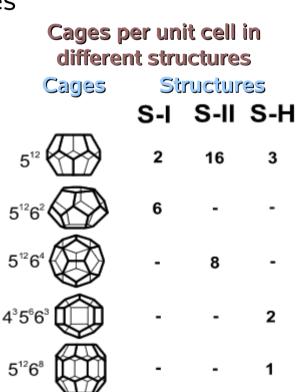


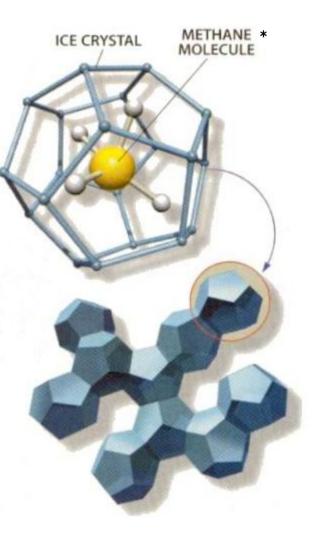
Hydrogen storage. (II) Hydrogen hydrates and hydrogen clathrates of ammonia borane.

Alexander Abramov Postdoctoral researcher

Science Institute, University of Iceland Dunhaga 3, 107 Reykjavik, Iceland

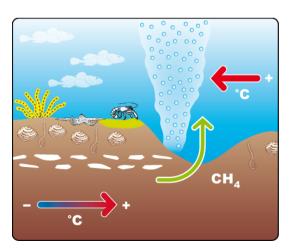
> e-mail: alex (at) theochem.org http://theochem.org/~alex/

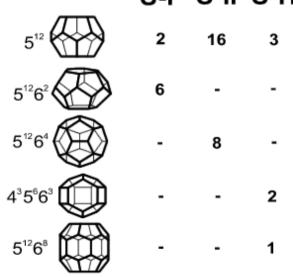

Summer School on "Materials for the hydrogen economy"

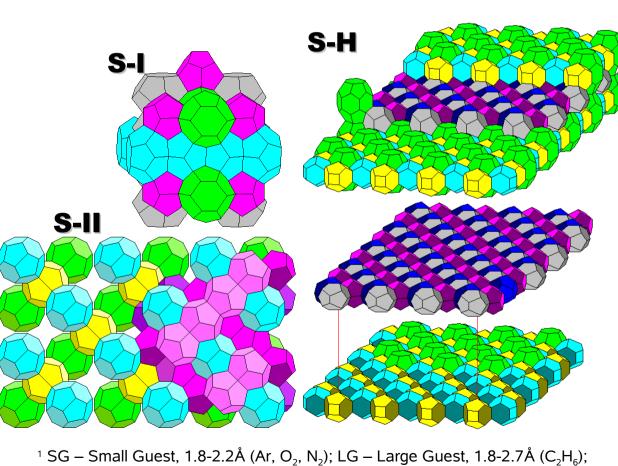

University of Iceland, Reykjavik, Iceland, August 19, 2010

Outline


- Gas hydrates and hydrogen hydrates
- Hierarchical hydrogen storage
- Ammonia borane as a host molecule
- Design of AB clathrates. Formulation of the problem
- Host-host and host-guest interactions
- Possible cages of AB clathrates
- Possible periodic structures of AB clathrates
- Hydrogen capacity of AB clathrates
- The CCH structure and AB molecular crystal
- Van der Waals and Platteeuw model and hydrogen hydrates
- PT stability of clathrates and weak intermolecular interactions
- Applications of the statistical model

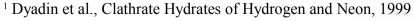

- Physical combination of water and gas molecules
- High pressure, low temperature (may be above 0°C), and presence of guests stabilize the cages
- At 30 atm methane hydrates are stable at 0°C, at 100 atm they are stable at 15°C
- Three common structures and five types of the cages
- Not all cages are required to be filled (non-stochiometric compounds)



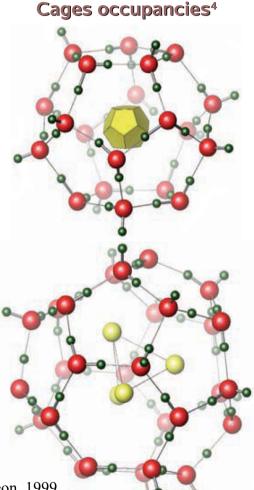

- Large amount around the globe (in permafrost regions and marine sediments)
- Potential energy source which is twice as big as all other fossil fuels
- Potential *poison* in terms of global warming as methane (very strong greenhouse gas) is released upon heating
- Potential *remedy* in terms of global warming as CO₂ hydrates are heavier than water and can be stored on a sea bed

- S-I is formed from small guests (CH₄, CO₂). S-II is formed from intermediate sized compounds (C₃H₈, C₄H₁₀, nH₂). S-H requires large molecules along with small ones
- S-I is body-centered cubic (SG)₂(LG)₆46H₂O¹
- S-II is face-centered cubic (SG)₁₆(LG+)₈136H₂O¹
- S-H is hexagonal (SG)₅(LG++)34H₂O¹
 S-I S-II S-H

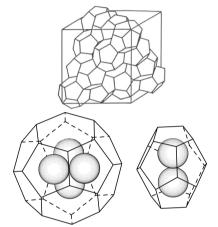
LG+ – 2.8-3.1Å (C₃H_a, (CH₃)₃CH); LG++ – 3.5-4.3Å ((CH₃)₃CC₅H₅)


*www.rcom.marum.de/English/Structure_and_stability.html; http://www.uwgb.edu/dutchs/PETROLGY/Clathrate-0.HTM

Characteristic*	Ι		II		Н		
Characteristic	Small	Large	Small	Large	Small	Medium	Large
Specification	5^{12}	$5^{12}6^{2}$	5^{12}	$5^{12}6^{4}$	5^{12}	$4^{3}5^{6}6^{3}$	$5^{12}6^{8}$
Coordination number	20	24	20	28	20	20	36
$(H_2O \text{ per cage})$							
Cages per unit cell	2	6	16	8	3	2	1
Mean cage radius, Å	3.95	4.33	3.91	4.73	3.94	4.04	5.79
Guest radius [†] , Å	1.8 - 2.2	1.8 - 2.7	1.8 - 2.2	2.8 - 3.1	1.8-2.2	1.8	3.5 - 4.3
Some guests	Ar, CO_2 ,	CO_2 ,	Ar, O_2 ,	C_3H_8 ,	Ar, O_2 ,	CH_4	$(CH_3)_3$.
	N_2 , CH_4	C_2H_6	N_2 , CH_4	$(CH_3)_3$.	N_2 , CH_4		CC_2H_5 ,
				CH			$\mathrm{C}_{6}\mathrm{H}_{12}$
Lattice	Body-centred cubic		Face-cent	ce-centred cubic Hexagonal			
Space group	Pm3n		Fd	3m	P6/mmm		
Unit cell [‡] , Å	a = 12.03		a = 17.31		a = 12.26, c = 10.17		
Theoretical unit	$(S)_2(L)_646H_2O$,		$(S)_{16}(L+)$	$_{8}136H_{2}O$,	H_2O , $(S)_5(L++)34H_2O$,		₂ O,
cell formula ^{\dagger}	S: small guest,		S: small guest,		S: small guest,		
	L: large guest		L+: larger guest		L++: largest guest		
H_2O per unit cell	46		13	6	34		


Sloan, E. D. and Koh, C. A. Clathrate Hydrates of Natural Gases. CRC Press, 3rd edition, (2008)

Hydrogen hydrates


- Were discovered in 1999¹
- Stable under extreme conditions (2000 bar and 250 K)^{2,3}
- Form structure II of gas hydrates^{2,3}
- H₂/H₂O ratio can be as high as 1/2^{2,3}
- Large cage holds up to 4 H₂ and small cage holds up to 2 H₂^{2,3}
- Capacity of 1 H₂ per small cage was also reported⁴
- Maximum hydrogen content 5 wt%

- ² Mao et al., Hydrogen Clusters in Clathrate Hydrate, 2002
- ³ Patchkovskii and Tse, Thermodynamic stability of hydrogen clathrates, 2003
- ⁴ Lokshin and Zhao, Storing Hydrogen in Crystalline Molecular Cages of Water, 2006

Cages occupancies²

Number of cages per unit cell $8(5^{12}6^4) + 16(5^{12})$ <u>Unit cell formula</u> $(4H_2)_8(2H_2)_{16}136H_2O$ <u>Free cavity diameter²</u> Big cage: 6.67 Å Small cage: 5.02 Å

H₂ diameter²: 2.72 Å

It is reported⁴ that 20 different orientations of 1 H₂ molecule in the small cage are possible

Hydrogen hydrates

- Pure hydrogen hydrates, up to 5 wt% of hydrogen, are stable under extreme conditions (2000 bar and 250 K)
- Several technics¹ to mitigate severity
 - Ternary Hydrogen Hydrates: a promoter molecule, tetrahydrofuran (THF), was found to reduce the formation pressure by a factor of 30 (from 2000 to 70 bar at 280 K). H₂ density is reduced down to 1 wt%
 - <u>Semiclathrates</u>: molecules with hydrogen-bonding abilities (e.g. tetra-n-butylammonium bromide, TBAB) can be involved into the water molecules network and form a complex composite which is stable at atmospheric pressure. H₂ density is reduced down to 0.2 wt%

¹ Struzhkin et al., Hydrogen Storage in Molecular Clathrates, 2007

Homework

For hydrates formed from three different gases

- Mostly methane (CH_4)
- Mostly ethane (C_2H_6)
- Mostly propane (C_3H_8)

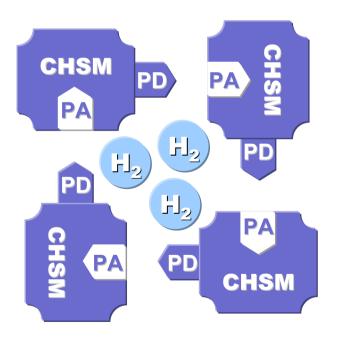
hydration numbers (number of water molecules over number of gas molecules) were found to be

- 6.00
- 7.67
- 17.00

Using information giving in the summary table on hydrates confirm that methane and ethane form the structure I and propane forms the structure II of hydrates.

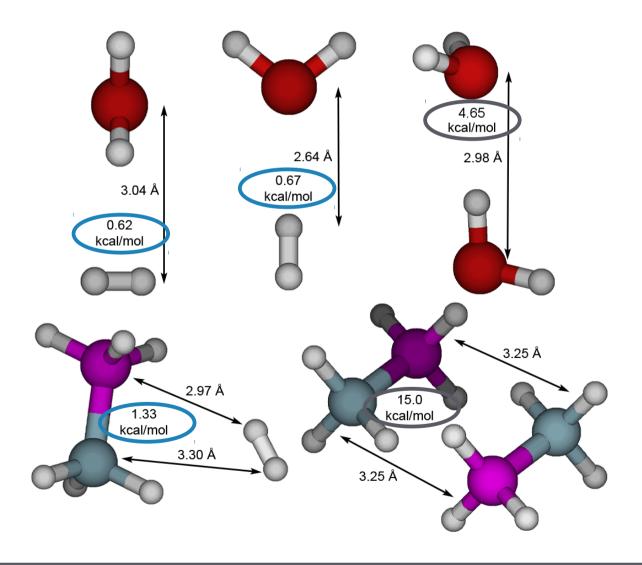
Hierarchical hydrogen storage

Hydrogen density


Compression	Liquefaction	Physisorption	Chemisorption	Chemical compounds
200-700 bar	20 K	Large surface area materials: MOFs; carbon based materials	Metal hydrides: LiAIH ₄ ; NaBH ₄ ; AI(BH ₄) ₃	NH ₃ ; Mg(NH ₃) ₆ Cl ₂ ; NH ₃ BH ₃

Hydrogen accessibility

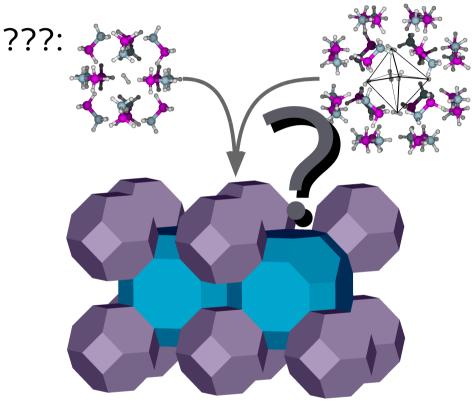
Hierarchical hydrogen storage


The concept of hierarchical hydrogen storage

CHSM – Chemical Hydrogen Storage Medium; PA – Proton Acceptor; PD – Proton Donor

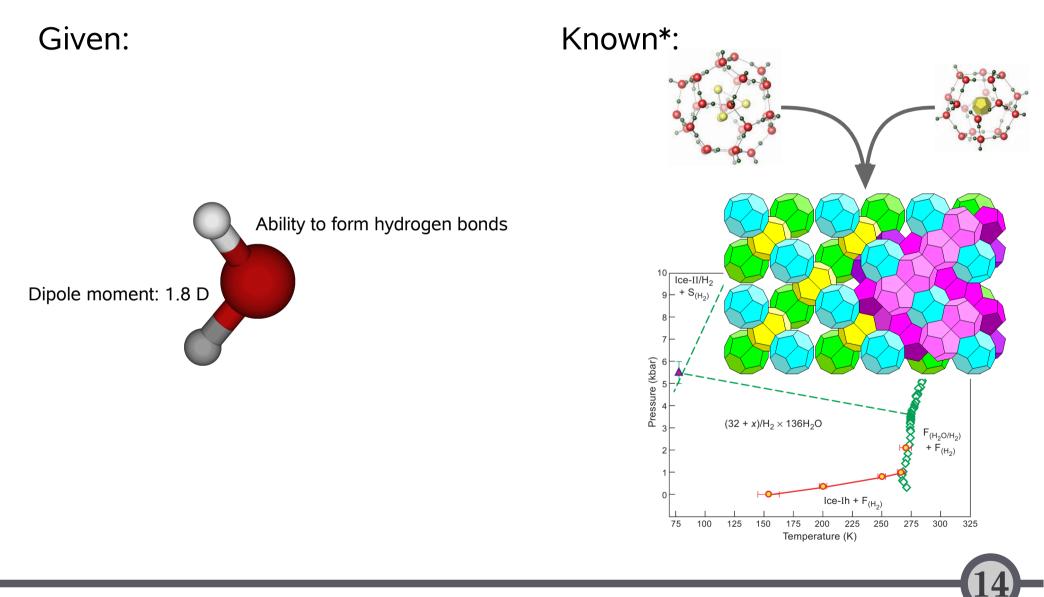
- Hydrogen clathrates built of Chemical Hydrogen Storage Medium (CHSM)
- CHSM (host) might be any chemical hydrogen storage material capable to form hydrogen bonded networks (complementary Proton Acceptor (PA) and Proton Donor (PD) sites)
- Kinetically easily accessible H₂ will fill in the clathrates further increasing the density of hydrogen
- Two steps of hydrogen release:
 - Fast: physisorbed H₂
 - Slow(er): decomposition of the CHSM framework

Ammonia borane as a host molecule



Design of AB clathrates. Formulation of the problem

Given:


Protic and hydridic hydrogens => ability to form dihydrogen bonds

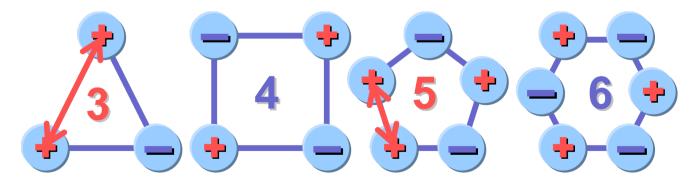
Dipole moment: 5.2 D

- What are structures of clathrates of this material?
- What are conditions required to stabilize them?

An analogy and a reference

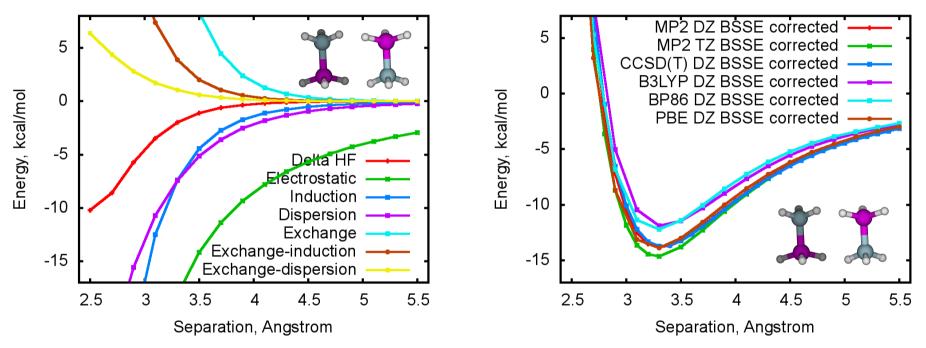
* K. Lokshin and Y. Zhao, Los Alamos Science 30, 2006; Prof. Steve Dutch, University of Wisconsin-Green Bay

An analogy and a reference

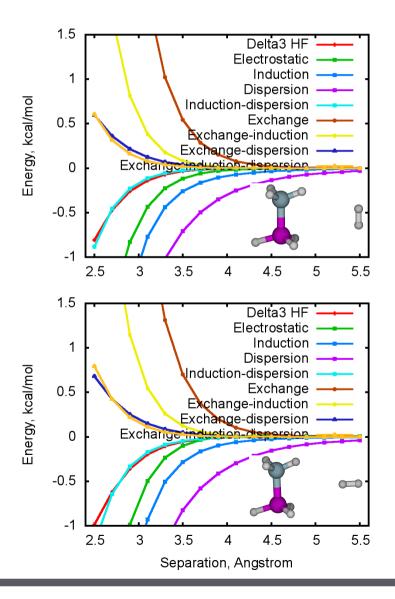

• The Bernal-Fowler rules (or ice rules):

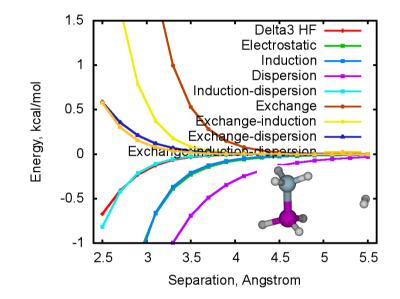
... ice consists of water molecules arranged so that each is surrounded by four others, each molecule being oriented in such a way as to direct its two hydrogen atoms toward two of the four neighbours, forming hydrogen bonds. The orientations are further restricted by the requirement that only one hydrogen atom lie near each O-O axis...

 X-ray studies of clathrate materials were pioneered by Herbert Powell in 1948. In earlier
 50s crystal structures of hydrates have been resolved (Claussen 1951, Stackelberg and Muller 1951, Pauling and Marsh 1952) What did we learn from hydrates, NH₃BH₃ molecule, and NH₃BH₃ crystal?

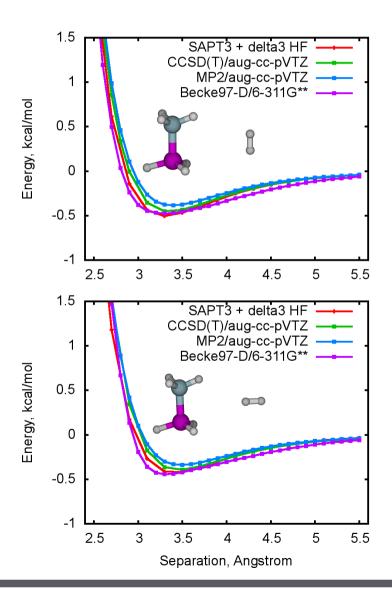

- Host molecules form convex polyhedrons
- NH₃ and BH₃ units of different molecules should be located somewhat opposite to each other
- Each hydrogen should be engaged into formation of two dihydrogen bonds
- Structural stability of polygons must be satisfied

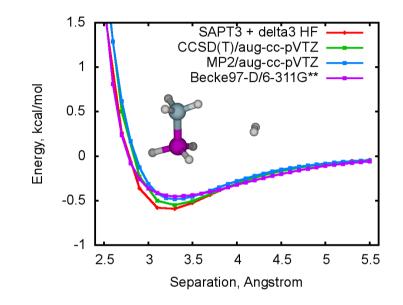
Used methods


- NH₃BH₃-H₂ interactions: SAPT, CCSD(T)
- NH₃BH₃ cages: DFT
- H₂ capacity of the cages: MP2, DFT-D
- Clathrate structures of NH₃BH₃: order-N DFT, plane wave methods, MD simulations

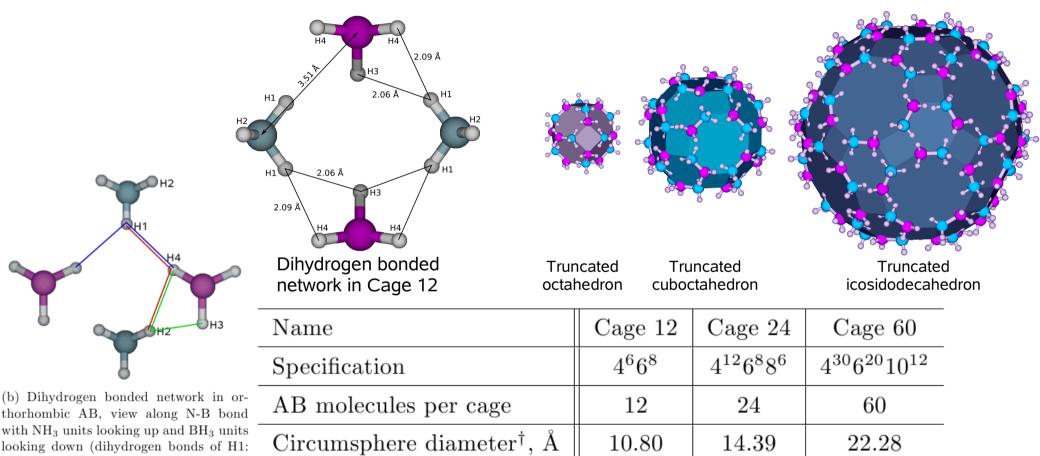

Host-host interactions

- The electrostatic part of interaction energy is dominant over other attractive components
- The DFT accuracy is comparable with MP2 and CCSD(T) methods with relative error within 15%
- PBE energy is practically identical to CCSD(T)
- The DFT can be used to design frameworks of ammonia borane clathrates


Host-guest interactions



 For three configurations considered the dominant attractive part of interaction energy is dispersion


Host-guest interactions

- The accuracy of the DFT-D and MP2 methods is in good agreement with the CCSD(T) and SAPT methods
- The DFT-D and MP2 methods can be used to estimate hydrogen capacity of ammonia borane clathrates

Possible cages of AB clathrates

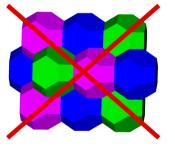
blue; H2: green; H4: red).

Level of theory: BP86(B3LYP)/6-311G**

[†]The longest distance between two atoms in the cage

BSSE corrected binding

energy, kcal/mol


11.82

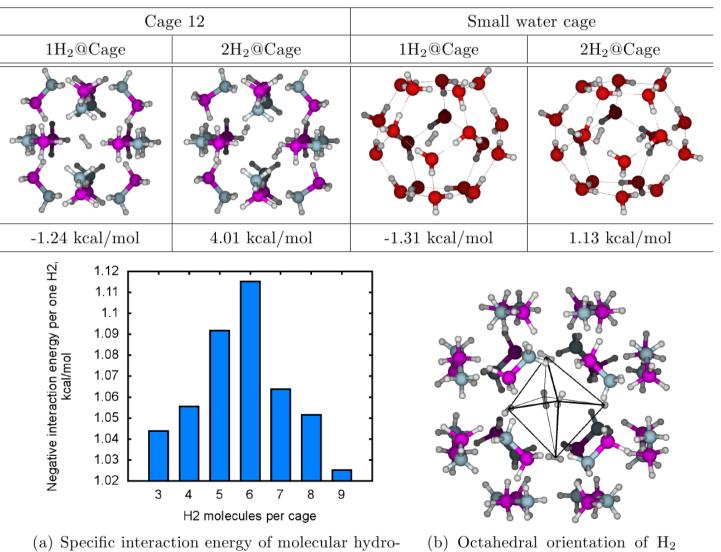
11.90

11.54

Possible periodic structures of AB clathrates

	#	Name	Unit Cell ¹	Periodic Structure	Unit Cell Parameters ²	Stability³, kcal/mol
Truncated alternated cubic	1	Cantitruncated Cubic Honeycomb	00	888	20.94×20.95×20.94 90.07×89.97×89.96 9186.55Å ³ ; 96 AB	0.318
	2	Shared Hexagonal Faces	¢Ø	00 60	11.75×10.77×13.97 74.91×90.51×88.46 1706.22Å3; 18 AB	1.491
	3	Not Shared Tetragonal Faces I	¢φ	00	11.63×11.63×20.83 90.69×89.99×90.00 2817.25Å ³ ; 24 AB	2.076
	4	Not Shared Hexagonal Faces	٢		11.80×10.87×10.58 74.37×90.36×89.47 1307.51Å3; 12 AB	2.252
	5	Omnitruncated Cubic Honeycomb	٢	23	13.93×13.95×13.92 90.06×90.02×89.95 2704.22Å ³ ; 24 AB	2.253
	6	Not Shared Octagonal and Tetragonal Faces	۲	80	14.70×14.70×13.67 89.96×90.20×90.04 2953.73Å3; 24 AB	2.398
	7	Not Shared Tetragonal Faces II	\bigcirc		22.43×22.42×22.43 89.89×89.81×90.01 11275.52Å ³ ; 60 AB	4.328

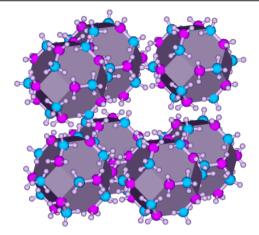
Bitruncated cubic


¹ Hydrogen atoms omitted for simplicity

² a x b x c, Å; alpha x beta x gamma, deg; volume; number of AB molecules

³ Increase in ground state electronic energy per one AB molecule with respect to AB molecular crystal

Hydrogen capacity of AB clathrates



gen enclosed in Cage 24.

(b) Octahedral orientation of H_2 molecules enclosed in Cage 24.

Level of theory: MP2/aug-cc-pVDZ, Becke97-D/6-311G**

Hydrogen capacity of AB clathrates

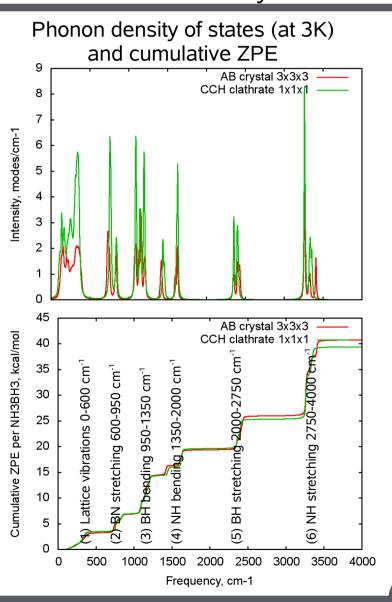
(b) Periodic structure of the CCH fra-

(a) Connection of cages in unit cell of the CCH structure of AB clathrates (one Cage 12 and faces of Cages 24 are removed).

(b) Periodic structure of the CCH framework of AB clathrates (all cages are shown explicitly).

Material	Unit cell	Unit cell	$Density^{\dagger},$	Weakly	Strongly	Total H_2 ,
	volume, $Å^3$	formula	$ m g/cm^3$	bound	bound	$\mathrm{wt}\%$
				$H_2, wt\%$	$H_2, wt\%$	
CCH structure	9186.6	$32\mathrm{H}_{2}96\mathrm{NH}_{3}\mathrm{BH}_{3}$	0.55/0.12	2.1	19.2	21.3
of AB clathrates						
Molecular crystal	131.5	$2 \mathrm{NH}_3 \mathrm{BH}_3$	0.78/0.15	0	19.6	19.6
of AB						

[†]Volumetric density of the material itself / of the hydrogen

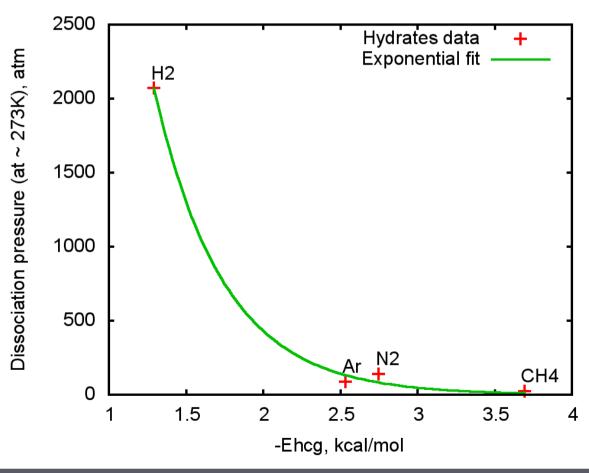

The CCH structure and AB molecular crystal

Electronic energy of the CCH structure computed with VASP/PBE is 0.5 kcal/mol lower (per formula unit) than corresponding value computed for AB molecular crystal!!!

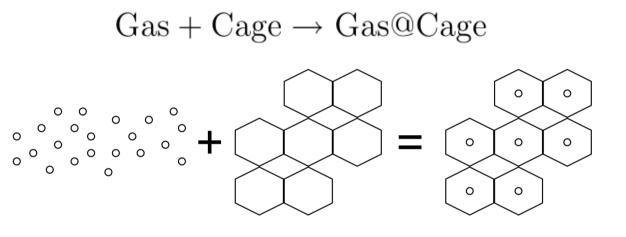
Finite temperature effects:

- Ab initio MD for 7.5 ps
- Construction of the velocity autocorrelation function
- Fourier transform of the VAF to get phonon DOS

- 3K: CCH is more stable by 1.8 kcal/mol
- 77K: CCH is less stable by 0.5 kcal/mol



Van der Waals and Platteeuw (1959) model and hydrogen hydrates


- The grand canonical partition function for water used in the model is derived based on assumptions which are incompatible with hydrogen hydrates
 - Each cavity can contain at most one guest molecule
 - No quantum effects are needed and classical statistics are valid
- The model significantly underestimates dissociation pressure of hydrogen hydrates

Guest	Hydrate	Published data ^{\dagger}	Calculated	Main equations: $\Delta \mu_W^{\alpha} = \mu_W^{\beta} - \mu_W^H = \mu_W^{\beta} - \mu_W^{\alpha}$
molecule	structure	$T, ^{\circ}C; P, atm$	P, atm	$\left(\frac{\partial ln\Xi}{\partial ln\Xi}\right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2}\right)$
Xe	Ι	0; 1.5	1.5	$\mu_W^H = -kT\left(\frac{\partial ln\Xi}{\partial N_W}\right)_{T,V,\lambda_J} = \mu_W^\beta + kT\sum_i \upsilon_i ln\left(1 - \sum_J \theta_{J,i}\right)$
$\rm CO_2$	Ι	0; 12.4	12.4	$\theta_{J,i} = \frac{C_{J,i}P_J}{1 + \sum_J C_{J,i}P_J} \qquad C_{J,i} = \frac{4\pi}{kT} \int_0^{R_c} \exp\left(-\frac{w(r)}{kT}\right) r^2 dr$
CH_4	Ι	-0.2; 25.3	28.6	$1 + \sum_{J} \bigcup_{j,i} I J \qquad \qquad$
C_2H_6	Ι	-0.03; 5.23	4.2	$\frac{\bigtriangleup\mu_W^{\alpha}(T, P_R)}{RT} = \frac{\bigtriangleup\mu_W^{\alpha}(T_0, P_0)}{RT_0} - \int_{T_0}^T \frac{\bigtriangleup h_W^{\alpha}}{RT^2} dT + \int_{T_0}^T \frac{\bigtriangleup v_W^{\alpha}}{RT} \frac{dP}{dT} dT$
C_3H_8	II	0; 1.74	1.6	$= \frac{\Delta \mu_W^{\alpha}(T_0, P_0)}{BT_0} - \int_T^T \frac{\Delta h_W^{\alpha}}{BT^2} dT + \int_P^{P_R} \frac{\Delta v_W^{\alpha}}{BT} dP$
N_2	II	-1.3; 141.5	128.4	$J_{I0} = J_{I0} = J_{I0} = J_{I0} = J_{I0}$
H_2	II	$-3.15(2072.5^{\$})$	1087.1	$\Delta \mu_W^{\alpha}(T, P) = \Delta \mu_W^{\alpha}(T, P_R) + \Delta v_W^{\alpha}(P - P_R)$
I	1			

Correlation between host cage-guest molecule interaction energy and stability of hydrates

Free energy change for process of enclathration:

Main assumptions:

(i) Empty clathrate is as stable as molecular crystal;

(ii) Gas phase particles do not interact;

(iii) Small cages are the weakest elements of the clathrate structure.

$$\approx E_{HCG} - T(S_{PSB} - S_{ST}) = 0$$

 $\triangle G = \triangle H - T \triangle S \approx$

- $E_{_{HCG}}$ the interaction energy between host cage and guest molecule;
- S_{PSB} the entropy of a particle in a spherically symmetric rectangular potential well (the entropy of a particle in a spherical box);
- S_{st} the Sackur-Tetrode entropy of ideal gas.

• The interaction energy between the host cage and the guest molecule

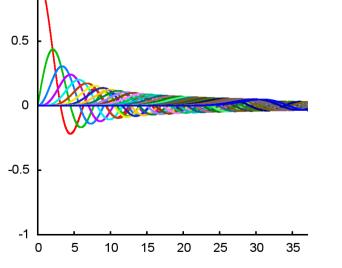
$$E_{HCG} = E_{complex} - E_{cage} - E_{guest} + \triangle E_{cage} + \triangle E_{guest}$$

 $\Delta E_m = E_m$ (complex geometry) - E_m (monomer equilibrium geometry)

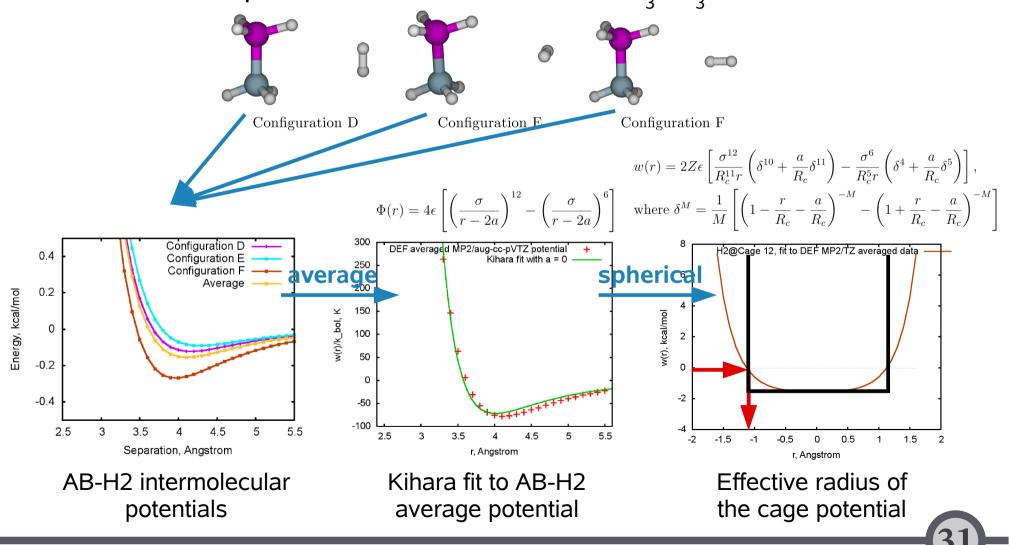
• The Sackur-Tetrode entropy of ideal gas

$$S_{ST} = R \, \ln\left(\frac{e^{5/2}V}{N_A\Lambda^3}\right)$$

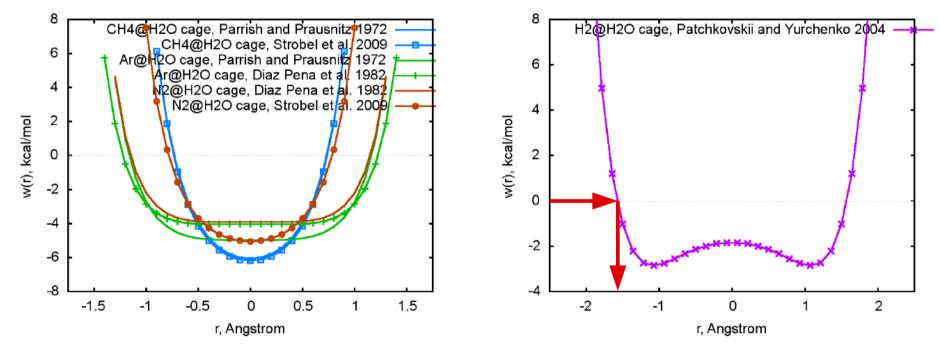
with volume calculated from the van der Waals equation of state


$$V = \frac{RT}{P + a/V^2} + b$$

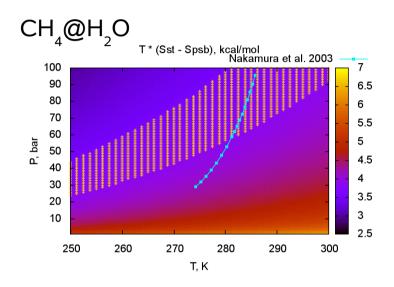
• The entropy of a particle in a spherical box

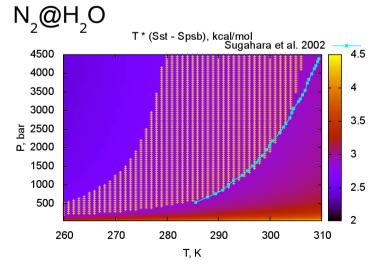

$$S_{PSB} = \frac{U - U(0)}{T} + k \ln Q \qquad U = U(0) - \left(\frac{\partial \ln Q}{\partial \beta}\right)_{V}$$
$$Q = q^{N} \qquad q = \sum_{i} g_{i} \exp\left(-\frac{E_{i}}{kT}\right) \qquad E_{nl} = \frac{\hbar^{2} X_{nl}^{2}}{2\mu r_{s}^{2}}$$

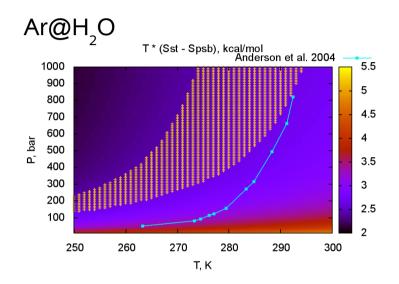
 X_{nl} are the roots of the spherical Bessel function; *n* is the number of the root of the function, the principle quantum number; *l* is the order of the function, the angular momentum quantum number.


$$j_l(z) = 2^l z^l \sum_{p=0}^{\infty} \frac{(-1)^p (p+l)!}{p! (2p+2l+1)!} z^{2p} = z^l \left(-\frac{1}{z} \frac{d}{dz}\right)^l \frac{\sin z}{z}$$

• Radius of the spherical box – clathrates of NH₂BH₂

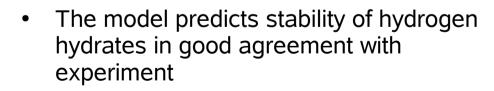


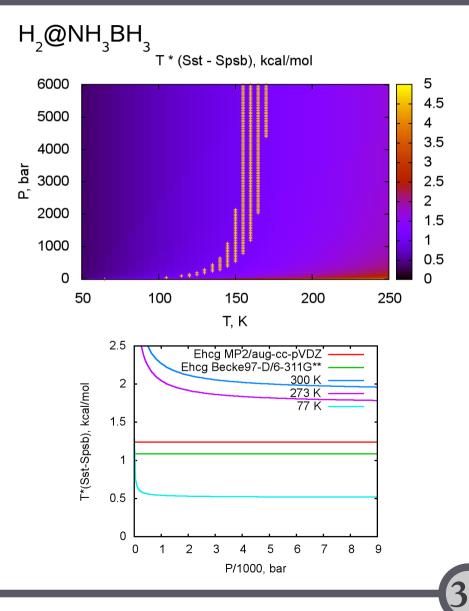

• Radius of the spherical box – hydrates of CH₄, Ar, N₂, and H₂



(a) Small cavity empirical potentials of CH_4 , Ar, (b) Small cavity ab-initio potential of H_2 hydrates and N_2 hydrates

Applications of the statistical model




- The term $-T(S_{PSB}-S_{ST})$ is shown in a form of colour map depending upon P and T
- The term $-E_{HCG} + / 5\%$ is shown as a highlighted region
- Real hydrate stability zone extends from light blue line towards left and top

Applications of the statistical model

 NH₃BH₃ clathrates could be stabilized at 77K at ambient pressure

Summary of results on clathrates of AB

- Structures of clathrates of ammonia borane have been envisaged and their relative stabilities have been calculated
- A statistical model of clathrate phase equilibria has been developed that is based on calculated guest-host interactions, entropy of guest molecules in spherical cages, and corrections for nonideality of gases
- Applicability of the model have been tested on known hydrates of CH_4 , Ar, N_2 , and H_2 . Quantitative agreement between experimental data and theoretical predictions could be expected for small guest molecules below ice melting point
- Pressures required for room temperature hydrogen storage in small cages of clathrate structures are practically unattainable. Clathrates of ammonia borane loaded with hydrogen could be stabilized at ambient pressure by lowering temperature down to 77 K

1. A. Abramov and M. Gutowski, Stability of hydrogen clathrates of ammonia borane, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 55 (1), (2010).

2. A. Abramov and M. Gutowski, Structure and stability of hydrogen clathrates of ammonia borane, Mater. Res. Soc. Symp. Proc., Boston, MA, November 30 - December 4, 2009.

3. M. Gutowski and A. Abramov, Hierarchical storage of hydrogen in clathrates of ammonia borane, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2009, 54 (2).

Experimental work on AB clathrates

• Lin et al., PNAS, 2009

– A solid phase, $NH_{3}BH_{3}(H_{2})_{x}$, x = 1.3-2, has been discovered at excess hydrogen pressure of 6.2 GPa

• Chellappa et al., J. Chem. Phys. 131, 2009

 Excited H₂ stretching modes are ascribed to the H₂ molecules stabilized at 6.7 and 10 GPa in the NH₃BH₃ lattice voids

Acknowledgments

- People
 - Prof. Maciej Gutowski, HWU
 - Dr. Gregory Schenter, PNNL
 - Dr. Garold Murdachaew, PNNL
- Funding
 - Marie Curie Actions
- Computing
 - Environmental Molecular Sciences Laboratory, a scientific user facility sponsored by the US DOE