

Biological hydrogen production

- Hydrogen as an energy carrier
- Routes for hydrogen production
- Fermentation
 - Mesophilic vs.
 Thermophilic
- Examples of data

Hydrogen as energy carrier

- Hydrogen
 - Clean renewable energy source
 - Highest energy density of any fuel (carbon free)
 - Contributes substantially to the reduction of greenhouse gas emissions.
 - H₂ from renewable sources might be considered as the ultimate clean and climate neutral energy system

Comparison of energy and emissions of combustable fuels

Fuel type	Energy/unit (MJ/kg)	Energy/vol (MJ/I)	Kg of C relea se/kg fuel used
Hydrogen gas	120	2	0
Hydrogen liquid	120	8,5	0
Coal	15-30		0.6
Natural gas	33-50	9	0.46
Petrol	40-43	31,5	0.86
Oil	42-45	38	0.84
Diesel	43	35	0.9
Bio-Diesel	37	33	0.5
Ethanol	21	23	0.5
Charcoal	30		0.5
Agric. Residues	10-17		0.5
Wood	15		0.5

From Vijayaraghavan & Soom, 2005 (Int. J. Hydrogen Energy)

Unit cost of energy obtained by different processes

Type of Energy	Conversion effciency (%)	Unit cost (US\$)
H2 (photobiological)	10	10
H2 (fermentation)	10	40
H2 (coal/biomass)		4
H2 (electrolysis)		10
H2 (thermal decompostion		13
H2 (photochemical)		21
Ethanol (fermentation)	15-30	32
Gasoline		6

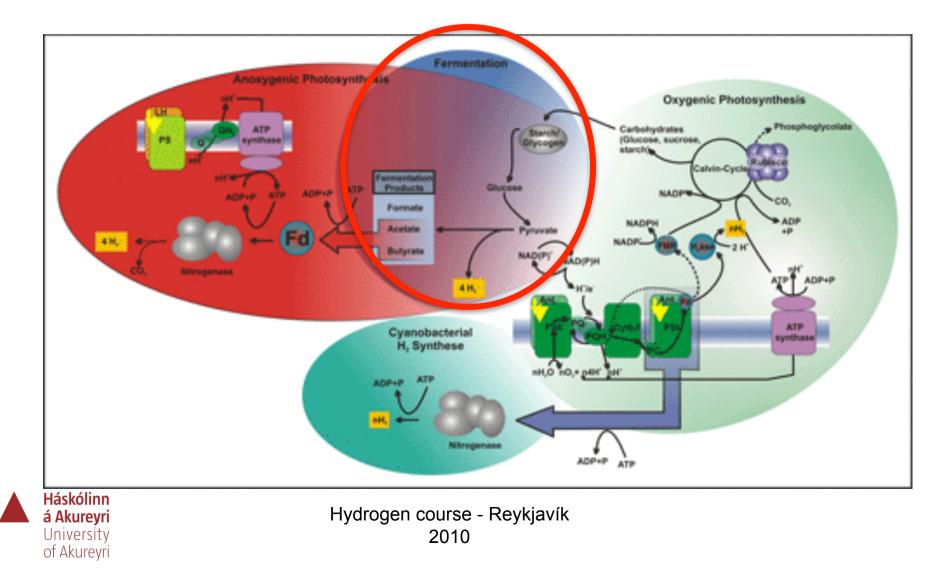
From: Das & Veziroglu, 2001 (Int. J. Hydrogen Energy)

Comparison of different biological hydrogen production processes

Organisms	Example	Raw material D	T (h)	Max rate (mmol H2/h)	Max rate) (mmol H2/g dry cell/h)	Major products
Photo						
Double PS	Oscillatoria	Sp. Media		0.4	0.3	H2/CO2/O2
	Anabaena	Various	25	1.2	1.3	H2/O2
Single PS	Rhodopseudomonas	Various			0.3-2.0	H2/CO2/O2 (VFA)
	Rhodobacter	Various			0.05-5.9	H2/CO2/O2 (VFA)
Fermentative	C. butyricum	Glucose			7.3	H2/CO2/VFA
	Citrobacter	Cellulose		11	9.5	H2/CO2/VFA
	E. aerogenes	Sugar cane	0.25	11.36	17	H2/CO2/VFA
	E. cloacae	Sucrose	0.32	37.03	29.63	H2/CO2/VFA
	C. saccharolyticus	Sucrose		8.4	\smallsetminus \checkmark	H2/CO2/VFA
	T. elfi	Glucose		2.7-4.5		H2/CO2/VFA

From: Levin et al. 2004; Das & Veziroglu, 2001

Biological hydrogen production - routes

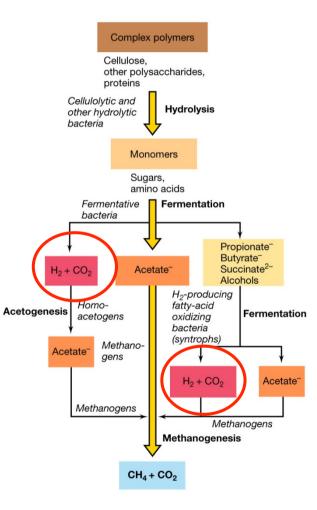

 Hydrogen production by

Háskólinn á Akurevr

- Direct biophotolysis
- Indirect biophotolysis
- Photo-fermentation
- Dark-fermentation

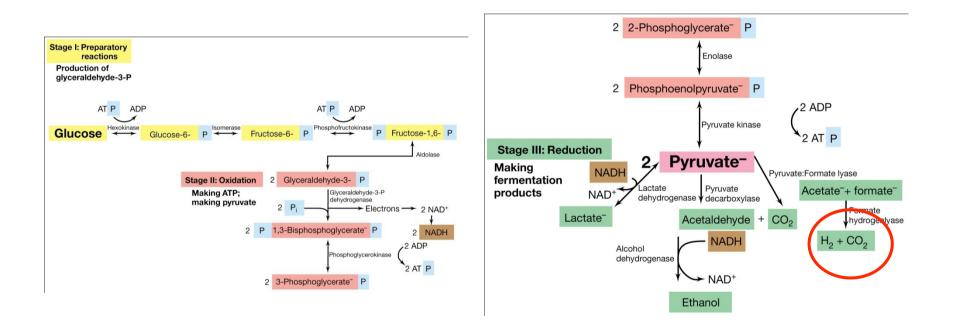
Biological	H ₂ Prod	uction P	rocess	es
BASIC PROCESS	(MICRO) ORGANISM	SOURCE of ENERGY and SUBSTRATE	MAIN OUTPUT PRODUCTS	ENZYME
BIOPHOTOLYSIS: Direct Photolysis	Micro-Algae,	Light,	H ₂ , O ₂ Biomass	H ₂ ase,
Indirect Photolysis PHOTO-FERMENTATION:	Cyanobacteria Photosynthetic Bacteria	H ₂ O, CO ₂ Light, Organic Wastes	H ₂ , CO ₂ , N ₂ Organic Acia	N₂ase N₂ase ds,
PHOTO-HETEROTROPHIC Water-Gas Shift Reaction	Photosynthetic Bacteria	CO, H ₂ O	H ₂ , CO ₂ , Biomass	H ₂ ase
DARK-FERMENTATION	Fermentative Bacteria	Organic Wastes	H ₂ , CO ₂ , hig [Organic Ac Biomass	
© Center for Sustainable Environment	al Technologies	<u>© Institut</u>	e for Integrated Energy	Systems

Biological hydrogen production - routes

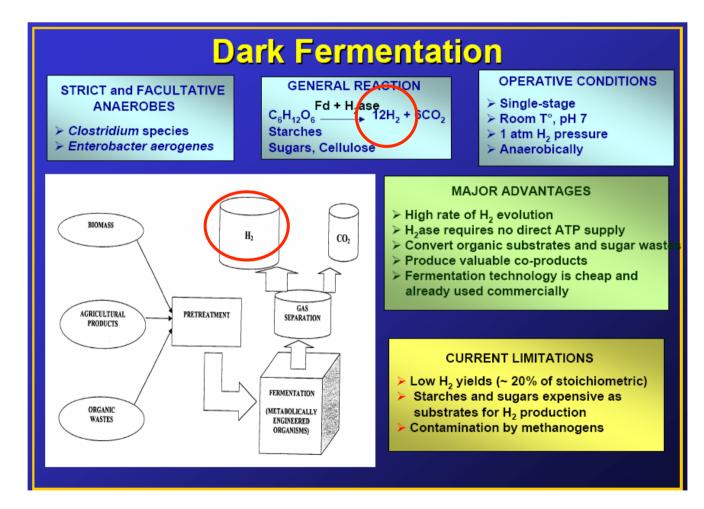


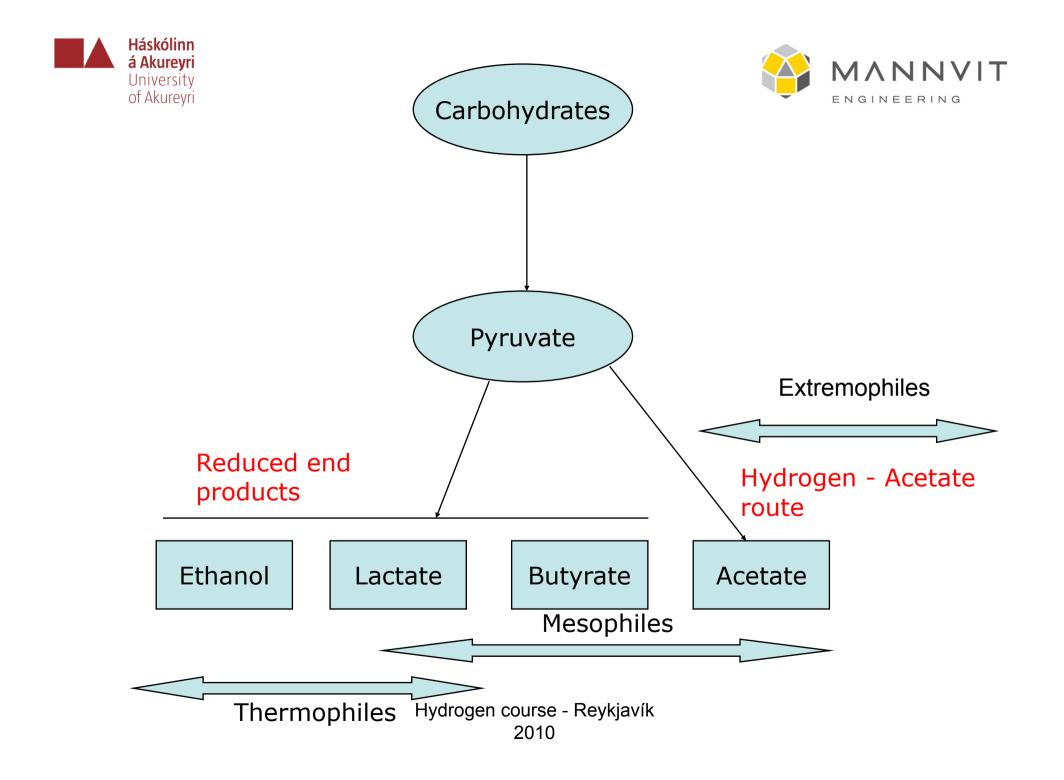
Dark fermentation

- Hydrogen can be produced by anaerobic bacteria, grown in the dark on carbohydrate-rich substrates
 - Mesophilic (25–40°C)
 - Thermophilic (40–65°C)
 - Extreme thermophilic (65–80°C)
 - Hyperthermophilic (>80°C)



Anaerobic digestion




Glycolysis

Fermentation

Hydrogen production from carbohydrates

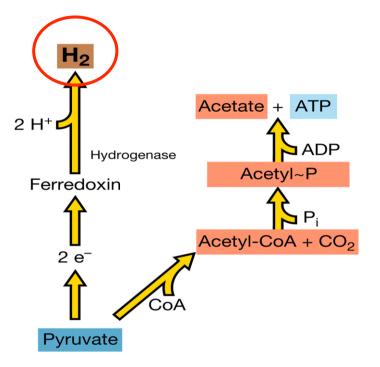
- Carbohydrates yield different amounts of H₂ depending on the fermentation pathway and end products
 - − $C_6H_{12}O_6 + 2 H_2O \rightarrow 2 CH_3COOH + 2 CO_2 + 4 H_2$
 - $\text{ C}_6\text{H}_{12}\text{O}_6 + 4 \text{ H}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{COOH} + 2\text{CO}_2 + 2 \text{ H}_2$
- Acetate \rightarrow highest hydrogen yields
- In practice mixture of Ac/But and other products → lower yields

Hydrogen production from carbohydrates

- Processes important for H2 production
 - pH
 - HRT (in continuous cultures)
 - $-pH_2$
 - Initial substrate concentrations
 - → Fermentation end products depend on the environmental conditions

Hydrogen production from carbohydrates

 Reduced fermentation end products are produced when H₂ accumulates


- Etanol, Lactate, Butanol, Alanine

 To maximize the yield of H₂ the metabolism must be directed away from alcohols and reduced acids

Fermentation

- The majority of microbial H₂ production is driven by the anaerobic metabolism of pyruvate formed during the catabolism of various substrates.
- The breakdown of pyruvate is catalyzed by one of the two enzyme systems:
 - Pyruvate: formate lyase (PFL)
 - (Pyruvate + CoA) \rightarrow acetyl-CoA + formate
 - Pyruvate: ferredoxin (avodoxin oxido reductase (PFOR)
 - Pyruvate + CoA + 2 Fd (ox) → acetyl-CoA + CO2 + 2 Fd (red)

Fermentation

- Pyruvate \rightarrow acetyl-CoA \rightarrow ATP + formate/reduced ferredoxin \rightarrow H₂
- The overall yields are relatively low,
 - 1-2 H₂ per molecule of pyruvate.
- \rightarrow fermentations have been optimized by evolution to produce biomass and not H₂.
- Thus, a portion of the substrate (pyruvate) is used in both cases to produce ATP, giving a product (acetate) that is excreted.

Fermentation - thermodynamics

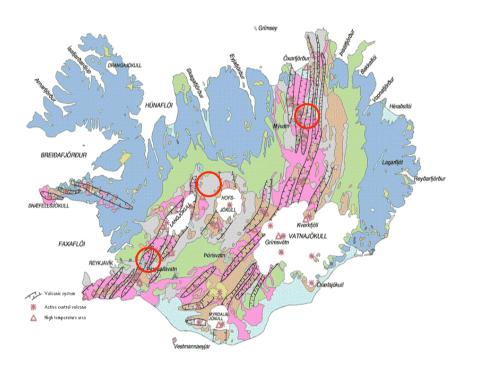
- The major issue is the feasibility of a dark fermentative reaction yielding close to the 12 mol H₂ stored in each molecule of glucose metabolized.
- From a thermodynamic perspective, the most favourable products from the breakdown of 1 mol of glucose gives rises to 2 mol of acetate and 4 mol of H₂.

– In reality: Maximum 3.3 mol H₂

- pH_2 is extremely important for H_2 production
- H₂ synthesis pathways are sensitive to H₂ conc. and are subject to end product inhibition
- Previously: $\uparrow H_2 \rightarrow \uparrow pH_2 \rightarrow slower down H_2$ production
- Thermodynamics: $\uparrow T^{\circ}C \rightarrow pH_2$ has less effect
- Thus at higher temperatures oxidative reactions can occur to a more extent before reduced compound are produced AND inhibition starts at higher pH₂

Mesophilic hydrogen producing bacteria

- Strict anaerobes
 - Clostridium
 - Citrobacter
 - Klebsiella
 - Enterobacter


Thermophilic hydrogen producing bacteria

- Clostridium
- Caloramator
- Thermoanaerobacter
- Thermoanaerobacterium
- Caldicellulosiruptor
- Thermotoga

Results

 Samples were collected in four trips from three different geothermal areas in 2004, 2005, 2007 and 2009

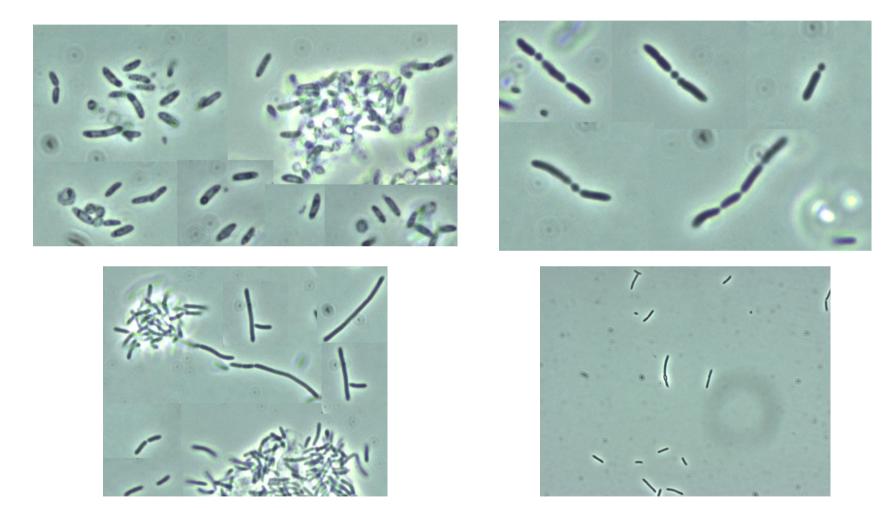
Results

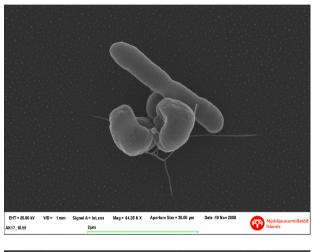
- Isolations of hydrogen producing strains
- Basic physiological characteristics
- Substrate spectrum
- Influence of initial substrate concentrations
- Influence of pH₂
- Continuous culture
- Complex biomass studies

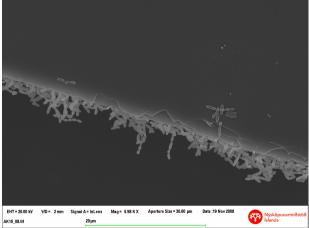
Physiological data of sampling sites

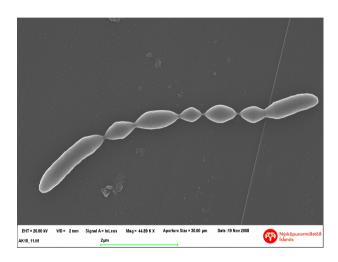
- Örlygsson and Baldursson, 2007.
- 4 strains isolated
- AK1 and AK14 (both Clostridium)
 - Isolated from Grensdalur (Hveragerdi)
- AK15 (Clostridium) and AK17
 - (Thermoanerobacterium)
 - Isolated from Hell (Víti)

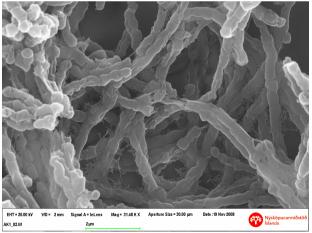
Sampling and environment






Light microscope

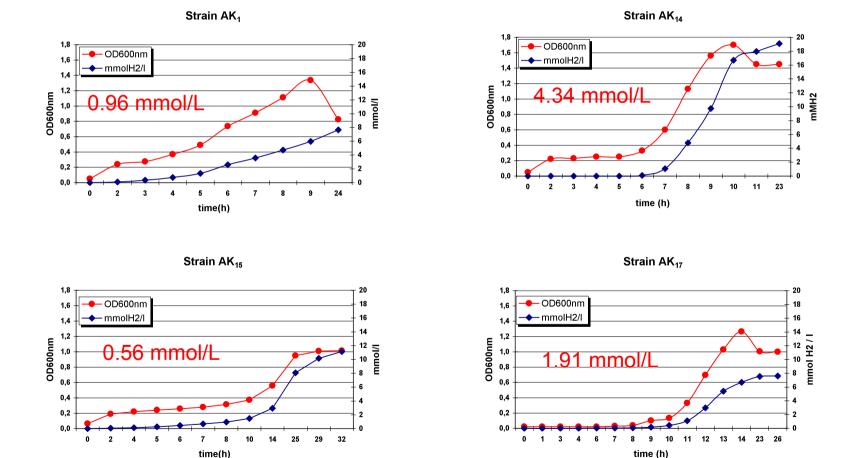




Electron microscopy

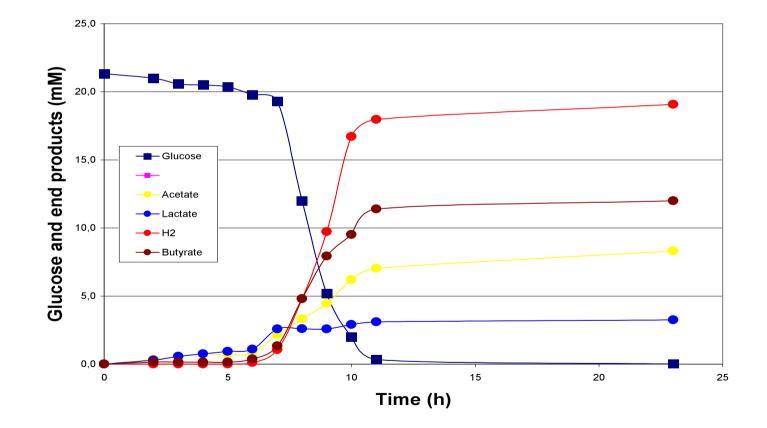
Physiological data

	AK ₁	AK ₁₄	AK ₁₅	AK ₁₇
T _{opt}	45	45-50	55	58
T _{max}	55	55.68	80	72
рН _{орt}	7.0 - 8.0	7.0	7.0	4.5-6.5
		\frown		
µmax	0.16	0.44	0.25	0.4
Gen time	4.0	1.6	2.7	2.0
Gen time	4.0	1.6	2.7	2.0



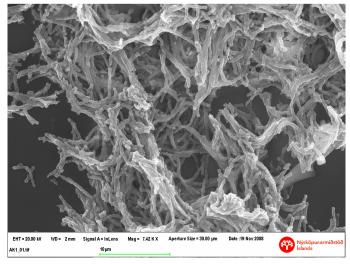
		Str	ain	
Substrate	AK ₁	AK ₁₄	AK ₁₅	AK 17
Arabinose	-	-	-	++
Fructose	+++	+++	+++	++
Galactose	++	+++	+	+++
Glucose	++	++++	+++	+++
Mannose	++	+++	+++	+++
Ribose	-	-	++	+++
(ylose	+	+++	++	+++
actose	++	-	-	++
ucrose	++	++++	++	++++
ellulose	-	-	-	(+)
ectin	++	-	-	(+)
ylan	-	-	++	-
yruvate	-	-	+	-
erine	-	-	-	++
nreonine	-	-	-	++

C-source	Strain AK ₁	Strair AK ₁₄	Strain AK ₁₅	Strain AK ₁₇				
mol/mol c-source								
Arabinose	-	-	0.69	0.33				
Fructose	0.61	1.0	0.16	0.73				
Galactose	0.7	1.07	0.63	0.74				
Glucose	0.77	1	0.7	0.55				
Mannose	0.77	0.81	-	1.22				
Ribose	0.07	-	0.57	1.02				
Xylose	0.71	1.14	-	0.69				
Lactose	0.76	- 1	0.67	-				
Sucrose	0.58	1.04	-	1.14				
Cellulose	-	- 1	nd	nd				
Pectin	nd	- 1	- 1	nd				
Xylan	nd	- 1	0.12	-				
Pyruvate	0.06	0.1	- 1	0.52				
Serine	-		-	0.62				
Threonine	-			0.52				


Fermentation end products

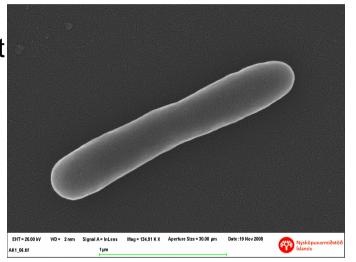
Háskólinn á Akureyri University

Strain / mmol/l	Ethanol	Acetate	Butyrate	Lactate	Hydrogen	CO ₂
AK ₁	29.7	10.5	0.0	4.0	7.7	40.3
AK ₁₄	0.0	8.3	12.0	3.3	19.1	32.3
AK ₁₅	16.6	8.3	0.0	3.5	11.1	24.9
AK ₁₇	31.2	11.4	0.0	0.0	7.6	42.6

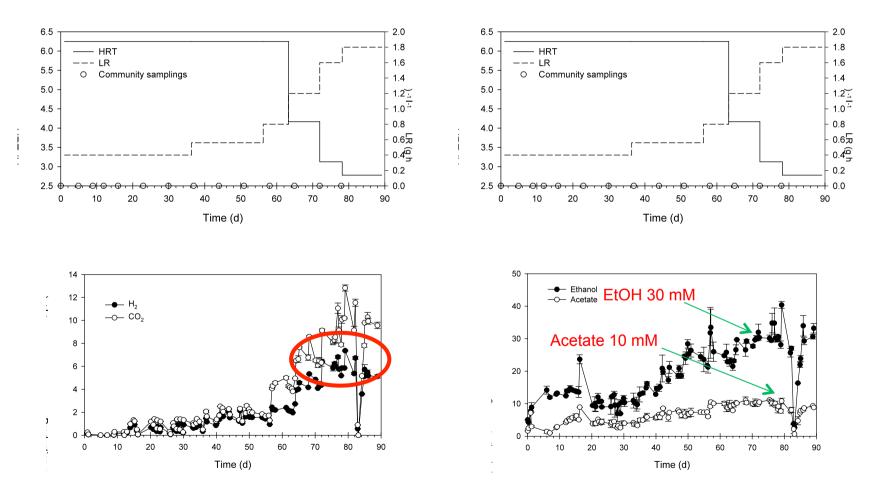

AK14

Continuous culture

- Ethanol and Hydrogen Production by Two Thermophilic, Anaerobic Bacteria Isolated From Icelandic Geothermal Areas
 - Biotechnology and Bioengineering
 - Two bacterial strains were isolated from two sediment samples collected in the Krafla area (Víti=Hell) in NE-Iceland
 - AK15: 60°C; pH = 8.6
 - AK17: 70°C; pH = 6.5



of Ak Batch fermentation patterns from glucose and xylose by the isolate AK17


• Glucose –

Háskólinn á Akurevri

- Hydrogen main fermentation product
 - 0.4-1.2 mol H₂/mol glucose
- Ethanol
 - 1.2-1.6 mol EtOH/mol glucose
- Acetate
 - 0.5 mol/mol glucose
- Xylose
 - Hydrogen
 - 0.9-1.0 mol H₂/mol xylose .
 - Acetate was the main soluble metabolite
 - Ethanol
 - 1.0-1.1mol/mol xylose
 - Acetate less

Compared to literature

Table III. The comparison of hydrogen production performance of some continuous-flow bioreactors reported in the literature.

Substrate	Temperature (C)	H ₂ yield (mol-H ₂ /mol-hexose)	H ₂ production rate (minoi/h/E)	References	
Character	60	0.80	6.1	This study	
Glucose	60	1.11	43.8*	Oh et al. (2004)	
Sugar factory wastewater	60	2.57	8.3ª	Ueno et al. (1996)	
Winery wastewater	55	2.14	6.6ª	Yu et al. (2002b)	
Glucose	70	2.47	2.1ª	Kotsopoulos et al. (200	
Glucose	74	0.42	1.4	Koskinen et al. (2008)	
Cellulose powder	60	2.00	1.2 ^a	Ueno et al. (2001)	
Sucrose	40	1.59 ^a	627ª	Wu et al. (2006)	
Glucose	37	1.71	311ª	Zhang et al. (2008)	
Fructose	35	0.56	33.0	Wu and Chang (2007)	
Glucose	35	1.71ª	29.6 ^a	Lin and Chang (1999)	
Glucose	30-34	0.86 ^a	15.0 ^a	Lin and Chang (2004)	

^aCalculated based on the information provided.

Háskólinn á Akureyri University of Akureyri Bioprospecting hydrogen producers

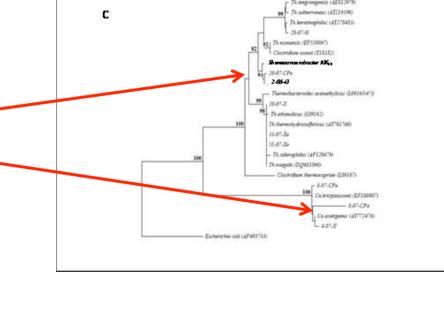
- Icelandic Agricultural Sciences, 2010
- Purpose Isolate and characterize thermophilic saccharolytic bacteria
- New enrichment experiments
 - Hveragerdi (SW Iceland) and Krafla (NE Iceland)

Methods...

- Geysers at $50 80^{\circ}$ C and pH 3 7.
- Carbon sources: glucose, xylose, cellulose, pectin, xylan
- # samples = $47 \times 6 \rightarrow 282$
- Glucose and xylose = 100 mM
- Polymers = 5 g/L
- Growth follwed by H₂ measurements
- Best growth \rightarrow end point dilutions and agar plates
- \rightarrow phylogenetic analysis (16S rRNA)

Selection of strains

- Aim: Characterize all strains concerning end product formation
- The best strains (↑EtOH, ↑H₂) chosen
- Plus = growing on many types of sugars and polysaccharides
- Hydrogen producers: EtOH/Acetate = < 1
- Ethanol producers: EtOH/Acetate = > 3

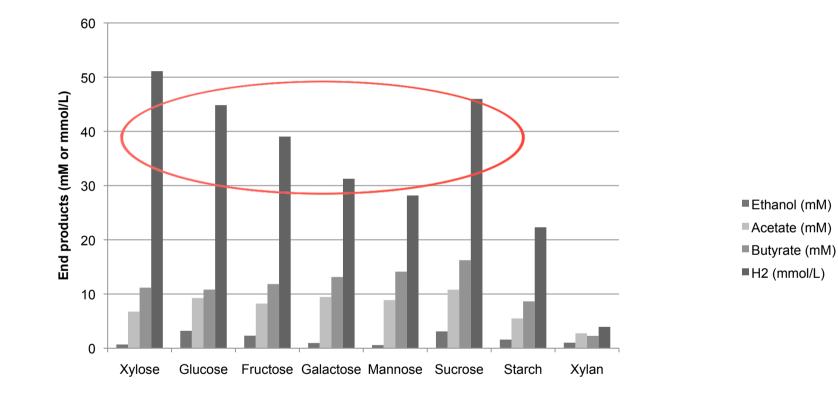

Enrichment cultures

Enrichment	T (°C)	pН	Enrichment	T (°C)	pН	Enrichment	T (°C)	pН
culture	(site)	(site/isolation)	culture	(site)	(site/isolation)	culture	(site)	(site/isolation)
50°C-samples			52-07-P	50	5.4/6.0	66-07-G	62	7.4/7.0
1-07-Cpa-G	45	8.0/7.0	65-07-Xo	49	6.7/7.0	66-07-P	62	7.4/7.0
2-07-G	50	7.9/7.0	65-07-X	49	6.7/7.0	67-07-P	66	7.7/7.0
2-07-Cpa-G	50	7.9/7.0						
2-07-Cpa	50	7.9/7.0	60°C samples			70°C samples		
9-07-P	40	4.8/6.0	8-06-G*	58	6.2/6.0	2-06-G*	73	4.3/7.0
9-07-X	40	4.8/6.0	21-07-Xo	60	6.7/7.0	4-07-X	69	8.0/7.0
10-07-P	46	6.6/7.0	21-07-Сро	60	6.7/7.0	8-07-Cpo	71	8.2/7.0
10-07-X	46	6.6/7.0	21-07-Cpa-G	60	6.7/7.0	8-07-Cpa	71	8.2/7.0
15-06-G*	49	5.8/7.0	24-07-X	60	7.7/7.0	20-07-G	69	7.5/7.0
15-07-Cpa-G	50	7.5/7.0	27-07-X	60	7.7/7.0	20-07-X	69	7.5/7.0
23-07-Cpa-G	57	7.7/7.0	29-07-G	60	9.6/7.0	20-07-Сро	69	7.5/7.0
25-07-Cpa-G	50	7.4/7.0	29-07-Сро	60	9.6/7.0	33-07-Xo	71	8.0/7.0
35-07-X	50	7.7/7.0	29-07-Cpa-G	60	9.6/7.0	55-07-Xo	73	5.1/6.0
35-07-Cpa-G	50	7.7/7.0	34-07-X	60	7.4/7.0			
44-07-G	56	5.5/6.0	54-07-Xo	66	5.3/6.0	75°C samples		
44-07-Xo	56	5.5/6.0	54-07-P	66	5.3/6.0	14-07-G	84	8.0/7.0
44-07-P	56	5.5/6.0	63-07-G	60	7.7/7.0	14-07-Xo	84	8.0/7.0
44-07-X	56	5.5/6.0	63-07-Cpa	60	7.7/7.0	14-07-P	84	8.0/7.0
47-07-Xo	53	6.2/6.0	64-07-G	59	7.0/7.0	14-07-X	84	8.0/7.0
47 - 07 - P	53	6.2/6.0	64-07-P	59	7.0/7.0	32-07-G	78	4.9/6.0
52-07-Xo	50	5.4/6.0	64-07-X	59	7.0/7.0	39-06-G*	78	5.5/6.0

Results

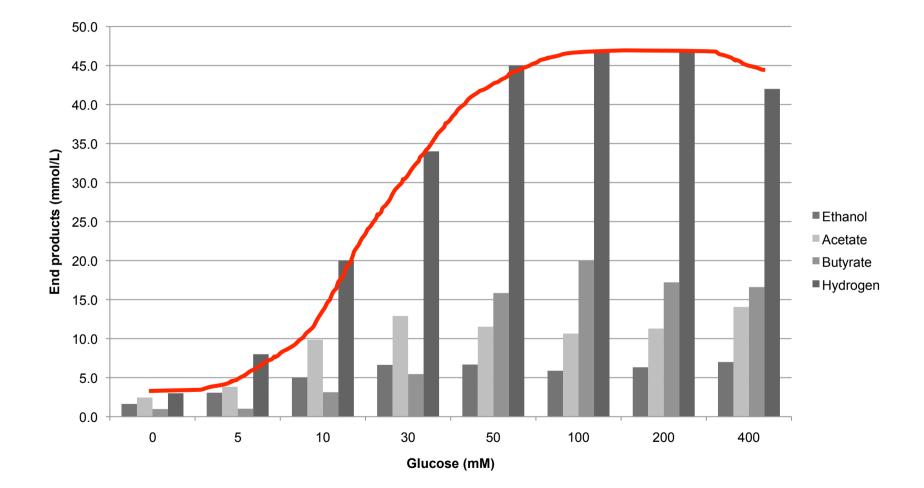
- Low temperature hot springs
 - Thermoanaerobacterium, Clostridium, Paenibacillus, Caloramator
 - Sugars \rightarrow ethanol, butyrate (acetate, H₂)
- High temperature hot springs
 - Thermoanerobacter
 Caldicellulosiruptor,
 - Sugars \rightarrow acetate + H₂
- A clear correlation between phylogeny (types of bacteria), temperature and end product formation
- Culture collection obtained

0.05

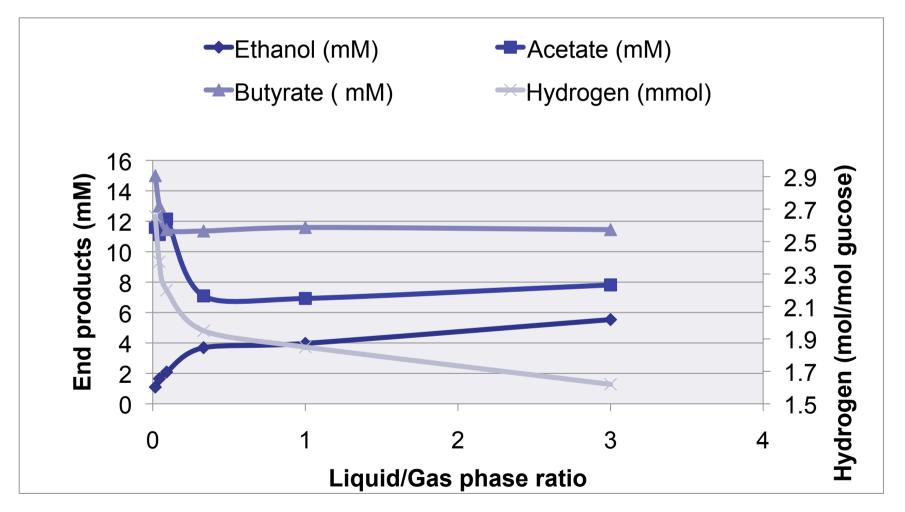

Example of AK14

- A moderate thermophilic bacterium belongs to *Clostridium*
- Icelandic Agricultural Sciences 2010
- Acetate/butyrate fermentation spectrum
 - End product formation from glucose and xylose (both 20 mM)

20 mM Glucose \rightarrow 2.8 mM EtOH + 7.5 mM Acetate + 10.7 mM Butyrate + 30.5 mM H₂ + 31.7 mM CO₂


20 mM Xylose \rightarrow 0.0 mM EtOH + 5.9 mM Acetate + 10.9 mM Butyratre + 35.3 mM H₂ + 27.7 mM CO₂

Substrate spectrum from 20 mM or 3 g/L of various carbohydrates


pH_2

- By simply using different gas-to-liquid ratios → get insight into the effects of hydrogen in the gas phase on end product formation and the inhibition of hydrogen production
- Use 20 mM Glucose
- L-G ratios: $3.0 \rightarrow 0.02$

– Example: 3.0 = 90 mL liquid and 30 mL gas

 pH_2

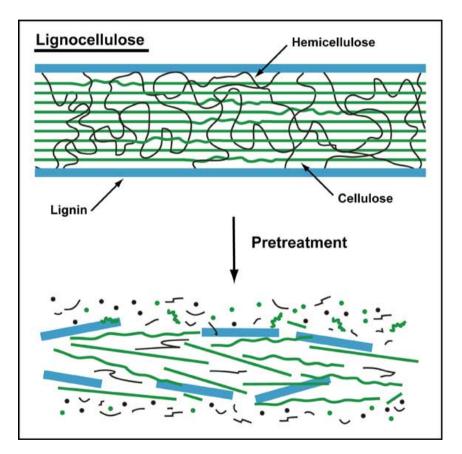
pH_2

- As expected, lower H₂ yields followed the decrease in acetate and butyrate formation as against an increase in ethanol production.
- Using the fermentation data from the lowest and highest L/G ratios the following equations are observed:

1.0 Glucose 0.06 Et OH+0.59 Acetate + 0.75 Butyrate + 2.60₂H 2.15 CO₂ (low L/G (0.05); Eq.1)

1.0 Glucose 0.28 Et OH + 0.39 Acetate + 0.58 Butyrate + 1.60₂ H 1.63 CO₂ (high L/G (3.0); Eq.2)

But....


 H₂ production from monosugars is one thing → next step is to go to complex biomass → Production of second generation of hydrogen

Akureyri University of Akureyri **2nd generation** — a closer look

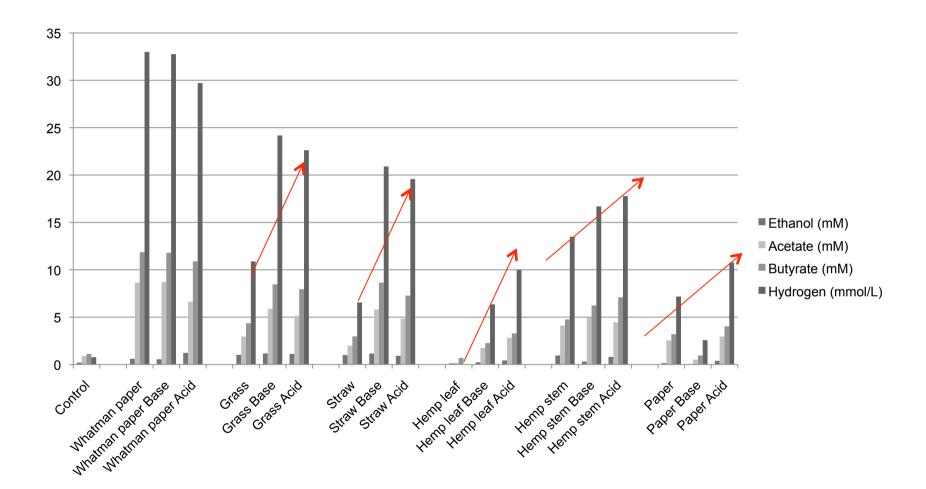
- Production of ethanol from waste material
- Lignocellulose

Háskólinn

- Cellulose, hemicellulose and lignin
- Grass, starw, saw, etc
- 2° generation hydrogen production
- Is it possible to produce hydrogen from such biomass?
- The basic structure of lignocellulose is the same, i.e. polymetric sugars that can be converted to monosugars → and ferment to ethanol.
- More expensive, more pretreatment, and enzymes.

Experimental

Experimental



Preparation of HL

- Hydrolysates (HL) were made from different biomasses:
 - Whatman filter paper (cellulose),
 - hemp (*Cannabis Sativa L.*) leaves and stem fibres
 - newspaper with ink (NPi),
 - barley straw (BS) (Hordeum vulgare L.) and
 - grass (Phleum pratense L.).
- Chemical pretreatment acid and base
- Heat autoclaving for 30 minutes (121°C).
- Enzymes (Celluclast® and Novozyme 188)
- \rightarrow Lignocellulosic hydrolysates ready for fermentation

Second generation of H₂

Second generation of H₂

• The stochiometry for pure glucose and the cellulose hydrolysate (HL) experiments are:

1.00 Ghucose ◊ 0.20 Et OH + 0.35 Acetate + 0.58 Butyrate + 1.60 2H 1.84 CO2 (ghucose)

1.00 Ghucose ◊ 0.09 Et OH + 0.36 Acetate + 0.45 Butyrate ±.78 H₂ + 1.35 CO₂ (HL)

- The end product formation in the cellulose hydrolysate experiment was slightly higher except for ethanol and carbon recovery was 80%.
- The hydrogen yield on cellulose hydrolysate was 1.39 mol-H₂/mol-glucose equivalent

Future aspects - questions

- Initial substrate concentratins for thermophiles seem to be a problem → fed batch or continuous
- Lignocellulose use waste first !
- Hydrogen removal or use bacteria that tolerate high partial pressures of hydrogen