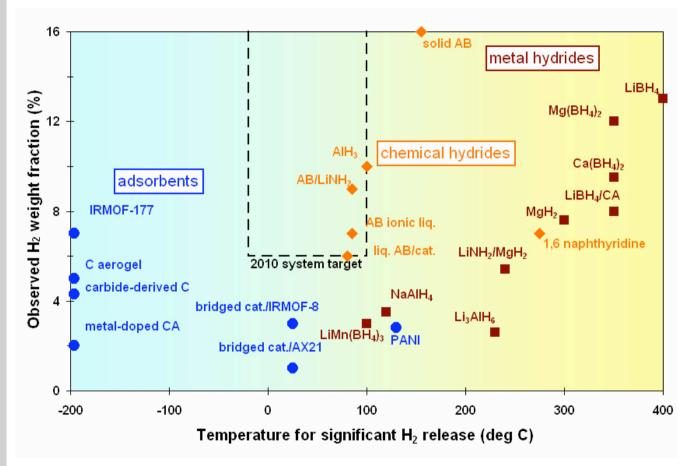
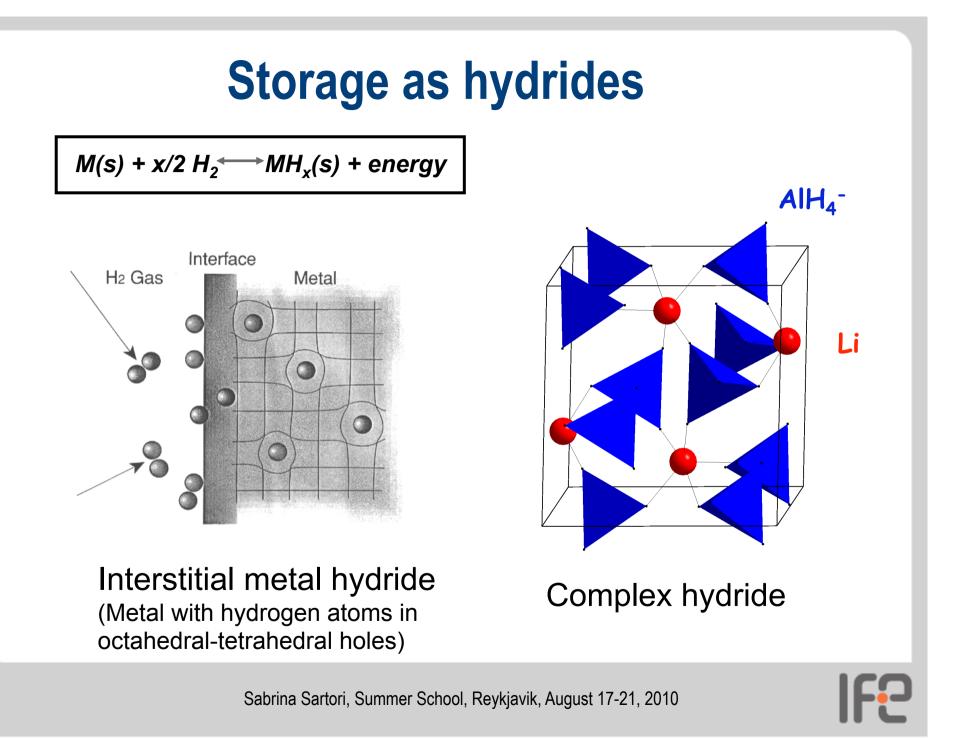
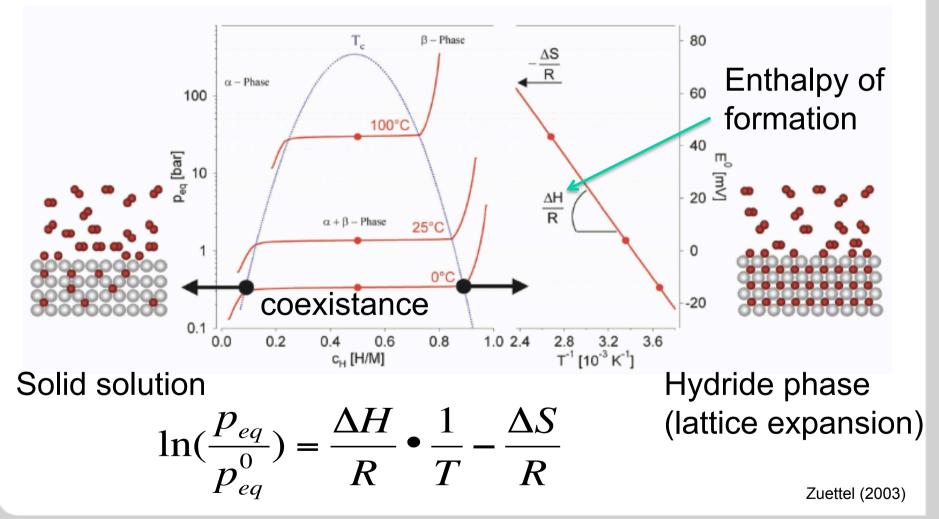
Hydrogen storage and complex hydrides


Sabrina Sartori

Physics Department, Institute for Energy Technology, Kjeller, Norway

> sabrinas@ife.no www.ife.no

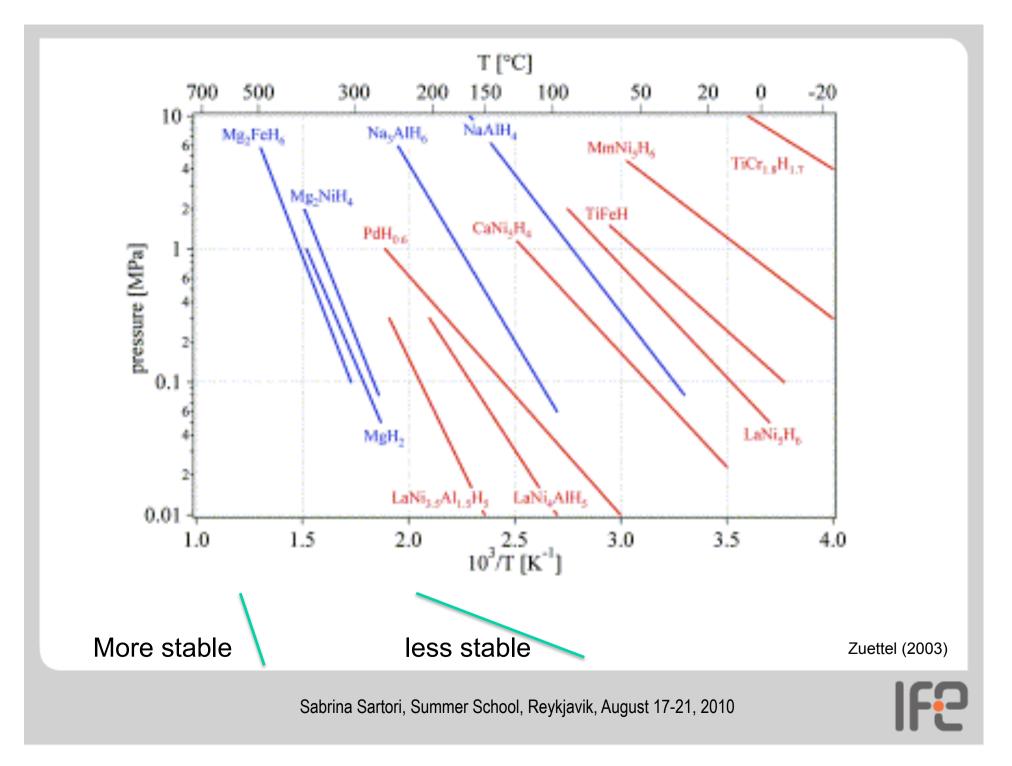

Solid material for hydrogen storage


- Metal and complex hydrides
- Chemical hydrides
- Nanoporous
 structures

Source: DoE 2007

PCI of intermetallic (AB_xH_n) compound

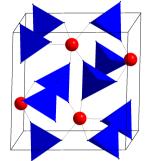
Exercise


The desired value of enthalpy of formation of our hydride to reach an equilibrium pressure of 1 bar at 27 °C?

1) Considering $\Delta S_f = -130 \text{ JK}^{-1}\text{mol}^{-1} \text{ H}_2$ for all metalhydrogen systems

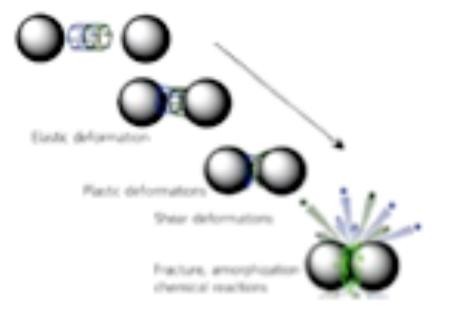
2) Answer in kJ mol ⁻¹ H₂

$$\ln(\frac{p_{eq}}{p_{eq}^{0}}) = \frac{\Delta H}{R} \cdot \frac{1}{T} - \frac{\Delta S}{R}$$



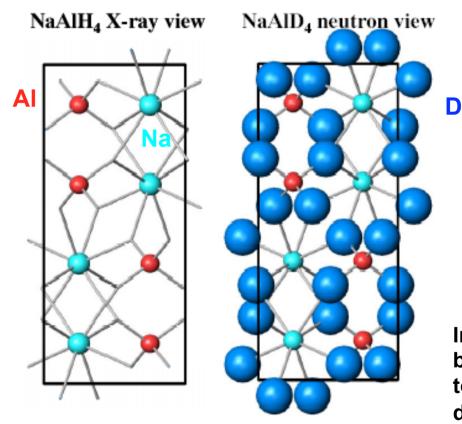
Complex hydrides promising candidates

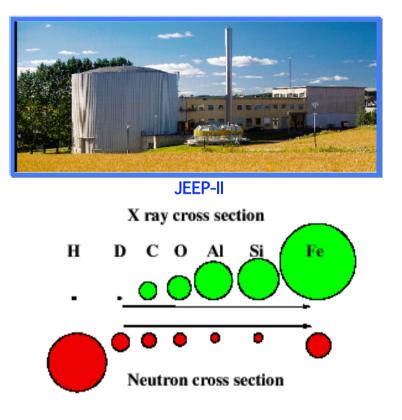
> 5 wt% hydrogen:


- LiAIH₄: 10.6 wt%
- NaAlH₄: 7.5 wt%
- Mg(AIH₄)₂: 9.3 wt%
- LiNH₂/Li₂NH reactions (11.5 wt%)
- LiBH₄ (18.5 wt%), NaBH₄ (10.7 wt%)

- Ammonia-Borane systems: e.g. H₃NBH₃ (19.6 wt%)
- Why not used: problems of thermodynamic and kinetics. Not reversible at moderate conditions. Complicated desorption of H₂
 - Additives (Bogdanović et al., 1997):
 - Reversible (NaAlH₄ with Ti-additives).
 - Reduced desorption temperature.

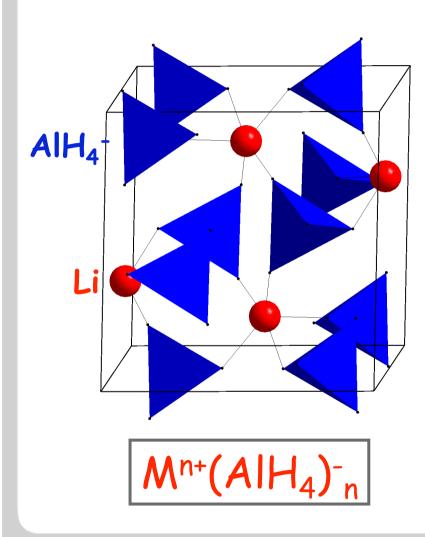
High-energy ball-milling...


...brings about a broad variety of defects


Breaking crystallinity, creating new surfaces, mass transfer = enhanced reactivity of materials towards hydrogen

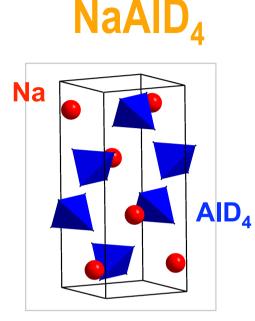
Using neutrons to "see" hydrogen

Powder neutron diffraction (PND)

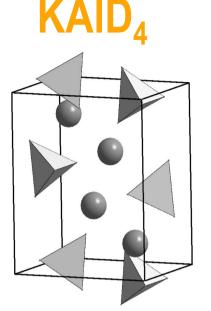


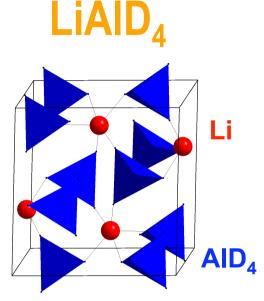
In contrast to X-ray, neutrons are scattered by the nuclei of the atoms. X-ray data tends to give erroneously short metal-hydrogen distances and incertainties in determination of hydrogen coordinates

Structural characteristics



• Anions: AlH₄⁻, AlH₆³⁻, BH₄⁻, MgH₃⁻ etc. Covalent bonded.


• Metal ions: Alkaline, alkaline earth or 3*d* elements. Ionic bonded.


Combined neutron and X-ray diffraction

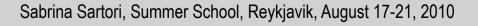
- AID₄⁻ tetrahedra
 - AI-D: 1.626 Å (at 295 K).
- Na⁺: surrounded by 8 D atoms from 8 different AID₄⁻

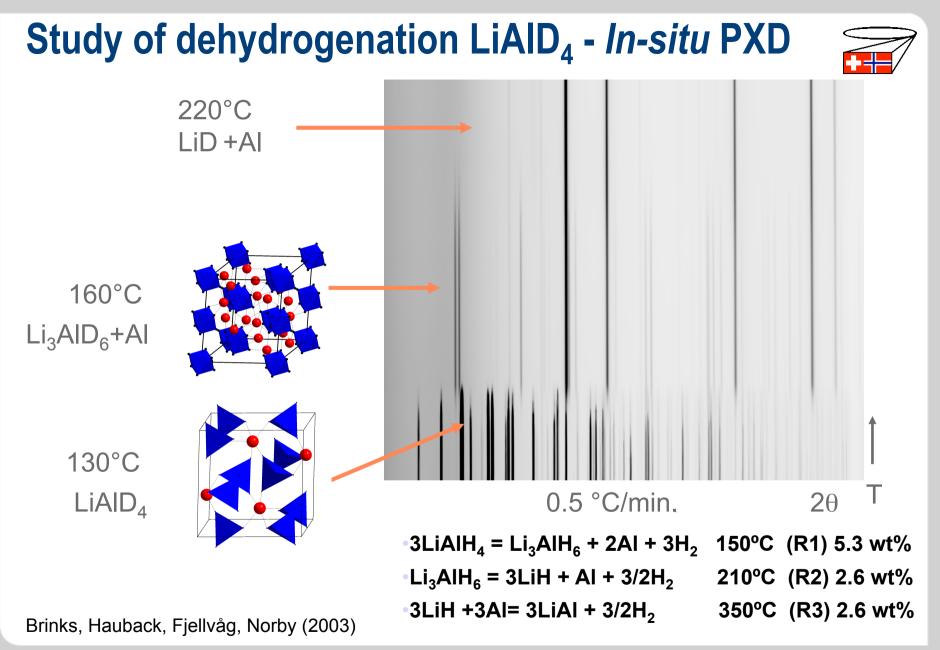
- AID₄⁻ isolated tetrahedra
 - AI-D: 1.618 Å (at 295 K).
- K⁺: surrounded by ten D atoms

- AID₄ tetrahedra connected via Li.
- Li⁺ : surrounded by a trigonal bipyramid of 5 D from 5 different AID₄-

The variation in the crystal structures of $MAIH_4$ arise from the difference in the size of the alkali cations of Li, Na and K, which result in coordination numbers of 5, 8 and 10, respectively.

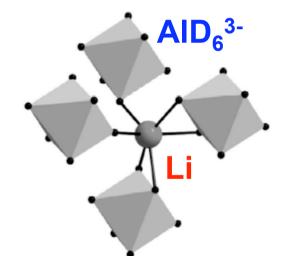
Hauback, Brinks, Jensen, Murphy, Maeland (2003) Hauback, Brinks, et al. (2005)

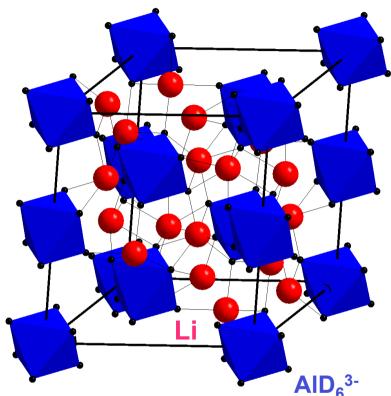

Hauback, Brinks, Fjellvåg (2002)


Dehydrogenation and rehydrogenation- Undoped alanates

Desorption ALANATES, e.g. NaAlH₄ (7.5 wt%): 3 NaAlH₄ → Na₃ AlH₆ + 2 Al + 3 H₂ 3.7w% 180-230°C Na₃ AlH₆ → 3 NaH + Al + 3/2 H₂ 1.9wt% 230-250°C NaH → Na + $\frac{1}{2}$ H₂ 1.9wt% 425°C

The reaction temperatures depend strongly on the heating rate

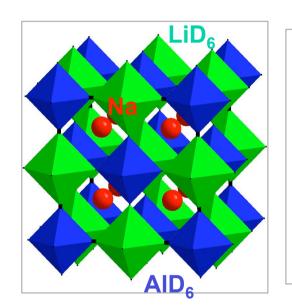




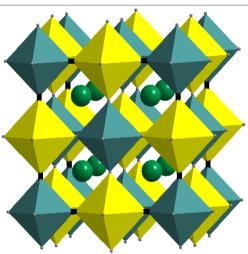
Li₃AID₆

- Isolated octahedra AID₆³⁻:
 - AI-D: 1.754 and 1.734 Å.
- Li: 6-coordinated:
 - Li-D: 1.892-2.120 Å.

Each Li atom is connected to two corners and two edges of AID₆^{3–} octahedra with in total six D atoms in the coordination sphere



The structure can be described as a distorted bcc structure of AID₆^{3–} units with all tetrahedral sites filled with Li Brinks, Hauback (2003)

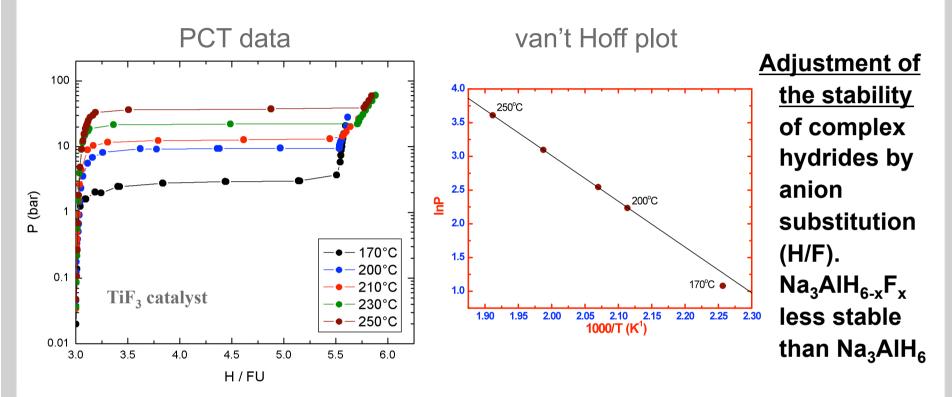


Mixed alanates Na₂LiAID₆ and K₂NaAIH₆

- Synthesized from <u>NaAID₄</u>
 <u>+ LiAID₄</u>
- Synthesized by ball milling <u>KH+NaAIH₄</u>
- Both *Fm-3m*.
- Different size of octahedron AID₆³⁻ and LiD₆⁻
 - K in tetrahedral sites
 - Na in octahedral sites

Na₂LiAID₆

Isostructural to Na₂LiAID₆


K₂NaAIH₆

Theoretical 3.5 wt% Theoretical 2.2 wt%

Brinks, Hauback, Jensen, Zidan (2005) Sørby, Brinks, Fossdal, Thorshaug, Hauback (2006)

TiF₃ in Na₂LiAlH₆: thermal data

• Na₂LiAlH₆: (Diss enthalpy) $\Delta H^0 = 56.4 \text{ kJ/mol H}_2$ (more stable)

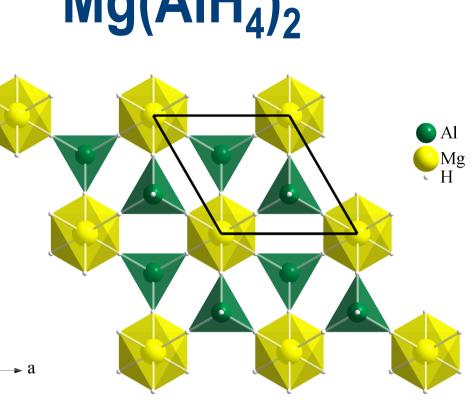
• Na₃AlH₆: $\Delta H^0 = 47$ kJ/mol H₂ (Bogdanovic 2000)

Reversible (2.8 wt%) decomposition, sample rehydrogenated in 1-2 h at 200 °C Na₂LiAlH₆ = 2NaH + LiH + AI + $3/2H_2$ Fossdal, Brinks, Hauback (2005)

$Mg(AIH_4)_2$

- Isolated AlH₄⁻ tetrahedra.
- Mg surrounded by 6 H. •
- MgH₆ octahedra share one . corner with each of six AlH₄⁻ tetrahedra.
- Sheet like structure along • c-axis.
- AI H: 1.561, 1.671 Å. •

- Mg(AIH₄)₂: Solvent-free and fast synthesis
- reversibility not sufficient (kbar pressures for rehydrogenation at RT)


Sheets interconnected by van der Waals forces

Fichtner et al. (2003) Fossdal, Brinks, Fichtner, Hauback (2005)

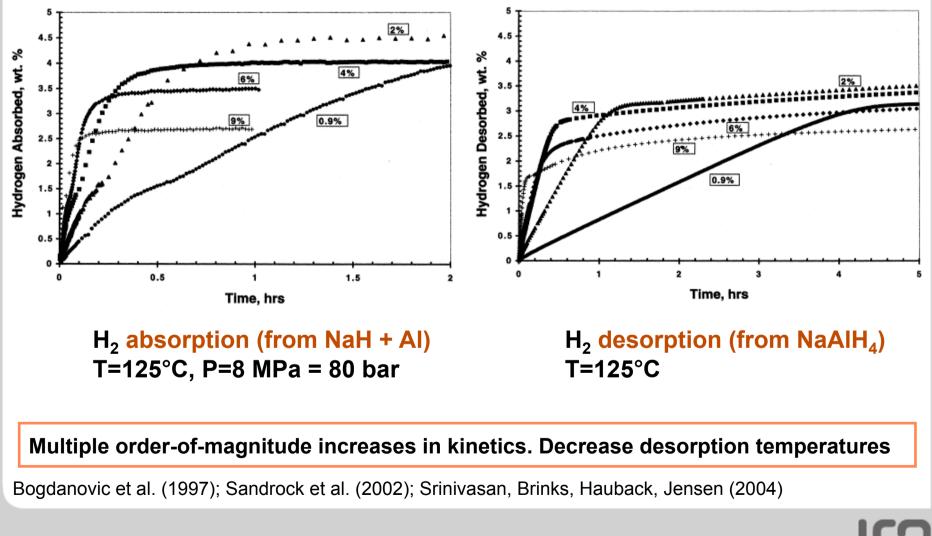
Sabrina Sartori, Summer School, Reykjavik, August 17-21, 2010

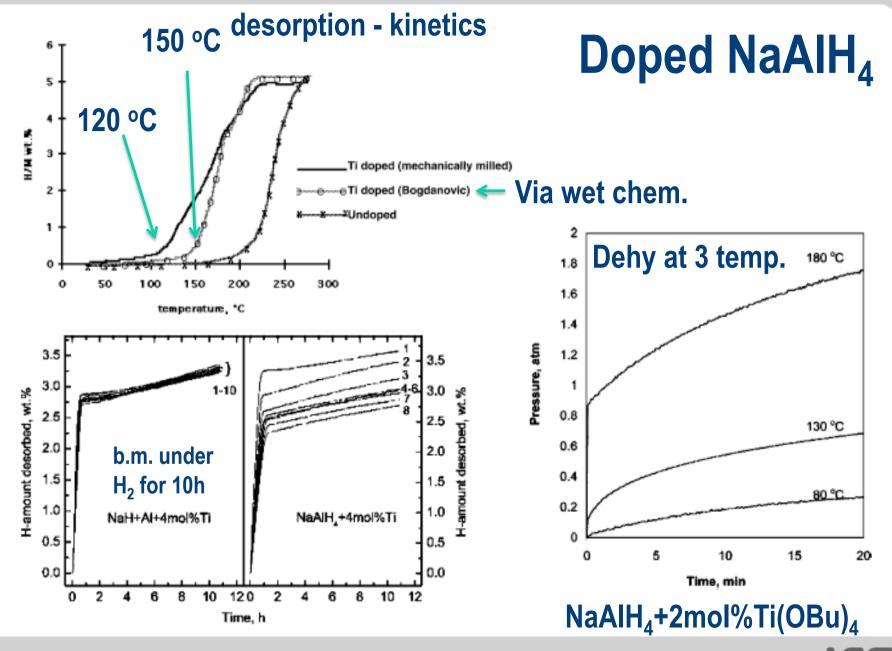
b

Additives in alanates

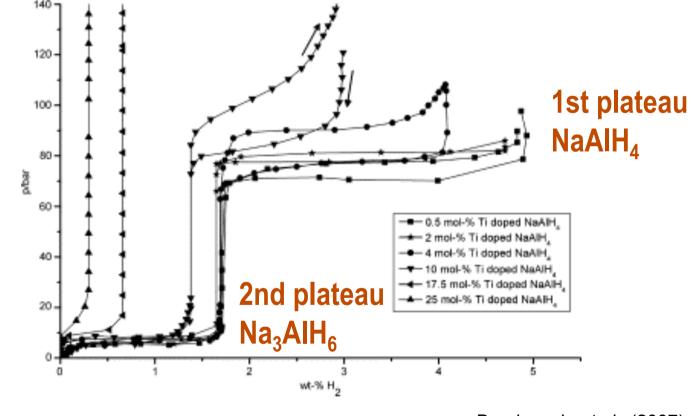
ball milling (Fritsch P6) in Ar, high-pressure vial with pressure/temperature monitoring system (evico magnetics)

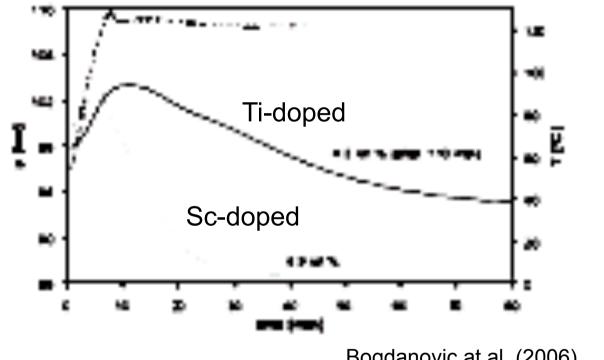
P7 ball milling apparatus




Effect of additives – NaAlH₄ +Ti-compounds

The undoped NaAlH₄ sample at 160 °C delivers H₂ at an almost negligible rate and, even at 200 °C, the H₂ evolution takes 22-24 h until completion. In contrast samples doped with Ti(OBu)₄ is completed at 160 °C within 6-8 h and at 180 and 200 °C within 2-3 and 1 h respectively


Effect of mol % TiCl₃ in NaAlH₄ (ball milled)


PCI at 160 °C for 6 different mol% doping level of Ti

Bogdanovic et al., (2007)

Others additives NaAlH₄

In comparison to TiCl₃-doped NaAlH₄, ScCl₃ and CeCl₃ dopants reduce hydrogenation times by a factor of 2 at high pressure and by a factor of 10 at low pressure.

Bogdanovic at al. (2006)

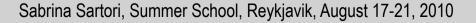
As TiCl₃ is the best Ti-precursor compound (together with Ti-nanoparticles), trichlorides of the first-row transition metals are investigated as alternative dopants. ScCl₃ results highly efficient, both with respect to storage capacity and kinetics.

Borohydrides

Under man at a d farme	Debude and d farm		n capacity	411 1-16	Decomp. temp., °C			
Hydrogenated form	Dehydrogenated form	wt. %	g H₂/L	–∆H, kJ/mol H₂	calc.	obs.		
LiBH ₄	LiH + B	13.9	93	75	402	470		
2 LiBH ₄ + MgH ₂	3 LiH + MgB₂	11.4		46	225	315		
2 LiBH₄ + Al	2 LiH + AlB ₂	8.6			188			
7 LiBH ₄ + 1.75 Mg ₂ Sn + 0.25 Sn	Li ₇ Sn ₂ + 3.5 MgB ₂	6.3		46	184			
NaBH₄	NaH + B	7.9	85.5	90	609	595		
2 NaBH₄ + MgH₂	3 NaH + MgB₂	7.8		62	351			
Be(BH ₄) ₂	Be + 2B	20.8	126	27		123		
Mg(BH ₄) ₂	Mg + 2B	14.9	113	40		323		
Ca(BH ₄) ₂	2/3 CaH ₂ +1/3CaB ₆	9.7	108	75.5		360		
Ca(BH ₄) ₂ + MgH ₂	CaH ₂ + MgB ₂	8.3			159			
Zn(BH ₄) ₂	Zn + 2B*	8.5				85		
Al(BH ₄) ₃	Al + 3B*	16.9	121	6		150		
Sc(BH₄)₃	ScB ₂ +B (?)	13.5				260		
Ti(BH ₄) ₃	TiB ₂ +B*	13.1				25		
Mn(BH ₄) ₂	Mn + 28	9.5						
Zr(BH ₄) ₄	ZrB ₂ + 2B (?)	10.7	108			250		

*Formation of diborane observed.

Synthesis tetrahydroborate


Direct reaction in etheral solvents:

 $2MH + B_2H_6 \longrightarrow MBH_4$

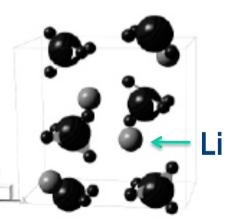
Direct synthesis from the metal, boron and hydrogen: $(550-700 \ ^{\circ}C, \ 30-150 \ ^{bar})$ M + B +2H₂ \longrightarrow MBH₄

Metathesis reaction:

 $MgCl_2 + 2MBH_4 \longrightarrow Mg(BH_4)_2 + 2MCI$

LiBH₄

- Dehyd. $LiBH_4 = LiH + B + 3/2 H_2$ (13.9 wt%)
 - P_{eq} = 1 bar @ 410°C
 - Reversibility at 600 °C and 350 bar
 - Slow kinetics < 600°C (can be improved by additives or by #)
- NaBH₄ and KBH₄ more stable (670/830°C)
- # LiBH₄ "destabilized" by stabilizing the products
 - $LiBH_4 + \frac{1}{2}Mg = LiH + \frac{1}{2}MgB_2 + \frac{3}{2}H_2$ (des. Temp. reduced by 30 K)
 - LiBH₄ + ¹/₂ MgH₂ = LiH + ¹/₂ MgB₂ + 5/2 H₂ (rehyd. at T< 300 °C, 50 bar)
 - Cycled at 330°C
 - TiCl₃,VCl₃ used as catalyst


J.J. Vajo, S.L. Skeith J. Phys. Chem. B 2005

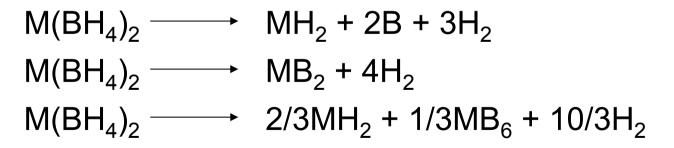
Low- and high-temperature structures of LiBH₄

LiBH₄ AT 293K (20°C)

Orthorhombic symmetry space group: Pnma (#62) a = 7.17858(4) Å b = 4.43686(2) Å c = 6.80321(4) Å Vol: 216.685 Å³, Z = 4

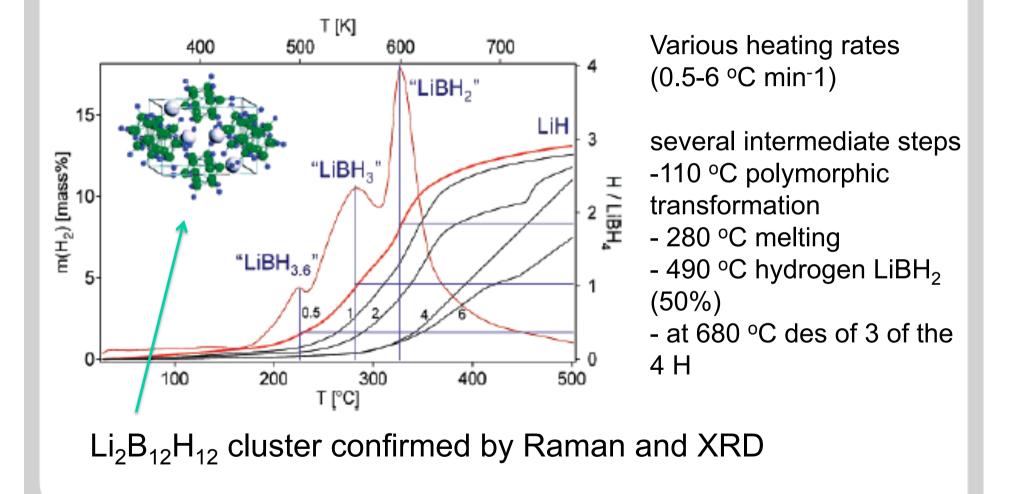
LiBH₄ AT 408K (135°C)

Hexagonal symmetry space group: P6₃mc (#186) a = 4.27631(5) Å b = a c = 6.94844(8) Å Vol: 110.041 Å³, Z = 2



Dehydrogenation reactions

Alkali metal borohydrides:


 $M(BH_4) \longrightarrow MH + B + 3/2H_2$ $A(BH_4) \longrightarrow AB + 2H_2$

Alkaline earth borohydrides:

Thermal desorption from LiBH₄

Borohydrides

Pro: High gravimetric storage density (wt.% H₂)

Cons: Alkali (e.g. LiBH₄): → thermodynamically too stable alkaline earth: → kinetically too slow transition metal: → unstable and/or irreversible

DiboraneB₂H₆ release

??? SOLUTION ???

Make new borohydrides or modify existing ones

С

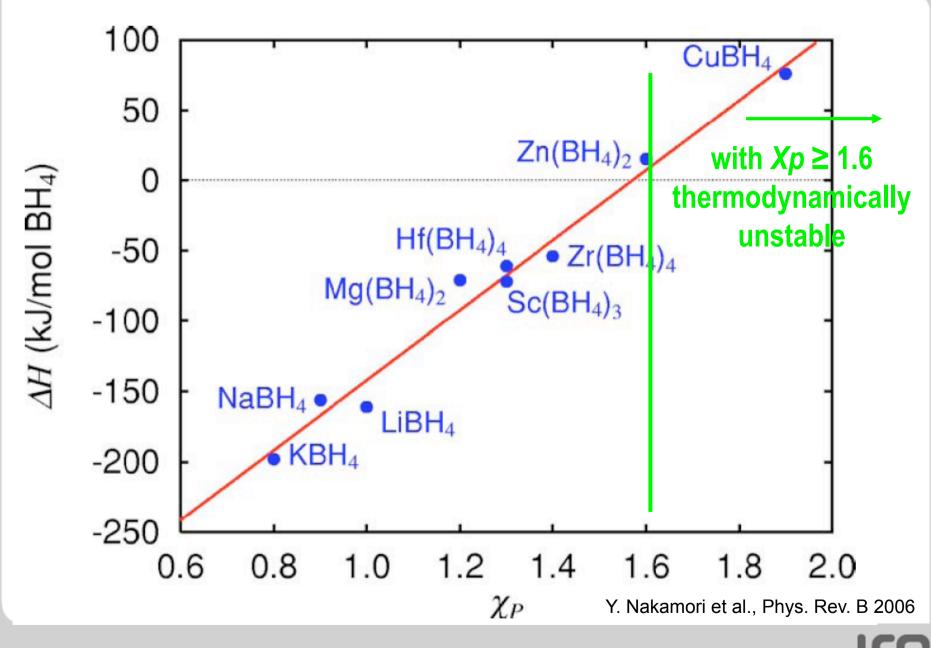
Η

A L L E N

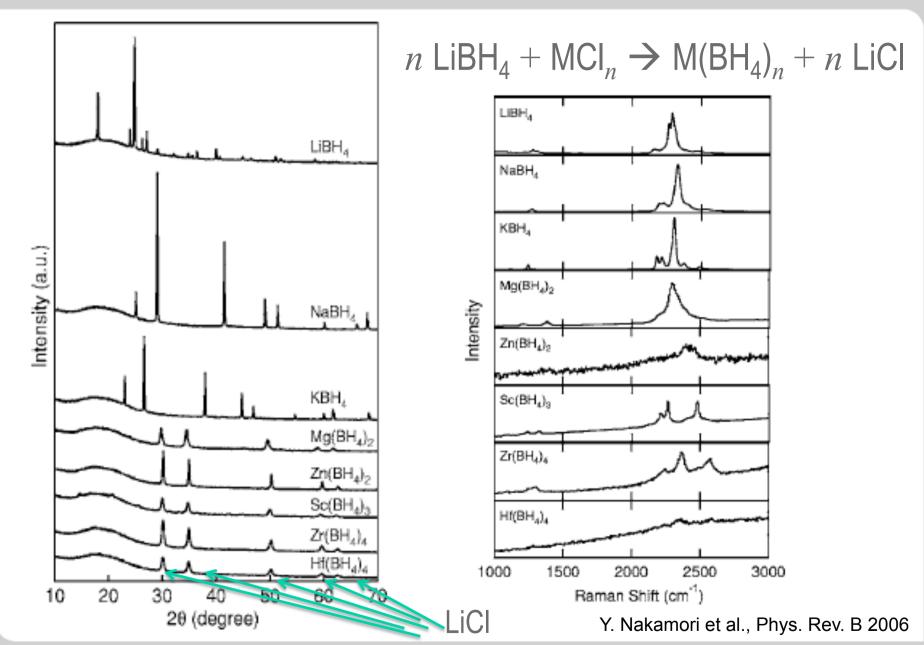
G

Ε

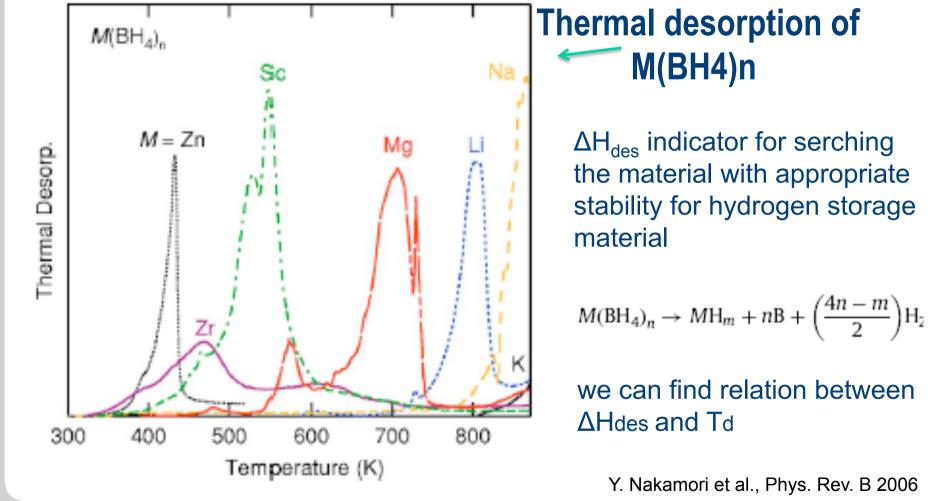
Group Period	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	X	Elements, for which tetrahydroborate (BH ₄) complexes exist															Å		
2	з Li	4 Be												X	Å	X	Å	Å	
3	11 Na	12 Mg												13 Al	X.	X	X	X	
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	X	X	X	X	X
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	×.	X	X	X	X
6	X	\$	*	71 Lu	72 Hf	X	74 W	75 Re	₿	77 Ir	X	79 Au	Å	81 Tl	X	X	X	X	X
7	X	X	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	¹¹⁴ Uuq	115 Uup	116 Uuh	117 Uus	11 Uu
			*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
*Lanthanoids			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb			
**Actinoids		**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 BK	98 Cf	99 ES	100 Fm	101 M d	102 No			



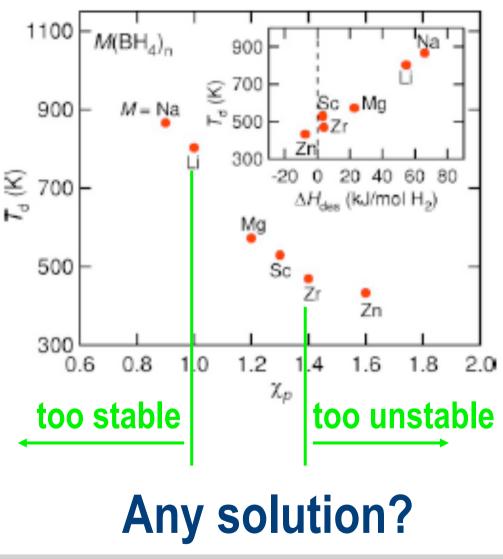
Exercise @ find relation heat of formation borohydrides versus Pauling electronegativities of cations


Predicted heat of formation borohydrides ΔHboro

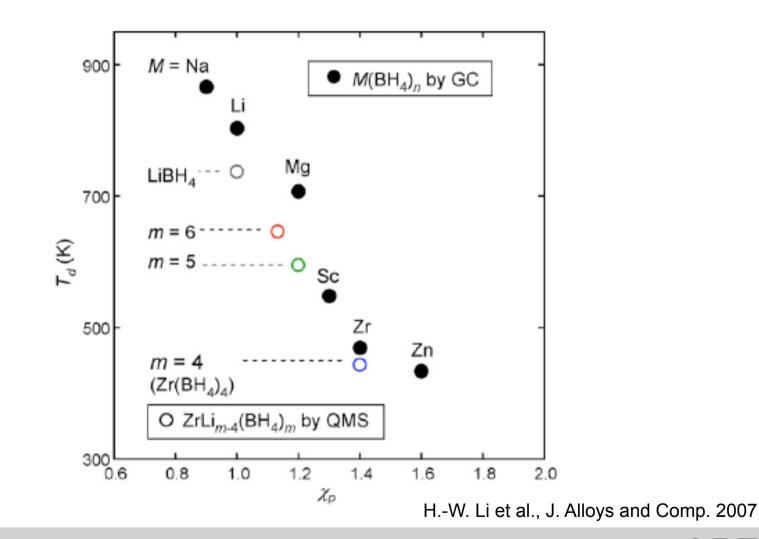
LiBH₄ = - 161 kJ mol⁻¹ BH₄ CuBH₄ = 76 $\frac{1}{n}M + B + 2H_2 \rightarrow \frac{1}{n}M(BH_4),$ NaBH₄ = - 155 Mg(BH₄)₂ = - 71 KBH₄ = - 198 Zr(BH₄)₄ = - 54 Sc(BH₄)₂ = 15 Hf(BH₄)₄ = - 61 Sc(BH₄)₃ = - 72



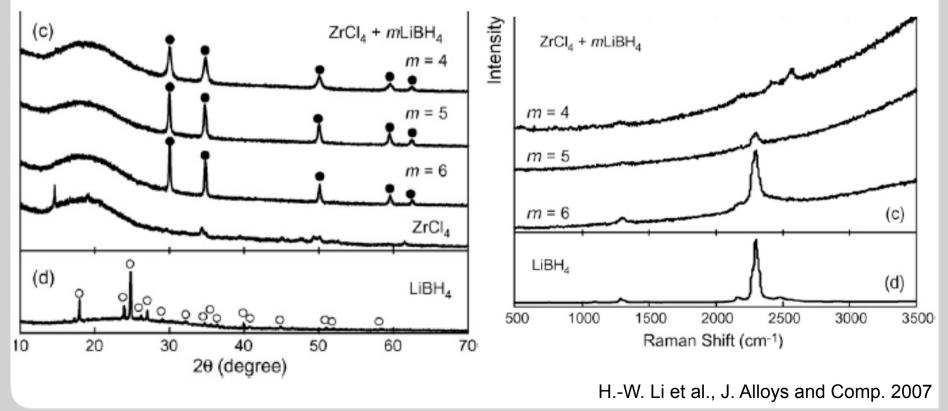
Exercise @ find relation desorption temperature vs Pauling electronegativity

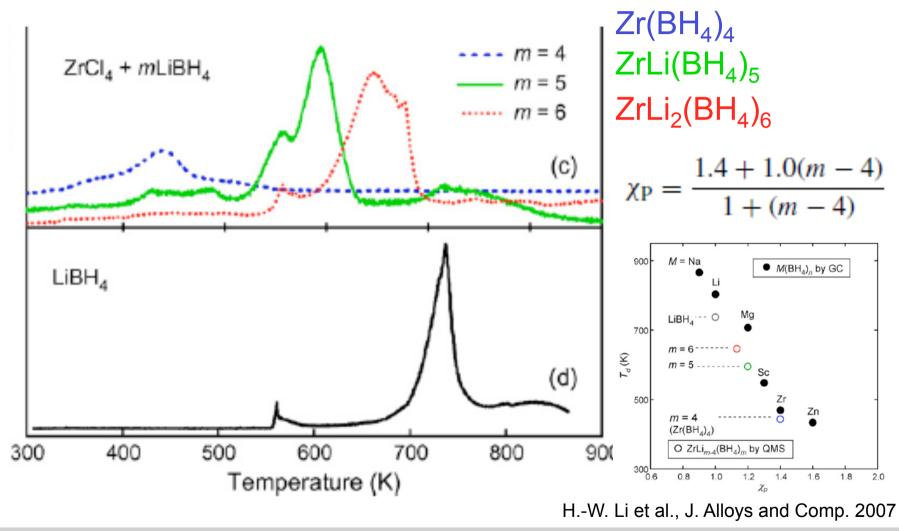


Stability vs. electronegativity


Charge compensation by M^{n+} is a key feature for the stability of $M(BH_4)_n$

and hydrogen desorption temperature decreases with increasing of Pauling electronegativity χ_P of M


Double-cation borohydrides!


Adjustment of thermodynamical stabilities by combination of two metals with differents electronegativities

$MCl_n + mLiBH_4 \rightarrow MLi_{m-n}(BH_4)_m + nLiC$

Thermal desorption

The search for novel metal borohydrides																		
LiK(BH ₄) ₂ , LiMg(BH ₄) ₃																		
hydrogen 1 H Mixed metal borohydrides Anion substitution										^{helium} 2 He								
lithium 3	beryllium 4			Ν	lixed	meta	al boro	ohydr	ides				boron 5 B	carbon 6	nitrogen 7 N	oxygen 8	fluorine 9	4.0026 neon 10
6.941 sodium	Be 9.0122 magnesium	-			iSc(BH				LiZ	n ₂ (BH ₄)	5		D 10.811 aluminium	C 12.011 silicon	14.007 phosphorus	0 15.999 sulfur	18.998 chlorine	Ne 20.180 argon
Na	¹² Mg				laSc(Bl Sc(BH				NaZ NaZ	Zn(BH ₄) Zn ₂ (BH)	3 v µ) ₅		13 A	¹⁴ Si	15 P	16 S	17 Cl	Ar
22.990 potassium 19	24.305 calcium 20	1	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc	26.982 gallium 31	28.086 germanium 32	30.974 arsenic 33	32.065 selenium 34	35.453 bromine 35	39.948 krypton 36
K	Ca		Sc	Ti	V	Cr 51,996	Mn	Fe	Co	Ni	Cu 63.546		Ga 69.723	Ge 72.61	As 74,922	Se 78,96	Br	Kr 83,80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Rb 85.468	Sr 87.62		Y	Zr 91.224	Nb 92.906	Mo 95.94		Ru 101.07	Rh	Pd 106.42	Ag	Cd	In 114.82	Sn 118.71	Sb 121.76	Te 127.60	126.90	Xe 131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
CS 132.91	Ba 137.33	*	Lu 174.97	Hf 178.49	Ta 180.95	W 183.84	Re 186.21	OS 190.23	Ir 192.22	Pt 195.08	Au 196.97	Hg	204.38	Pb 207.2	Bi 208.98	Po	At	Rn
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114		in konstanten :	in strand o	n formalion for
Fr	Ra	* *		Rf	Db	Sg	Bh	Hs	Mt			Uub		Uuq				
22.5	(Hummelshøj et al., 2008 CAMD Summer School, TDU)																	
*Lant	hanide	series	lanthanum 57	cerium 58	59 Pr	60 Nd	Promethium 61 Pm	samarium 62	europium 63 Eu	gadolinium 64	terbium 65	dysprosium 66	67	^{erbium} 68 Er	69	ytterbium 70 Yb		
			La 138.91 actinium	Ce 140.12 thorium	140.91 protactinium	144.24 uranium	[145] neptunium	Sm 150.36 plutonium	151.96 americium	Gd 157.25 curium	Tb 158.93 berkelium	Dy 162.50 californium	Ho 164.93 einsteinium	167.26 fermium	168.93 mendelevium	173.04 nobelium		
* * Ac	tinide s	eries	89	90 Th	91 Pa	92 U	03	0.4	05	96	07	0.9	00	100 Fm	101	102		
			Ac	232.04	Pa 231.04	238.03	[237]	FU [244]	A M [243]	[247]	DK [247]	[251]	ES [252]	[257]	[258]	[259]]	
																	IF	9

Local Coordination Screening (LCS) approach

CAMD 2008 Summer School Center for Atomic Scale Materials Design Technical University of Denmark, Kongens Lyngby, Denmark

Search for novel metal borohydrides

Systems with alloy composition

 $M_1M_2(BH_4)_{2-5}$ \longrightarrow M1 = alkali metal M2 = alkali, alkaline earth or 3d/4d transition metal

22 stable alloys with promising decomposition energies Hummelshøj, J. Chem. Phys. 131 (2009)

The Approach

Configuration space and template structures → Initial screening

exception: AI(BH₄)₃

literature search, structures reported \longrightarrow templates structures with tetrahedral (**T**) - for the smallest Li and Mg - and octahedral (**O**) - for the larger Na, K and Ca - **coordination of BH**₄ groups **to** the **metal atoms** were used For each alloy composition, 4 different template structures were used for the coordination of the BH₄:

M1	M2	M1	M2	M1	M2	M1	M2
Т	Т	0	0	Т	0	0	Т

Coordination polyhedra with either corner or edge-sharing or combination of both

Unit cell containing only ONE formula unit

Hummelshøj, J. Chem. Phys. 131 (2009)

Assessment of the stabilities for the 757 structures

Two selection criteria were used:

Phase separation into binary components:

 $\Delta E_{\text{alloy}} = E_{\text{LiSc}(\text{BH}_4)_4} - (E_{\text{LiBH}_4} + E_{\text{Sc}(\text{BH}_4)_3})$

Decomposition:

Generic decomposition pathway, where the alloys decompose into alkaliand alkaline earth hydrides, transition metals, boron and hydrogen

 $\Delta E_{\text{decomp}} = E_{\text{LiSc}(\text{BH}_4)_4} - (E_{\text{LiH}} + E_{\text{Sc}} + 4E_{\text{B}} + 7.5E_{\text{H}_2})$

stability range used to select:

 $\Delta E_{\text{alloy}} \leq 0.0 \text{ eV/f.u.}$ and $\Delta E_{\text{decomp}} \in \{-0.5; 0.0\} \sim -0.2 \text{ eV/H}_2$ TARGET

 $\Delta E_{alloy} \leq 0.2 \text{ eV/f.u.}$ and/or $\Delta E_{decomp} \leq 0.2 \text{ eV/H}_2$ (alloys with only small instabilities) Hummelshøj, J. Chem. Phys. 131 (2009)

Calculation Procedure

Step 1:

Population of one of the four template structures with two supplied metal atoms followed by introduction of the necessary (BH4⁻) groups. The ionic radii of the metals were taken from the 24 binary reference borohydrides; for BH4⁻, the ionic radius was adjusted according to the coordination of the group to the metal ion (face,edge,corner)

INITIAL GUESS

Iteration process

- (I) Relaxation of the Hydrogen positions
- (II) Contraction/expansion of unit cell volume, keeping B-H distance fixed in order to find the optimum unit cell volume
- (III) Relaxation of Hydrogen positions in optimized unit cell

Step 2:

After optimization of (M1,M2) templates, the most stable structure was relaxed without constraints in a two-stage process:

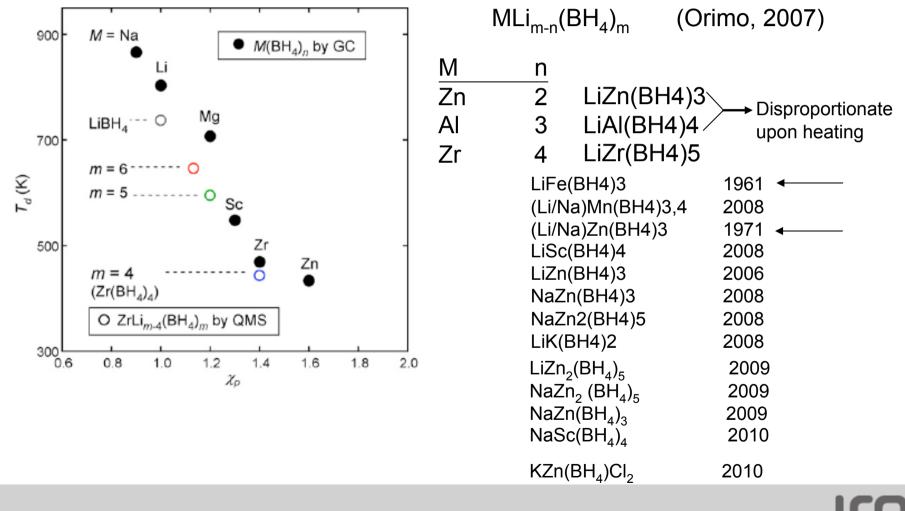
Relax atomic positions while keeping unit cell volume fixed Relax unit cell volume while keeping atomic positions fixed Hummelshøj, J. Chem. Phys. 131 (2009)

Results

Most of the alloys are stable against decomposition BUT the majority is found to be unstable against separation into the binary components

The stable alloys ($\Delta E_{alloy} \leq 0.0 \text{ eV/f.u.}$) cluster around certain average electronegativities of 1.3-1.4 and 1.6. The cluster around 1.3-1.4 is highly promising and it contains alloys of the following elements: Mn, (Nb),Al, Zn and Fe

THE LIST							
Composition	wt. %	ΔE alloy	$\Delta m{E}$ decomp				
		[eV/f.u.]	[eV/H_]				
LiNa(BH4)2	13.5	-0.020	-0.581				
KZn(BH4)3	8.1	-0.349	-0.423				
KAI(BH4)4	12.9	-0.138	-0.416				
KCd(BH4)3	6.2	-0.005	-0.352				
NaZn(BH4)3	9.1	-0.358	-0.344				
LiAI(BH4)4	17.3	-0.391	-0.311				
KFe(BH4)3	8.7	-0.116	-0.282				
LiZn(BH4)3	10.4	-0.362	-0.243				
NaFe(BH4)3	9.8	-0.141	-0.206				
KMn(BH4)4	10.5	-0.148	-0.174				
NaNb(BH4)4	9.2	-0.128	-0.165				
KCo(BH4)3	8.5	-0.089	-0.161				
NaMn(BH4)4	11.7	-0.284	-0.131				
KNi(BH4)3	8.5	-0.120	-0.116				
LiFe(BH4)3	11.3	-0.141	-0.104				
LiNb(BH4)4	10.1	-0.194	-0.097				
NaCo(BH4)3	9.6	-0.143	-0.090				
KRh(BH4)4	8.0	-0.058	-0.079				
LiMn(BH4)4	13.3	-0.358	-0.063				
NaNi(BH4)3	9.6	-0.164	-0.043				
NaRh(BH4)4	8.7	-0.033	-0.016				



and $\Delta E_{decomp} < 0.0 \text{ eV/H2}$							
Composition	wt. %	$\Delta oldsymbol{\mathcal{E}}$ alloy	$\Delta oldsymbol{\mathcal{E}}$ decomp				
		[eV/f.u.]	$[eV/H_2]$				
K(Na(BH4)2	8.8	0.095	-0.825				
NaY(BH4)4	9.4	0.115	-0.675				
NaCa(BH4)3	11.2	0.129	-0.645				
LiY(BH4)4	10.4	0.033	-0.609				
LiCa(BH4)3	13.2	0.052	-0.556				
LiSc(BH4)4	14.5	0.143	-0.534				
NaCd(BH4)3	6.7	0.003	-0.271				
KNb(BH4)4	8.4	0.016	-0.207				
NaV(BH4)4	12.1	0.076	-0.188				
NaAg(BH4)2	5.0	0.193	-0.177				
LiCd(BH4)3	7.4	0.102	-0.152				
KCr(BH4)4	10.7	0.199	-0.136				
LiV(BH4)4	13.8	0.061	-0.113				
NaCr(BH4)4	12.0	0.050	-0.095				
KPd(BH4)3	6.4	0.047	-0.095				
KMo(BH4)4	8.3	0.185	-0.079				
KRu(BH4)3	6.5	0.168	-0.061				
NaMo(BH4)4	9.0	0.056	-0.035				
LiCr(BH4)4	13.6	0.029	-0.021				
NaPd(BH4)3	7.0	0.052	-0.014				
LiCo(BH4)3	11.0	-0.100	0.019				
LiNi(BH4)3	11.0	-0.104	0.069				

Further candidates with 0 < ΔE_{alloy} < 0.2 eV/f.u. and ΔE_{decomp} < 0.0 eV/H2

Double-Cation metal borohydrides

Aim

$m \operatorname{NaBH}_4 + \operatorname{TMCI}_n \xrightarrow{} \operatorname{Na}_{m-n} \operatorname{TM}(\operatorname{BH}_4)_m + n \operatorname{NaCI}$

TM= Cd, Ti, V, Cu, Ni

Finding Na(BH₄)_{1-x}Cl_x

• Synthesis: ball

Table 1 Refined unit cell parameters for NaCl-type phases and compositions estimated from Vegard's law

Sample	Unit cell parameter for NaCl-type phase (Å)	Composition from Vegards law, Na(BH ₄) _{1-x} Cl _x	milling in Ar, 3h, 100:1
$\begin{array}{l} 3 \operatorname{NaBH_4} + \operatorname{CuCl_2} \\ 3 \operatorname{NaBH_4} + \operatorname{NiCl_2} \\ 3 \operatorname{NaBH_4} + \operatorname{TiCl_2} \\ 3 \operatorname{NaBH_4} + \operatorname{CdCl_2} \\ 4 \operatorname{NaBH_4} + \operatorname{RhCl_3} \end{array}$	5.8103(2) 5.80108(9) 5.7851(2) 5.7729(7) 5.7281(5)	x = 0.65 x = 0.66 x = 0.69 x = 0.72 x = 0.80	

Conclusion

>At present, no solid storage material fulfils the major targets for automotive applications;

>Up to now, storage densities of ~2 wt.% are achievable on system level with complex hydrides on alanate basis (capacity of the material 4 wt%);

Further research for novel storage materials with improved storage densities, kinetics and thermodynamic behaviour as well as for advanced system components, e.g. heat exchanger, is still required;

➢For on-board storage in fuel -cell-driven vehicles, the hydrogen in the alanates needs to be reversibly charged and discharged;

To make the material reversible under practical conditions, it has to be added with a catalyst. Still not understood the effect of additives.

