
Calcula&ons	of	tunneling	in	atomic	and	spin	systems	
Hannes	Jónsson	

Overview:	
-  Sta3s3cal	Feynman	path	integral	descrip3on	of	the	quantum	stat.	mech.		
-  Onset	temperature	for	tunneling	in	atomic	systems.	
-  Calcula3ons	of	thermally	assisted	tunneling	in	atomic	systems,	QTST.	
														Applica3on	to	Eckart	barrier,		H2	desorp3on,	H-atom	diffusion.	
-  Onset	temperature	for	tunneling	in	magne3c	systems.	
														Applica3on	to	a	molecular	magnet	containing	a	Mn4	unit	and	a	dimer	
														of	such	molecules.		

U.	of	Iceland	and	Aalto	U.	
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Es3mate	the	rate	of	thermal		
transi3ons	including		
tunneling	as	a	possible			
transi3on	mechanism,	
extend	transi3on	state	theory	
to	include	tunneling.	

Extension of rate theory to quantum systems 

Tunneling becomes the dominant transition mechanism at low 
enough temperature. 

Can be important at or near room temperature.  
       Examples:  H2 desorption, H-diffusion, proton reactions. 
	

ln k 

1/T 

low T, tunneling 

high T,  
classical 

 1/Tc 
cross over temperature 
for tunneling mechanism  



Find rate constant for a given temperature 

Time dependent (wave packet) or time independent Schrödinger equation  
can, in principle, be used to calculate the reaction probability  
(transmission coefficient) as a function of energy, P(E). 
A rate constant can then be found by evaluating a Boltzmann average 

k(T) = 

But, this is difficult to do in practice:   
  -  Hard to solve the Shcrödinger equation for 
     many degrees of freedom (max. around 6, typically).  Need to select. 
  -  The range in energy relevant at around room temperature  
     is low and that makes wave packet calculations even 
     harder and extrapolations are needed. 

Instead, apply a statistical approach to find k(T) directly  



Quantum statistical mechanics 

Use statistical Feynman path integrals: 

classical stat. mech. qantum stat. mech. 

ks = mP

✓
2�kBT

h

◆2

The statistical mechanical partition function of a quantum particle  
is mathematically the same as the partition function of a closed chain 
of replicas connected by temperature dependent springs. 

Should take the limit as  
P goes to infinity, i.e. infinitely 
many replicas of the system. 

The distribution of replicas represents 
quantum delocalization. They get pulled 
inn to a point as mass or T become large. 

V (~r) ! V eff (~r1,~r2, . . . ,~rP ) =
PX

i

�
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The thermally averaged expectation value for an observable is"

Where Q is the partition function "

Use Trotter formula for operators"

and insert the identity operator to rewrite the partition function as"

Derivation of FPI representation of quantum partition function"

 Use free particle propagator from xi to xi+1 at high the temperature PT"

This is equivalent to the classical partition function for "
a closed chain with P particles connected by springs."



One-dimensional example:  Eckart barrier 

x(τ)	

τ	

Eckart 
potential 

V(x) 

small quantum  
delocalization 

Example paths along the line: 

τ	
τ	

intermediate quantum  
delocalization large quantum  

delocalization 

What does the potential surface for the ring polymer, Veff, look like? 



Hard to visualize the effective potential, even a 1-dimensional problem  
becomes high-dimensional (many variables) when FPIs are introduced. 

As an example,  
consider Feynman paths that can be 
written as     x(τ)=q0 + q1sin(2π τ/p) 	
i.e. only keep two components  
in a Fourier expansion. 

Then, construct a contour plot  
showing the value of the  
potential energy for ring polymers 
as a function of q0 and q1, 
Veff(q0,q1). 

Visualize the potential surface for the ring polymer, Veff 

P R 

q0 

q1 

Eckart 
potential 

V(x) 

Veff(x(τ)) 



The effective potential surface, Veff , is T dependent 

instanton Below Tc     
new saddle 
points form 
(instantons), 
i.e. tunneling 
mechanism 

Eckart 
potential 

Above Tc 
classical  
over-the-barrier 
mechanism 

kspring = µP
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Quantum transition state theory based on FPIs"

Estimate the rate at which closed "
Feynman paths move from the reactant 
region, R, to the product region, P."

The definition of the quantum 
transition state needs to involve both 
position and shape of the closed 
Feynman paths in order to "
confine the system to the bottleneck 
region around the instanton "
(not enough to specify just the 
location of the centroid!)."

QTST:   a full free energy calculation of such a transition state. "
Find optimal, conical TST dividing surface for the Feyman Paths      
                         (Mills, Schenter, Jónsson, Chemical Phys. Lett. 1997) 



At what temperature does tunneling become important?!

Below Tc the dominant 
transition mechanism"
is tunneling."

"
!

Gillan, J. Phys. C 20, 3621 (1987)"

The temperature at which the 
spring constant matches the 
curvature of the barrier is"

Ω is the magnitude of the imaginary 
frequency of the unstable mode at 
the saddle point on the classical 
minimum energy path"

kspring = µP
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2�kB



50 K	

100 K	

150 K	
250 K	

Potential energy	 MAP	

Free energy of a quantum dividing surface for the Eckart potential 
representing roughly a F + H-H ->  F-H + H reaction  
  

xcen	



Classical 

Centroid 
density 
theory 

Exact 

RAW-QTST 
Instanton 

Various calculations for the Eckart barrier 



QTST calculations of H2 adsorption/desorption on Cu(110) 

min. 
energy  
path 

NEB method 

100 K 

instanton path 

Use EAM potential function for Cu-Cu and H-Cu interaction, dynamical surface atoms 

At T>300K the classical approximation to 
the thermally averaged rate constant  
agrees well with the quantum mechanical 
value, even though wave packet  
calculations show clear quantum  
effects in state-to-state cross sections. 



T=100 K	

Signature of 
tunneling 

QTST calculations of H2 adsorption/desorption on Cu(110) 
Clear quantum effects at 100 K 



Transition state at 
T=100 K shows clear 
quantum delocalization 

Three snapshots from  
thermal sampling of TS 
(which includes 5 
degrees of freedom) 



Harmonic QTST (instanton theory) 

Again, use  harmonic approximation to the effective potential,  
harmonic quantum TST.  Expand Veff around saddle points (instantons). 
Often referred to as ‘instanton theory’ (Miller, 1975, Callan and Coleman, 1977)  
or ‘Im F’ theory (Langer, 1969) . 
 

S0  is the ‘zero mode’, replicas move along the path,   
no change in energy, but contributes to enropy 

QR kHQTST =

r
S0
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T = 100 K: Minimum action path for H2  adsorption/desorption from Cu(110) 

(only one of the two H-atoms is shown) 

Instanton	

Cu	

H	

Instanton for a given temperature, T, is the same as a"
WKB optimal tunneling path for a certain energy, E."

SP on Veff 



Analogy between HTST and HQTST"

HQTST"HTST"

1st order saddle point of V! 1st order saddle point of SE"

V: N dimensions"
P images "
SE:   NP dimensions"

Spreading of images lowers the effective 
activation energy and accounts for tunneling!"

QR kHQTST =

r
S0
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Classical 

Centroid 
density 
theory 

Exact 

RAW-QTST 
Instanton 

Back to the Eckart barrier 



HQTST%

RAW)QTST%

PNAS (2011) 

Back to H2 / Cu(110) problem  



Application of HQTST:     Hydrogen diffusion in Ta"

DFT calculations using PAW, PW91 (VASP)"
        16 Ta atoms, 1 H atom."
Hops between adjacent tetrahedral holes."
Up to 58 images used to represent the Feynman paths."

Excellent agreement with experiments at low temperature (no fitting!)."
Tunneling dominates below room temperature."



																														Magne&c	Transi&ons	

Landau-Lifshitz equation of motion:  
dMi

dt
= � Mi ⇥

⇥E

⇥Mi

⇤̇i =
�

Mi sin ⇥i

⌅E

⌅⇥i
and ⇥̇i = � �

Mi sin ⇥i

⌅E

⌅⇤i

Relies	on	an	adiaba3c	approxima3on:		length	of	the	magne3c	
momentum	vectors	changes	faster	than	orienta3on.	

v? =
DX

i=2

aiqs,i

TST	approxima3on	of	the	rate	constant:		
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Harmonic Transition State Theory for spins 

–   agrees with 

     Arrhenius law 

Harmonic approximation for energy:

P.F. Bessarab, V.M. Uzdin and H. Jónsson, PRB 85, 184409 (2012)

Constraint on direction of velocity at transition state

no recrossings  flux At TS Boltzmann 

or 

TS 

kHTST =
1
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(Pavel Bessarab, Valery Uzdin and HJ, PRB 2012) 



For	a	spin	of	length	s,	with	orienta3on									,	the	ac3on	is		

Onset	temperature	for	tunneling	of	magne&c	moments	
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where		U(✓,�) is	the	poten3al	energy	surface.		

         gives	classical	eqns.	of	mo3on,	Landau-Lifshitz	eqns,	in	imaginary	3me.		
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At	the	first	order	saddle	point	of	the	energy	surface,		
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The	onset	temperature	for	tunneling	is	the	temperature	at	which	a	second	
eigenvalue	becomes	nega3ve.	This	gives	

Tc =

p
b2 � ac

2⇡ s kB sin ✓†

Can	be	applied	to	any	system,	described	for		
example	by	DFT	or	Alexander-Anderson	SCF	model.		
[Vlasov,	Bessarab,	Uzdin,	Jónsson,	Farady	Disc.	(2016)]				



Crossover temperature in a molecular 
magnet 

[Mn4O3Cl(O2CCH3)3(dbm)3]

H = D
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S. M. J. Aubin et. al., J. Am. Chem. Soc. 120, 4991 (1998)

A molecular magnet Mn4 is described by the following Hamiltonian:

O0
4 = 35S4

z � 30s(s+ 1)S2
z + 25S2

z + 6s(s+ 1)

with the spin number

Applica&on	to	a	Mn4	molecular	magnet	
 

1/Tc 

Mn4O3Cl(O2CCH3)3(dbm)3	molecule	with	a	total	spin	of	s=9/2		

Experimental	data	points:	S.M.J.	Aubin,	et	al.,	JACS	120,	4991	(1998).				

Expmnt. 
HTST 
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Calcula3ons:	Vlasov,	Bessarab,	Uzdin,	Jónsson,	Farady	Disc.	(2016).				



Also,	dimer	of	Mn4	molecular	magnets	
 

Exp. Wernsdorfer, Aliaga-Alcalde, Tiron, Hendrickson and Christou, J. Magn. and Mag. Mat. (2004) 



Ongoing work: 
-   Development	of	an	expression	for	the	thermally	assisted		
						tunneling	rate	using	coherent	state	path	integrals.	
-				Applica3on	to	tunneling	of	skyrmions,	domain	walls,	…	
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-				Andri	Arnaldsson,	Dórótea	Einarsdófr,	Greg	Mills,	Greg	Schenter	
-  Sergei	Vlasov,	Pavel	Bessarab,	Valery	Uzdin	

Summary: 
-  By	using	Feynman	path	integral	representa3on	of	the	quantum	
					sta3s3cal	mechanics	(assuming	rapid	decoherence),		
					the	onset	temperature	for	tunneling	and	the	tunneling	rate		
					can	be	es3mated	for	atomic	systems	-		quantum	extension	of	TST.	
-  Good	agreement	with	exact	calcula3ons	of	model	systems	and	
																																													expmntl.	measurements	H-atom	diffusion.	
-  For	magne3c	systems,	evaluate	onset	temperature	for	tunneling.			

www.hi.is/~hj 


