

(z2
R

)2)

.

Adding up the contributions from all terms in the perturbation gives

H ′ ≈ e2

R3

(

x1x2 + y1y2 − 2z1z2

)

to lowest order.
This expression could also be obtained by realizing that there is an instantaneous

dipole moment at each atom

~DA = e~r1 and ~DB = e~r2

The interaction energy between these two dipoles is the lowest order term in H ′. The
electrostatic potential at B created by the dipole ~DA is

U(~R) =
~DA · ~R
R3

=
e

R3
~r1 · ~R

and the electric field is:

~E(R) = −∇RU = − 1

R3

[

~r1 − 3(~r1 · R̂)R̂
]

The potential energy of dipole ~DB in this field is:

−~E · ~DB =
e2

R3

[

~r1 · ~r2 − 3(~r1 · R̂)(~r2 · R̂)
]

Taking this dipole-dipole interaction to be H ′ and using R̂ = ẑ gives the same expression
as obtained from the Taylor series expansions above. More systematically, we can expand
H ′ in a multipole expansion, e.g.:

1

|~R+ ~r2|
=

1

R

∞∑

ℓ=0

( e2

R3

)ℓ

Pℓ(cosα2) =
1
R
↑

monopole

+
r2 cos α2

R2

↑
dipole

+
(h.o.t.)

↑
quadrupole, etc

=
1

R
+
~R · ~r2
R3

+ (h.o.t.)
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Then we see that the higher order terms inH ′ correspond to dipole-quadrupole, quadrupole-
quadrupole, dipole-octupole, etc., interactions. We will only include the leading contribu-
tion, the dipole-dipole interaction, in H ′, i.e.

H ′
dd =

e2

R3

(
x1x2 + y1y2 − 2z1z2

)

First Order Perturbation:

W1 =
e2

R3
< 100|x1x2 + y1y2 − 2z1z2|100 >

=
e2

R3

∫

dr31

∫

d3r2U
2
100(r1)U

2
100(r2)

(
x1x2 + y1y2 − 2z1z2

)

= 0

Since U100 is an even function but H ′
dd is an odd function of each coordinate. (W1 also

vanishes for the higher order terms in H ′.)

Second Order Perturbation:

W2 =
∑

nA 6=1

∑

ℓA

∑

mA

∑

nB 6=1

∑

ℓB

∑

mB

| < 100| < 100|H ′
dd|nAℓAmA > |nBℓBmB > |2
E0 − EA −EB

.

We need to sum over all the excited states of atom A and B. Both nA = 0 and nB = 0 are
excluded from the sum because those would give matrix elements that are zero, in analogy
with the W1 calculation. Since

E0 = −2EI < EA +EB

and the numerator of each term is necessarily positive, we must have W2 < 0. That is, the
energy difference between two interacting atoms, E0 +W2, and two isolated atoms, E0, is
negative, meaning the interaction is attractive. Also, each term in the sum varies as 1/R6.
Therefore we know already that the van der Waals interaction looks like:

Edd = W2 = −C6

R6

where C6 > 0 is a constant to be determined. The lowest energy state, included in the
sum, has nA = nB = 2 and energy

E∗ = EA + EB = − e2

2a0

(

1

n2
A

+
1

n2
B

)

= − e2

4a0

We can get a lower bound for W2 by replacing EA + EB for all the excited states in the
formula by −e2/4a0, i.e.

W2 ≥ 1

E0 − E∗

∑

p

| < 0|H ′|p > |2
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where p is a short hand for all the quantum numbers (nA, ℓA, mA, nB, ℓB, mB) and |0 >
is a short hand for |100 >. Since < 0|H ′|0 >= 0 (the ground state wave function is even
but H ′ is odd) we can choose to include that term in the sum. We then have summation
over a complete set of states

∑

p

|p >< p| = 1

and ∑

p

| < 0|H ′|p > |2 =
∑

p

< 0|H ′|p >< p|H ′|0 >=< 0|H ′2|0 >

so

W2 ≥ < 0|H ′2|0 >
E0 −E∗

H ′2 =
e4

R6

(

x1x2 + y1y2 − 2z1z2

)2

=
e4

R6

(

x2
1x

2
2 + y2

1y
2
2 + 4z2

1z
2
2 + 2x1x2y1y2

︸ ︷︷ ︸

gives zero

+ . . .)

Only terms that are even in x, y, and z contribute to the matrix element < 0|H ′2|0 >.
Evaluate the integrals:

∫

x2U2
100(r)d

3r =
1

3

∫

r2U2
100(r)d

3r

=
1

3πa3
0

∫ ∞

0

r2e−2r/a04πr2dr

= a2
0 .

Therefore,

< 0|H ′2|0 >= 6
e4

R6
a4
0

and

E
(2)
dd = W2(R) ≥ −8e2a5

0

R6
.

This gives a lower bound on the dipole-dipole part of the van der Waals interaction. Written
in terms of the C6 coefficient, the result is

C6 ≥ 8e2a5
0.

Variational calculation

A variational calculation can be used to give an upper bound to the interaction energy.
We know, from the perturbation calculation, that the interaction energy should go as 1/R6.
We therefore choose trial functions that will generate such behavior. If we choose trial
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functions, ψ(~r1, ~r2), that are independent of R, then the variational energy will go as 1/R3

rather than 1/R6. A convenient choice that generates the right R dependence is:

ψα(r1, r2) = U100(~r1)U100(~r2)
(
1 + αH ′

)

Here α is the variational parameter. The expectation value of the energy then becomes a
function of this parameter:

W (α) ≡ < ψα|H0 +H ′|ψα >

< ψα|ψα >
≥ E0 +Edd

Recall that E0 is the energy of two non-interacting hydrogen atoms in the ground state,
E0 = −2EI . Let

U0(~r1, ~r2) ≡ U100(~r1)U100(~r2)

then

W (α) =

∫
d3r1

∫
d3r2U0(1 + αH ′)(H0 +H ′)U0(1 + αH ′)
∫
d3r1

∫
d3r2U2

0 (1 + αH ′)2

the numerator becomes:
∫ ∫ [

U0H0U0
︸ ︷︷ ︸

E0

+U0H
′U0 + αU0H0U0H

′ + αU0H
′H0U0 + 2αU0H

′2U0

+ α2U0H
′H0H

′U0 + α2U0H
′3
]

d3~r1d
3~r2

Direct evaluation gives

α2

∫ ∫

U0H
′H0H

′U0 d~r1d~r2 = 0 .

So, the numerator is
E0 + 2α < 0|H ′2|0 > .

The denominator is
∫ ∫

d~r1d~r2

[

U2
0 + U2

0 2αH ′ + U2
0α

2H ′2
]

= 1 + α2 < 0|H ′2|0 > .

Putting the two together gives

W (α) =
E0 + 2α < 0|H ′2|0 >
1 + α2 < 0|H ′2|0 > .

Taylor expanding the denominator gives

≃
(

E0 + 2α < 0|H ′2|0 >
)(

1 − α2 < 0|H ′2|0 > +(h.o.t.)
)

= E0 +
(

2α−E0α
2
)

< 0|H ′2|0 > +(h.o.t.)
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Minimize with respect to α by setting the derivative to zero:

dW

dα
= (2 − 2E0α) < 0|H ′2|0 > = 0

αm =
1

E0
.

The minimum energy is:

W (αm) = E0 +Edd =
E0 + 2

E0

< 0|H ′2|0 >
1 + 1

E2

0

< 0|H ′2|0 > .

The matrix element has already been given above in the perturbation calculation

< 0|H ′2|0 >=
6e4a4

0

R6

and

E0 = −2EI = − e
2

a0

which gives

W (αm) = E0 −
6e2a5

0

R6
≥ E0 +Edd .

Therefore, an upper bound is obtained for the interaction energy:

Edd ≤ −6e2a5
0

R6
.

Combining the two estimates, the lower bound obtained from perturbation theory and
the upper bound obtained from variational calculations, we have:

−8e2a5
0

R6
≤ Edd ≤ −6e2a5

0

R6
.

A practical estimate can be obtained from the calculations by taking the average. The
exact value must lie within this rather narrow range. More extensive calculations give

Edd = −6.5e2a5
0

R6
.
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