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Part I: 
   
 The rare event problem and transition state theory (TST): 
 
   - Transition states, dividing surfaces and reaction coordinates 
 
   - Recrossing corrections and the variational principle 
 
   - The WKE two step procedure for finding the mechanism and 'exact' rate 
 
  Implementation: 
 
   - The harmonic approximation to TST 
 
   -  the effect of multidimensionality, entropy … 

Autumn course, Helsinki, October 2016 



Goal  

 Want to be able to: 
  1.  predict the mechanism and rate of transitions given information about  
       the atomic structure and interaction between the atoms (such as DFT). 
 
  2.  analyze measurements of rates (typically Arrhenius plots) in terms of  
       the atomic interactions and transition mechanism,  
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Crossover in mechanism, 
entropy takes over at high T 

pre-exponential factor 
activation energy 

Characterize transitions that occur due to thermal energy in the system, 
for example diffusion events, defect formation/migration, chemical reactions ... 

k(T ) = ⌫e�Ea/kBT



Conventional approach to atomic simulations 

Born-Oppenheimer (adiabatic) approximation: 

1.  Solve for the electronic degrees of freedom, r, while 
      keeping the nuclei fixed at coordinates x. 
      Usually done with Kohn-Sham density functional theory (DFT) 
      using approximate functionals such as PW91, PBE, RPBE, … 
      Get energy surface,  V(x). 

Example:  
Perfect crystal,  
global minimum 

Example:  
Defective crystal,  
local minimum 

x 

2.  Solve for the motion  
      of the nuclei. Usually 
      with the classical  
      approximation, F=ma=m d2x/dt2, 
      sometimes using harmonic  
      approximation (----)  
      V(x) ~ - ksp(x-xmin)2. 
      (phonons, vibrational modes …) 

1 
2 



Straight forward approach  
Classical dynamics, (‘molecular dynamics’, MD) 
  For all but the lightest atoms and temperature well below room temperature,  
  a classical description of the motion of the atoms is accurate enough. 
  

time  h 
step size 

Solve Newton eqns. of motion, F=ma, numerically by discretizing time 

Verlet algorithm (finite difference approximation to F=ma): 

x(t+h) = 2x(t) – x(t-h) + h2 F(x(t))/m 

where F is the force acting on the atom,  
     and m is the mass of atom 

simple enough …  

Fi = �riV (x)



But, a direct dynamical simulation of a thermally  
    activated process is in general not feasible 

•  A transition with an energy barrier of 0.5 eV 
and a typical pre-exponential factor occurs 
1000 times per second at room temperature                             
– fast on laboratory scale! 

•  A video of a direct classical dynamics 
simulation where each vibration spans a 
second in the video would go on for more 
than 100 years in between such reactive 
events – slow on atomic scale! 

0.5 eV 

1000/s 

Most interesting transitions are rare events (i.e., much slower than 
vibrations).  

Time scale problem: 

Typically there is a clear separation of time scales, 
and a statistical approach can be used 



Need to take a long stroll on a 3N-
dimensional potential energy 
surface, V(x1,x2, … xN), where N is 
the number of atoms. 
 
Given some initial state, R, 
want to find the rate of transitions 
and possible final states, P1, P2 … 
 
Also, want to find the mechanism of 
the transitions (how do the atoms 
move during a transition?). 

Systems of interest typically involve many degrees of freedom! 

R 



Systems of interest typically involve many degrees of freedom! 

A one-dimensional picture of an energy barrier and two wells  
represents some path in the multidimensional space 

Important to remember the high dimensionality! 



  It is tempting to simply heat up the system to speed up the transition, 
                                          but this is dangerous … 

 Example:  Diffusion of H2O admolecule on an ice surface  
                  vs.  
                  melting of the ice crystal (entropy takes over …)  

A crossover from one mechanism to another can occur as the 
temperature is increased.  



   Example of energy landscape that could show 
crossover in mechanism as temperature increases 

Compare two possible mechanisms (escape routes): 
  A has higher activation energy but wider mountain pass 
  B has lower activation energy but narrower mountain pass 
 

A 

B 



How about just filling up the energy well? 

Apply a bias potential to make the potential well shallower 

1.  Accelerate the transitions out of the well by making it shallower, 
      i.e. lowering the activation energy.  

Example:  
Perfect crystal,  
global minimum 

Example:  
Defective crystal,  
local minimum 

x 

2.  A critical issue is not to affect the energy surface in regions close 
      to the barrier. 

Many suggestions aong these lines. 
Most refined theory:   
   Voter’s hyperdynamics method 



Try a flat bias potential applied to  
          all degrees of freedom 

Saddle
Point
Energy

Boost
Energy

Easy to implement, simply check 
whether potential energy is below 
boosted energy, Vmin, then replace  
with boosted energy and zero force.  

(Henkelman & Jónsson, JPC 2001) 
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This can give significant acceleration in 
2 dimensions, but insignificantly for 
10 dimensions. Why is that? (entropy …) 
 
Note: Dangerous to simply guess which  
degrees of freedom to boost … 



Transition State Theory (TST) 

Also known as “Absolute Rate Theory” or “Activated Complex 
Theory” 

 
Early pioneers: 

   Pelzer & Wigner, Z. Phys. Chem. B15, 445 (1932);  
     Wigner, Trans. Faraday Soc. 34, 29, (1937). 

   Eyring, J. Chem. Phys. 3, 105 (1935). 
   Evans & Polyani,  Trans. Faraday Soc. 31, 857 (1935). 

     Keck, J. Chem. Phys. 1960. 

TST is a method for estimating the rate of slow transitions between  
states of a system due to thermal energy: 
 1. Gives an approximation to the rate constant, but 
 2. it possible to later calculate a correction to the TST estimate 
     and obtain the exact rate using just short time scale simulations. 
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Identify a 3N-1 dimensional dividing surface, that represents a 
bottleneck for going from the initial to a final state: 

Transition State Theory (Wigner, Eyring 1930s) 

3N-1 dimensional  
dividing surface,      .          
Add thickness σ to define 
Transition State (TS)  

The bottleneck 
can be due to 
an energy 
barrier and/or 
entropy barrier 

Initial 
state 

Final  
state 

‡ 

σ 

‡ 



   	

-  The transition state should enclose 
the initial state to separate it from 
all possible product states.	

-  TST estimates the lifetime, τ,  of 
the given initial state without  
knowledge of the product state(s).	

-  Can run short timescale dynamics 
to find product state(s).	

Basic Assumptions of Transition State Theory	
1.  Born-Oppenheimer approximation (adiabatic)	
2.  Classical dynamics of nuclei   (can be extended to quantum systems …)	
3.  Boltzmann distribution in initial state (OK if slow enough, kBT < ΔE/5 )	
4.  No recrossings of TS, (often weakest, but can be fixed using short trajectories).	
       That is, if a trajectory reaches the TS	
       and is heading away from the initial state,	
       it will proceed to a product state and stay 	
       there for an extended time.	

Note:	

TS 



First, review classical statistical statistical mechanics:	
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E(x,v) = Ekin + Epot =
1
2
mivi
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i
∑ +V (x)

Boltzmann distribution:  Probability that          is in the range 
                  and                    is: 	

(A is a normalization constant)	
€ 

(x,v)
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Given that the system is initially somewhere in R: 

Simple derivation of the TST estimate of a rate constant 
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Total energy of a conservative system: 	

This factorizes into: 

Ac =
1

e−V (x)/kBT dx
R
∫

The probability of being in some subspace, S, of R is: 

configuration integrals 
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So, 

€ 

kTST =
kBT
2πµ⊥

Z
ZR

‡ 3N-1 dimensional 

1 dimensional 

R	

P	

thickness σ	

Choose the dividing surface to be a hyperplane   
     ax+b=0  particularly simple,  
                   (but, may not be good enough ...) 

‡ 
kTST = (probability of getting to TS) • (flux out of TS) 
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=
σ e−V (x) / kBTdx '∫

e−V (x ) / kBTdx
R∫

v⊥
σ

‡ 
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v⊥

Simple derivation of the TST estimate of a rate constant 

kTST =   P‡
< v? >

�

Maxwell: 

< v? >

�

< v? >



Effusion of ideal gas atoms through a small hole         

Notation:  V is volume of box, A is area of hole 

So: 

ideal gas:	

gives: 

Same result as kinetic theory of gases,  
TST is exact in this case!  No recrossings in the hole. 

Rate of effusion from TST:	

€ 

kTST =
kBT
2πm

A
V

A simple example: 

ZR = V

No energy barrier here, 
just an entropic bottleneck 

Use  

Z‡ = A

kTST =

s
kBT
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Ensures 
point is at 
dividing 
surface 

normal to 
dividing 
surface 

ensures  
system is 
heading 
towards 
P at this 
point 

normal 
component 
of velocity 

  Define the dividing surface subspace as the points q that satisfy 

then the TST rate constant can be written as 

here Θ[] is the Heavyside function  
and 
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QR = dp∫ dqe−H (p,q ) / kBT∫

“The derivation can be made to look slightly less juvenile by 
introducing an obscure notation at this point” (P. Pechukas, in Dynamics of    
       Molecular Collisions, Part B, edited by W. H. Miller (Vol. 2 of Modern Theoretical  
       Chemistry) (Plenum, New York, 1976), Chap. 6.) 

A more general choice of dividing surface 



   	

-  Can run short time scale dynamical 
trajectories starting at the TS to take 
recrossings into account - 
dynamical corrections 	

-  kexact = κ kTST     where 0 < κ < 1	
     and also to find the product state(s).	

Basic Assumptions of Transition State Theory	

TS 

1.  Born-Oppenheimer approximation (adiabatic)	
2.  Classical dynamics of nuclei   (can be extended to quantum systems …)	
3.  Boltzmann distribution in initial state (OK if slow enough, kBT < ΔE/5 )	
4.  No recrossings of TS, (often weakest, but can be fixed using short trajectories).	
       That is, if a trajectory reaches the TS	
       and is heading away from the initial state,	
       it will proceed to a product state and stay 	
       there for an extended time.	



The neglect of recrossings, approximation 4, results in an 
overestimate of the transition rate in TST: 

One recrossing:  Should not contribute to 
rate, but counts as one 
reactive event in TST. R P 

Should only count once, 
but gives two reactive 
events in TST estimate. 

Two recrossings:  

R P 

The optimal TS is the one that gives smallest estimate for kTST 

(Keck, J.  Chem. Phys. 32, 1035 (1960)) 

kTST > k	

 Variational principle for optimizing the choice of transition state 

This gives a variational principle that can be used to find  
the optimal choice of the transition state. 



Both	good	and	bad	choices	for	the	transi1on	state	can	work,	
in	principle	.... 

Optimal TS 
dividing surface. 
Few recrossings, 
κ∼1, only need a few 
short trajectories to identify  
product states and correct kTST 

Less than optimal  
TS dividing surface. 

Many recrossings, 
κ<<1, need many 

short trajectories to 
identify product  

states and correct kTST	



 
1.  	Find	op1mized	transi1on	state	dividing	surface	using		
													For	hyperplane																																				where		

						Use	Wigner-Keck-Eyring	(WKE)		to	generate	reac1ve	trajectories	
with	much	smaller	computa1onal	effort	than direct dynamics 

kexact  = κ kTST 	
Note:	Step	2	is	hard	unless	a	good	job	has	been	done	in	1,		
													need	to	op1mize	the	dividing	surface.																								

dynamical trajectory WKE trajectory 
time 

stat.mech. 

WKE	procedure	generates	(pseudo)	trajectories	over	long	1me	scale	

kTST  >  kexact	
kTST =

s
kBT

2�µ�

Z‡
ZR

Z
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Z

S

e

�V(x)/kBT

dx

2.			Run	(short	1me)	dynamics	trajectories	from	the	transi1on	state	
						to	find	product	states	and	dynamical	correc1on,	
 



Part II: 
 
 Harmonic transition state theory (HTST):   How to find first order saddle points?   
 
 Implementation of full, variational transition state theory: 
 
   - formulation in terms of the free energy of a hyperplanar dividing surface 
 
   - evaluate free energy difference from reversible work 
  
   - variational optimization by translating and rotating the hyperplane 
 
   - extension to a mosaic of hyperplanes to enclose the initial state 
 
 
   Application: 
  
   -  2-dimensional system representing a bond coupled to harmonic oscillator 
 
   -  diffusion of an Al adatom on an Al(100) surface 
 



HTST - Harmonic approximation to TST: 
Good for solids at not too high T	

>kBT 

R 

1st order SP	

2nd order SP	

Works well when  
(1)  energy of second order saddle points 
is significantly higher than kBT over the 
energy of first order saddle points,  
and 
(2) when the potential is smooth enough 
that a second order Taylor approximation 
to the PES is good enough in the region 
with large statistical weight. 

Energy 
ridge	Approximate the energy surface 

with second order Taylor  
expansions,  
(a)  For reactant region expand around 

the local energy minimum, 
(b)  For the transition state expand 

around the 1st order saddle point. 



Derivation of HTST:  Expand PES around minimum in normal mode coordinates 
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Define: 

which  gives:	
Agrees with the 
empirical Arrhenius 
law ‡ 

SP 
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∑

Taylor expand PES around minimum and saddle point, use vibrational normal modes, qi: 

Plug into the expression for the rate constant: 

k(T ) = ⌫e�Ea/kBT



Interpretation of the expression for kHTST  

ln kHTST 

1/T 

ln of prefactor 

slope is Ea=Vsp-Vmin Agrees with the 
empirical  
Arrhenius law 

lf the width of the energy valley is the same at the minimum and saddle  
point in all directons,   

kHTST = ⌫R,3N
�3N�1

i=1 ⌫R,i

�3N�1
i=1 ⌫‡,i

e�(VSP�Vmin)/kBT

vibration along MEP 
at initial state minimum 



Back to the energy landscape with two escape channels 

A has larger VSP-Vmin but lower vibrational frequency at saddle point,  
B has smaller VSP-Vmin but higher vibrational frequency at saddle point. 

A 

B 

kHTST =
⌫R,1⌫R,2

⌫‡,1
e�(VSP�Vmin)/kBT

⌫‡,1



How about just filling up the energy well? 

Apply a bias potential to make the potential well shallower 

Rate of transitions is increased as 
VSP-Vmin  is made smaller. 
 
But, at the same time the vibrational 
frequency is reduced. 
If the vibrational frequency is reduced by 
       

Can give significant acceleration in 
2 dimensions, but insignificant for 
10 dimensions. Why is that? (entropy …) 
 
 

kHTST = ⌫R,3N
�3N�1

i=1 ⌫R,i

�3N�1
i=1 ⌫‡,i

e�(VSP�Vmin)/kBT

⌫R,i

⌫̃R,i
=

1

5

then the pre-exponential is decreased by 
1/25 in a 2 dimensional system, but 
by 10-7 in a 10 dimensional system!  

⌫R,i

⌫̃R,i
Ṽmin

Vmin

k̃

k
=

✓
⌫R,i

⌫̃R,i

◆3N

eṼmin�Vmin



TS	• Need to find all relevant saddle 
points on the potential energy rim 
surrounding  the energy basin 
corresponding to the initial state.	
	
•  The transition state is approximated as 

a set of hyperplanes going through the 
saddle points with the unstable mode 
normal to the hyperplane. 

× Saddle 
   point 

Temperature and entropy are  
taken into account within the 
harmonic approximation 

HTST is typically many orders of 
magnitude faster than full TST! 
But, need to find the saddle pts. 

€ 

kHTST =
νR, ii=1

D
∏

ν , ii=1

D−1
∏

e− VSP −Vmin( ) / kBT

‡ 

•  For each hyperplanar segment: 

Harmonic TST involves a certain choice for the transition state dividing surface	

How to find the saddle point(s) ? 



Methods for finding saddle points 

Two categories: 
A.  Two point problem – both initial and final state minima  
                                       are known. 

B.  One point problem – only initial state minimum is known. 

R 

R 

P 

Easier, can use info about final state 
minimum to guide the search 

Harder, can only use local info about the 
energy surface 



‘Drag method’ or ‘Constrained Minimization’ 

Given some (presumed) reaction coordinate (here linear interpolation 
between R and P,            ), drag the system along that direction while 
relaxing all other degrees of freedom. 

R 

P 

Can work, but fails when the true  
reaction coordinate differs  
significantly from the drag path. 

Can lead to a discontinuous 
path and hysteresis (P to R 
gives different estimate than  
R to P). 

Example: Even when the 
constraint hyperplane goes 
right through the SP, the 
relaxed position of the 
system is far from the 
saddle point! 

X 



Nudged Elastic Band (NEB) Method 

Initial state 

Final state 

and images are distributed with springs 

Effective force on each image  
(R here denotes atom coordinates, was x before): 

where the perpendicular force is 

tangent along current path  

Initial 
guess 

Converged MEP 

Initial path  
(here linear) 
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R i+1 −
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R i( ) − ki
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R i −
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⊥
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∇ V (
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R i) −
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∇ V (
! 
R i) ⋅ ˆ τ ||( ) ˆ τ ||

(Mills, Jónsson & Schenter, Surf. Sci. 1995; Henkelman & Jónsson, JCP. 2000) 

Create several images (discretization pts.) 

Minimize all images simultaneously, in parallel. Typically 5 to 10 images.  

Estimate the tangent at each image using 
segment to adjacent image at higher energy. 



Associative desorption of H2	
from Ni(111) starting with 	
a suburface and surface H-atom	

Start up NEB assuming direct	
path for subsurface H-atom to	
attach to a surface H-atom	

But, the MEP found shows 	
that surface H-atom hops 	
away. So, not H-H bond	
formation as subsurface H-atom	
moves up to the surface.	

Example 1:	

 Use NEB with DFT calculations 

Ni	 Ni	 Ni	 Ni	

H2	 H2	

G. Henkelman, A. Arnaldsson and HJ, JCP 2006 



(a)$ (b)$

A better initial path for NEB calculations:   IDPP 

(S. Smidstrup, A. Pedersen, K. Stokbro and HJ, JCP 140, 214106 (2014)) 

A recent development: 
    Interpolate pairwise distances in images between initial and 
    final configurations, then fit coordinates of intermediate  
    images to best satisfy the interpolated distances. 
    IDPP -  image dependent pair potential. 
    Can reduce SCF iterations since very close proximity of atoms is avoided, 
    and saves atomic displacement iterations because the path is closer to MEP. 
    

(a)

(b)

(a)

(b)

  Straight line interpolation 
  MEP 

  IDPP 
  MEP 

Exchange diffusion 
process in amorphous 
Silicon (DFT, 200 atoms) 

Available in ASE (atomic simulation environment) 



Climbing image NEB (CI-NEB):   
Push the highest energy image up to converge on saddle point 
 
 

The highest energy image is pushed up 
to the saddle point to give accurate 
estimate of the activation energy, 

(G. Henkelman, et al.,  J. Chem. Phys. 113, 9902 (2000)) 
 



Example 2:	
Associative desorption of H2 from 
Pt(110)-2x1 as a function of 	
H-adatom coverage.  	
Very strong coverage dependence!	
(Guðmundsdóttir, Skúlason & HJ, PRL 2012) 

 Use NEB with DFT calculations 



Remarks on using the NEB Method 

Cubic interpolation: 
     Important to use the force in the direction of the path as well as the 
energy at each image in the interpolation, gives a lot of info, in particular 
indications of intermediate minima (see appendix in JCP 113, 9978 (2000)). 

Divide and conquer: 
    If there is a hint of an intermediate minimum, then release the nearest 
Image and relax to converge to that minimum (if it exists).  Then break up 
the path and calculate separately the two segments of the MEP. 

Rotation and translation: 
   Six degrees of the system (at least) need to be frozen out.  Otherwise, 
the system will do whatever it can to avoid the saddle point region.  
   In materials simulations with periodic boundary conditions, rotation is not a  
problem, but may need to remove translation of center of mass. 
   For clusters, remove also rotation using quaternions, see 
        (Melander, Laasonen and Jónsson, J. Chem. Theo. Comput. 11, 1055 (2015)). 



Methods for finding saddle points 

Two categories: 
A.  Two point problem – both initial and final state minima  
                                       are known. 

B.  One point problem – only initial state minimum is known. 

R 

R 

P 

Easier, can use info about final state 
minimum to guide the search 

Harder, can only use local info about the 
energy surface 



Minimum mode following method (G. Henkelman and HJ, JCP 1999)  

Transform the force by inverting the component along the 
minimum mode,         , of the Hessian (the matrix of second 
derivatives) 

Within HTST, need to find all the relevant saddle points on 
the energy rim surrounding the current state minimum. 

The direction along the minimum mode is found by 
minimizing the energy of a dimer (two replicas of the 
system,              ) or by using the Davidson algorithm.  
No need to construct the Hessian matrix. 
Use some minimization algorithm that only requires derivative of the objective function 
(not the objective function itself) and it will converge on a first order saddle point.   
The force projection locally transforms a first order saddle point to a minimum. 

Make a 
displacement  

from the  
minimum, 

then follow  
effective gradient 

 1 

2 

3 4 



  Use random initial displacement and then climb up the PES	

Little or no bias from preconceived notion of the mechanism, 
perhaps displace under-coordinated atoms and their neighbors.	
–  Can discover unexpected mechanism and final state(s).	

Two phases:  
1.  When lowest eigenvalue of H is positive,  
             move along minimum mode. 
2.  After lowest eigenvalue of H becomes negative, include also 
             force perpendicular to the minimum mode. 



Beyond the harmonic approximation: 
Implementation of full TST 

kTST =

s
kBT

2⇡µ?

Z‡
ZR

Z

S

=

Z

S

e

�V(x)/kBT

dxwhere 

Evaluate 

for a hyperplanar dividing surface by evaluating free energy of the 
system confined to the hyperplane.  



Given some path between the  
R and P minima, Γ(s), construct a  
progression of hyperplanes.	

A progression of 
hyperplanes from R to P. 
The optimal TS dividing 
surface corresponds to 
maximum free energy,   

Rewrite the ratio of configuration integrals in terms of a free energy 
difference, ΔF, but then need to insert configuration integral for 
hyperplane in reactant region,        , to get the units right	
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s
kBT

2�µ�
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ZHR

ZR

Z‡
ZHR

ZHR

Use thermodynamic integration to evaluate 
the free energy difference between initial 
hyperplane and subsequent hyperplanes 

Free energy of hyperplanes 

=
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(Mills, Jónsson, Schenter: Surf. Sci. 324, 305 (1995)) 

Evaluate free energy change from reversible work 

Sample the atomic coordinates and the forces within a hyperplane using 
Monte Carlo or Classical Dynamics (zero force comp. along the normal). 
 
Obtain the average force  
normal to the hyperplane and the ‘torque’ with respect to the point 
of intersection between the plane and the path,  

‡ 

s=0 

s=1 

The change in free energy is a sum of a contribution from the translation 
and a contribution from the rotation of the hyperplane  

At each point along the path  
(for a given value of s), the orientation 
of the hyperplane should be adjusted to 
maximize the free energy  
(rotate against the torque). Orientational 
optimization without extra computations! 

Rt = (rs � �s) ·
dn̂s

d✓

fn = f(rs) · n̂s

�F = �
Z s

0
< fn(1�Rt

d✓

ds
) >s0 ds

0



For hyperplanar dividing surface: 
Want to find location and orientation that 
gives maximum free energy of the system 
when confined to the hyperplane.  
 
Starting at the reactant, the free energy 
increase, ΔF, when moving towards 
product can be found by integrating the 
reversible work of translating and rotating 
the hyperplane 

Implementation of variationally optimized TST using hyperplane  

(Jóhannesson and Jónsson, JCP 2001)  

�F = �
Z s

0
< fn(1�Rt

d✓

ds
) >s0 ds

0



Need to be careful to optimize orientation as well as location of the  
TS dividing surface, else the free energy barrier can be underestimated. 

In a 3N-dimensional system, the optimization of the location of a dividing 
surface is a one-dimensional optimization, the optimization of orientation 
represents 3N-1 degrees of freedom – it is essential to optimize orientation! 
Orientational optimization can reveal the transition mechanism. 

Not good to just pick some 
reaction coordinate and then 
average with respect to other dof. 

Reaction coordinate 

ΔF	



An example of a surprise mechanism:   
  Al adatom diffusion on Al(100)  
 (see: Feibelman, Phys. Rev. Lett. 65, 729 (1990)). 

Should not impose our preconceived notion of the mechanism of a transition, 
but rather learn about the mechanism from the calculation! 

Important	to	find	but	not	just		
assume	the	mechanism	of	transi1ons	

Al(100) 
surface 

  Al adatom 
     initially 

Another example of a surprise (explains re-entrant layer-by-layer growth):   
  Pt adatom descent from atop islands on Pt(111) near but not at kinks. 
       (see: Jónsson, Annual Review of Physical Chemistry 51, 623 (2000)) 

Al adatom 
finally 



Adatom diffusion on Al(100) 

By rotational optimization of the hyperplane,  
the optimal mechanism can be found, even if the  
calculation is started from the wrong assumption. 

without 
rotation 

with rotation 

Projection onto 2-D 
(G. Jóhannesson & HJ, JCP 2001) 

�
F
(e
V
)



Not good practice to simply pick some reaction coordinate  
and calculate a free energy barrier  

1.  In general not known what the final state is  
            (example:  final state is different for hop and exchange)  

If the goal is to learn from the simulation what the mechanism of 
The transition is, in addition to the rate 

2.  Dragging the system slowly along an assumed reaction coordinate  
       while thermally averaging over other degrees of freedom in the 
       system will underestimate the free energy barrier 
       since the system will slip along a coordinate orthogonal to the drag 
       coordinate from the initial to final state, thus loosing a contribution to  
       the free energy estimate. 

3.    Dragging the system fast along an assumed reaction coordinate  
       while thermally averaging over other degrees of freedom in the 
       system will overestimate the free energy barrier 
       since the system will be pushed too far up in free energy before 
       transferring from the initial state to the final state. 

But, can be used to make nice graphics of an assumed reaction mechanism … 



   	
Challenge:   
      Parametrize and optimize a full dividing surface 

Need to enclose the initial state. 
 
One possibility:  Use a mosaic of 
hyperplanar segments, and optimize 
orientation and placement of each one 
(as well as the number of segments). 

T. Bligaard and HJ, Comp. Phys. Comun. 2005 

Ongoing quest …	

TS	



Some common misconceptions about TST 

The transition state is a first order saddle point. 

Transition state theory estimate of the rate constant is most  
accurage if there is a dip in the energy surface near the top 
of the potential energy curve. 

Transition state theory can be used to estimate the rate 
constant only if the reaction mechanism is known. 

Transition state theory assumes there is strong coupling to 
the heat bath so that a Boltzmann distribution of energy in 
each degree of freedom is maintained as the system climbs 
up the potential energy surface. 


