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Considerations. . ...

MAY 15, 1935

PHYSICAL REVIEW

VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINsTEIN, B. PopoLsky AND N. RosEN, Institute for Advanced Study, Princelon, New Jersey
(Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

The quantum—-mechanical description cannot simultaneouslg

be complete and consistent. (?u”sténclig och sjélvkonsistent)



The answer-. ...

OCTOBER 15, 1935 PHYSICAL REVIEW VOLUME 48

Can Quantum-Mechanical Description of Physical Reality be Considered Complete?

N. BoHR, Institute for Theoretical Physics, University, Copenhagen
(Received July 13, 1935)

It is shown that a certain “criterion of physical reality” formulated in a recent article with
the above title by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity
when it is applied to quantum phenomena. In this connection a viewpoint termed ‘‘comple-
mentarity” is explained from which quantum-mechanical description of physical phenomena
would seem to fulfill, within its scope, all rational demands of completeness.

Complementaritg ~ instrumentation.




To measure

In-between science and

Philosophg




Qur bodg has advanced

sensors and analgsis...
. E‘ges( )

. Ears ( and orientation)

. Smell ( , gasphase)
. Taste ( . Huids)
. Skin ( ) (touch,

vibratons) )

| imitations and Possibilities!
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DiHerential pressure sensor
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E:xaml:)les of what

we want to measure
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Figure 3.7 Types of electromagnetic radiation (EMR). Notice that
the spectrum of wavelengths is over nine orders of magnitude,
trom radio waves to gamma rays (1um = 10°% m = 1 micran).

Copynght 2000 John Wilsy and Sons, Ina,



Radiation begoncl the range
O0.4-0.7 Um must be

transtormed” Prior to

registration

. ‘.ilec’tromagnetic radiation -

. Particles -




Transtormation

Mass, charge,

Particles

Speecl, momentum

energg

eV - discuss
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Describe the Photo




Describe...




at is realitg?




Thought experiment~ & geclanken experiment”

Determine the Position and

energy of a Par‘cicle in the

darkest Part of our universe!




Heisenberg (1927)

Ax Ap_ = %’h

~5103Js=310-16eV g Itis imPossible to simultaneouslg determine the
Position and the momentum with an arbitrarg

BCCUI”EBCH.



Coherence (1)

(a) Longitudinal coherence length, L,
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Coherence (2)

(b) Transverse coherence length, L,

(a) Longitudinal coherence length, L,
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(a) Longitudinal coherence length, L,
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well defined energy & 5
Phase coherency!
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Figure 5. The change in fringe separation with thickness for a Si0; layer on Si in a reflectometry
profile simulated for various layer thicknesses, CuKe radiation.




Intensity (counts)
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Neutrons (1)

Neutrons are Par’cicles:
Mass ~1.67 107 kg (=1.00 u)

Extension 10" m
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/ Neutrons !

Photons and Neutrons show the

SAME Proper’ties!

The neutron is extended over at

least >>1000 nm !!!

Com[:)are classical radius of ®10-¢ nm 11!



Quantum interference experiments with large molecules

Olaf Nairz,2 Markus Arndt, and Anton Zeilinger®
Institut fur Experimentalphysik, Universitat Wien, Boltzmanngasse 5, A-1090 Wien, Austria

(Received 27 June 200§: accepted 30 Octoger 2002)

er in elefhentary quantum
1d&ons. trdghs. neutrons. and
can b bggt explained with

ality ou
this
atoms, the dual qgantus Poc
the largest and most classical objects, which are currently the fullerene molecules. The

Wave—particle ¢
physics. Althoug

soccer-ball-shaped carbon cages Cgy are large, massive, and appealing objects for which it is clear
that they must behave like particles under ordinary circumstances. We present the results of a
multislit diffraction experiment with such objects to demonstrate their wave nature. The experiment
serves as the basis for a discussion of several quantum concepts such as coherence, randomness,
complementarity, and wave—particle duality. In particular, the effect of longitudinal (spectral)
coherence can be demonstrated by a direct comparison of interferograms obtained with a thermal
beam and a velocity selected beam in close analogy to the usual two-slit experiments using light.
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Heisenberg (2)

Undeterminable ->

uncleterminabilitg

Compare - Los Alamos, -45.



Conclusions

Uncleterminabilitg is determinable
The Principle of undeterminability is valid for

hotons, particles as well as big molecules.
P P g

The border between un&eterminabilitg and
uncertaintg is the same as the border between the

classical ancl the quantum worlcl.



The End
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® The big quiz / nuclear scattering

A.I. Chumakov, et al. / Nuclear resonant scattering of synchrotron radiation by ... 17
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‘igure 10. Angular dependence of nuclear (dots) and electronic (solid line) scattering of syn-
hrotron radiation by a Pd(74)/[Fe(90) /5" Fe(10)]-15 superlattice on a MgO (100) substrate. The
electronic reflectivity is divided by 1000. From [35].



