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Lecture 1. The rare event problem and transition state theory (TST)

- Transition states, dividing surfaces and reaction coordinates

- Recrossing corrections and the variational principle

- The WKE two step procedure for finding the mechanism and 'exact' rate
- Optimal hyperplanar TST

Lecture 2. Harmonic TST & minimum energy path calculations
- The harmonic approximation to TST (HTST)

- Methods for finding minimum energy paths, NEB and CI-NEB
- Variants and improvements on the NEB method

- Applications

Lecture 3. MMF method and adaptive kinetic Monte Carlo (AKMC)

- Methods for finding saddle points when only initial state is known, MMF
- Long time scale simulations using AKMC

- Coarse graining, recycling, distributed computing

- Applications
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Rare Event Summer School, IISc Bangalore 2019

Lecture notes:

Notes for lecture 1
Notes for lecture 2
Notes for lecture 3

Problem set 1 (calculations by hand):

Problem set 1 for Sunday afternoon

Directions for setting up EON:

Instructions for installing EON

Problem set 2 (calculations using EON on your laptop):

Problem set 2 for Sunday afternoon

Files needed:

Configuration file for a clean Al(100) slab
Script for visualizing a minimum energy path found using NEB
Script for doing AKMC calculations
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Goal

Characterize transitions that occur due to thermal energy in the system,
for example diffusion events, defect formation/migration, chemical reactions ...

Want to be able to:
1. predict the mechanism and rate of transitions given information about
the atomic structure and interaction between the atoms (such as DFT).

or
2. interpret measurements of rates in terms of the atomic interactions

and transition mechanism, typically Arrhenius plots

Example 1 Example 2
In k N In k

1/T 1/T

_ —FE./kpT
k (T> — ve a( Crossover in mechanism
v: pre-exponential factor

E, : activation energy



Conventional approach to atomic simulations

Born-Oppenheimer (adiabatic) approximation:

1.

Solve for the electronic degrees of freedom while
keeping the nuclei fixed at coordinates Xx.
Usually done with Kohn-Sham density functional theory (DFT)
PBE_ ...

using approximate functionals such as PBE, RPBE, PBE
Get energy surface, V(x).

sol?

Solve for the motion
of the nuclei. Usually
with the classical
approximation, F=ma=m d2x/dt2,
sometimes using harmonic

approximation (----) 1
V(X) ~ ko (X-X;,)2 /2 Perfect crystal,

Example:
Defective crystal,
local minimum
Example:

min

global minimum X




In principle, straight forward to simulate time evolution

Classical dynamics, (‘molecular dynamics’, MD)
For all but the lightest atoms and temperature well below room temperature,

a classical description of the motion of the atoms is accurate enough.

Solve Newton eqns. of motion, F=ma, numerically by discretizing time

| | | | | | | | | | | | | | | | | | S
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time
step size

Verlet algorithm (using simple finite difference approximation of acceleration):

x(t+h) = 2x(t) — x(t-h) + h2 F(x(t))/m

where F is the force acting on the atom, F,=-V 7;V( gj)
and m is the mass of atom

simple enough ...



But, a direct dynamical simulation of a thermally
activated process is In general not feasible

Time scale problem:

Most interesting transitions are rare events (i.e., much slower than vibrations).

A transition with an energy barrier of 0.5 eV and a 1000/s
typical pre-exponential factor occurs 1000 times ———
per second at room temperature

— fast on laboratory scale!

A video of a direct classical dynamics simulation 0.5 oV
where each vibration spans a second in the video .
would go on for more than 100 years in between

such reactive events — slow on atomic scale!

Typically there 1s a clear separation of time scales,
and a statistical approach can be used



Systems of interest typically involve many degrees of freedom!

Need to take a long stroll on a 3N-
dimensional potential energy surface,
V(X,.X,, ... Xy), Where N is the number of

atoms.

Given some 1nitial state, R,
want to find the rate of transitions
and possible final states, P, P, ...

Maxima: filled circles Also, want to find the mechanism of the
First order saddle points: x transitions (how do the atoms move during a
Energy Ridge: dotted line transition?).

Solid straight lines: go through x



Note:
Dangerous to simply heat up the system to speed up the transition ...

} High
Barrier

Low
Barrier

Rate

1/T

A crossover from one mechanism to another can occur as the temperature 1s increased.

Example: Ditfusion of H,O admolecule on an ice surface

Vs.
melting of the ice crystal ...



Transition State Theory (TST)

Also known as “Absolute Rate Theory” or “Activated Complex Theory”

Early pioneers:
Pelzer & Wigner, Z. Phys. Chem. B1S, 445 (1932);
Wigner, Trans. Faraday Soc. 34, 29, (1937).
Eyring, J. Chem. Phys. 3, 105 (1935).
Evans & Polyani, Trans. Faraday Soc. 31, 857 (1935).

TST is a method for estimating the rate of slow transitions between
states of a system due to thermal energy:
1. Gives an approximation to the rate constant, but
2. it possible to later calculate a correction to the TST estimate
and obtain the exact rate using just short time scale simulations.



Transition State Theory (Wigner, Eyring 1930s)

Identify a 3N-1 dimensional dividing surface, that represents a bottleneck for
going from the initial to a final state:

;?;:leal The bottleneck can
be due to an energy
barrier and/or
entropy barrier

Im!
l’ l’
3N-1 dimensional 11 o
i ‘ll Final

dividing surface, I
Add thickness o to define

Transition State (TS) /

W~/

!/,
7o State




Basic Assumptions of Transition State Theory

A W N =

Note:

Born-Oppenheimer approximation (adiabatic)
Classical dynamics of nuclei (can be extended to guantum systems ...)
Boltzmann distribution in initial state (OK if slow enough, kT < AE/S5 )

No recrossings of TS, (often weakest, but can be fixed using short trajectories).
That is, if a trajectory reaches the TS

and 1s heading away from the initial state,
it will proceed to a product state and stay
there for an extended time.

The transition state should enclose
the initial state to separate it from
all possible product states.

TST estimates the lifetime, T, of
the given initial state without
knowledge of the product state(s).

Can run short timescale dynamics
to find product state(s).




Basic Assumptions of Transition State Theory

o=

Born-Oppenheimer approximation (adiabatic)
Classical dynamics of nuclel (can be extended to quantum systems ...)
Boltzmann distribution in initial state (OK if slow enough, kT < AE/S)

No recrossings of TS, (often weakest, but can be fixed using short trajectories).
That 1s, if a trajectory reaches the TS

and is heading away from the initial state,
it will proceed to a product state and stay
there for an extended time.

Can run short time scale dynamic al
trajectories starting at TS to take
recrossings into account -
dynamical corrections

kexact = ¢ KTST where 0 <k <1
as well as to find the product state.




Simple derivation of the TST estimate of a rate constant

First, review classical statistical statistical mechanics:

1
Total energy of a conservative system:  FE(x,v) = Egip + Epor = Z §mivi2 + V(x)
Boltzmann distribution: Probability that (x,v) is in the range
{x,x+dx} and {v,v+dv} is:
P(z,v)dxdv = Ae_E(w’v)/kBTdajdv (A is a normalization constant)

This factorizes into: —E m,v; 2 k,T

A e 2 dVA e~V () ks TdX
P, (V) p.(x) Inltlal >
Given that the system is initially somewhere in R: state .
1"
A= % 1/k T "." S
f e (X) B dx
The probability of being in some subspace, S, of R is: m
state
f V(X)/ k Tm L

Z S configuration integrals
Fs= f V(x)/kTOx Zs -



Simple derivation of the TST estimate of a rate constant (cont.)

kTST= (probability of getting to TS) - (flux out of TS)

Choose the dividing surface to be a hyperplane
ax+b=0 particularly simple,
(but, may not be good enough ...) R

thickness o

vV >

O

. o
------

fe—V(x)/kBde >
R

Maxwell: foo —;Mlvz / kg Td/ -2 u,vz/k Tov _1MV2 / kg ToV
v,.e L e ' f VJ_ il kT
V| >= B _ |-=B
_fm 2 kT Ezu,vz/kT V kg T 2mu
f OVJ_ e ! f e OVJ_
So, kTST — kBT Zj; . 3N-1 dimensional

2nuy ZR

-.....] dimensional




Asimple example:  Effusion of gas atoms through a small hole

Use k,TST _ kBT Z:!: where ZS — / G—V(x)/kBTdﬂj
27T,LLJ_ ZR S

Notation: V is volume of the box, A 1s area of the hole

N Tne V7o A

S/
o So: kTST _ kBT A
= o/ 2nmV

o /O ideal gas: PV = NkBT
e TST __ PA
. gives: k —
No energy barrier here, \/ IYmrmk B TN
just an entropic bottle neck
PA
Rate of effusion from TST: r—= NN kTS I \/
2mmk B T

Same result as kinetic theory of gases,

TST is exact in this case. No recrossings in the hole.



A more general choice of dividing surface

“The derivation can be made to look slightly less juvenile by introducing an obscure

notation at this point” (P. Pechukas, in Dynamics of
Molecular Collisions, Part B, edited by W. H. Miller (Vol. 2 of Modern Theoretical
Chemistry) (Plenum, New York, 1976), Chap.6.)

Define the dividing surface subspace as the points g that satisfy
normal to

f(q) = () dividing

surface

then the TST rate constant can be written as /

KTST _ o fdpque—H(p,q)/k T(S[f(q)](@”((v p @[O'f

aq m oq
Ensures g )\ N
point is at normal ensures
dividing component system is
here O[] 1s the Heavyside function surface of velocity heading
towards

P at thi
QF? fopfaq -H(p.q)/ kg T atthis

point



Variational principle for optimizing the choice of transition state

The neglect of recrossings, approximation 4, results in an overestimate of the
transition rate in TST: [ KTST > Kk ]

One recrossing: . Should not contribute to rate,
\ but counts as one reactive
R 1 P event in TST.

Two recrossings: ~ Should only count once, but

\ gives two reactive events in
R I P TST estimate.

The optimal TS is the one that gives smallest estimate for KTST

This gives a variational principle that can be used to find
the optimal choice of transition state.

(Keck, J. Chem. Phys.32, 1035 (1960))



Both good and bad choices for the transition state can work,
in principle ....

—

Less than optimal ~ Optimal TS
TS dividing surface.  dividing surface.
Many recrossings,  Few recrossings,
K<<l, need many  k~1, only need a few
short trajectories to  short trajectories to identify

identify product  product states and correct kTST
states and correct kTST



Use Wigner-Keck-Eyring (WKE) to generate reactive trajectories
with much smaller computational effort than direct dynamics

1. Find optimized transition state dividing surface using [KTST > Kexact

For hyperplane KTST _ kB_Tﬁ where Zs :/e—V(x)/kBTdX
2wy Zr S

2. Run (short time) dynamics trajectories from the transition state

to find product states and dynamical correction,  kexact =1 kTST

Note: Step 2 is hard unless a good job has been done
in 1, need to optimize the dividing surface.

WKE procedure generates (pseudo) trajectories over long time scale

dynamical trajectory

time | |




Free energy of hyperplanes

Rewrite the ratio of configuration integrals in terms of a free energy difference, AF,

but then need to insert configuration integral for hyperplane in reactant region, Zi to

get the units right

yrst_ | keT Zy _ [keT Znm, Z
271'/“_ ZR 27TMJ_ ZR ZHR

_ kgT ZHRe;]?IF"‘
2, 2R

Given some path between the
R and P minima, I'(s), construct a
progression of hyperplanes.

Use thermodynamic integration to evaluate
the free energy difference between initial
hyperplane and subsequent hyperplanes

1
AF:/ dsa—F
0 aS

R (

S=

s=1

max AF

A progression of hyperplanes
from R to P.

The optimal TS dividing surface
corresponds to maximum free

energy, i



Evaluate free energy change from reversible work

Sample the atomic coordinates and the forces within a hyperplane using Monte Carlo or

Classical Dynamics (zero force comp. along the normal).

Obtain the average force f,, = f(I‘S

normal to the hyperplane and the ‘torque’ with respect to the point
of intersection between the plane and the path, R; = (rg — T'g) -

The change in free energy is a sum of a

)'ﬁs

ding

dé

contribution from the translation

and a contribution from the rotation of the hyperplane

i dé
/0 < “ds

At each point along the path

(for a given value of s), the orientation
of the hyperplane should be adjusted to
maximize the free energy

(rotate against the torque). Orientational
optimization without extra computations!

) >¢ ds’

s=0
(Mills, Jonsson, Schenter: Surf. Sci. 324, 305 (1995))

s=1



Implementation of variationally optimized TST using hyperplane

For hyperplanar dividing surface:

Want to find location and orientation that gives
maximum free energy of the system when confined
to the hyperplane.

>~-1
Starting at the reactant, the free energy increase, AF,

when moving towards product can be found by
integrating the reversible work of translating and
rotating the hyperplane

- 2

-3

R
L RW-TST _ S UL > Q” o—AF/kpT N
= gn
® do

AF = — f.(1—R{—) > ds’
0< ( tdS)> S

(Johannesson and Jonsson, JCP 2001 )



Need to be careful to optimize orientation as well as location of the
TS dividing surface, else the free energy barrier can be underestimated.

/ /
1 ‘ ‘ -7 Not good to just pick some reaction
ZR / " coordinate and then average with
| // 'Ii , respect to other degrees of freedom.
S |
oW V \ \!
‘/l \\dhl } T
'//‘1 /) \ AF orientationally optimized
/ ’ / »
B 2 \ fixed orientation
-3 | Reaction coordinate
4

In a 3N-dimensional system, the optimization of the location of a dividing
surface 1s a one-dimensional optimization, the optimization of orientation
represents 3N-1 degrees of freedom — it 1s essential to optimize orientation!
Orientational optimization can reveal the transition mechanism.



Important to find rather than to
specify a priori the mechanism of transitions

, : : Al adatom s
Classic example of a surprise mechanism: EA=0.37¢eV

initiall
Al adatom diffusion on Al(100) Y \ ~~ e 0

e

(see: Feibelman, Phys. Rev. Lett. 65, 729 (1990)). 00

Al(100) 0 N 4
surface ’ ;
with

Al adatom

EA=0.23¢eV

O"Q

@

Another example of a surprise (explains re-entrant layer-by-layer growth):
Pt adatom descent from atop islands on Pt(111) near but not at kinks.
(see: Jonsson, Annual Review of Physical Chemistry 51, 623 (2000))

It 1s important not to impose a preconceived notion of the mechanism of a transition,
rather learn about the mechanism from the calculation!



Adatom diffusion on A1(100)

By rotational optimization of the hyperplane,
the optimal mechanism can be found, even if the
calculation is started with the wrong assumption.

without

0.3 mtation
Hop —

0.2 Hop _» Exchange
with rotation

R TTIWETss

PP L R

................

v/
Exchange — ;

Exchange

P

0 0.2 0.4 0.6 0.8 1

Reaction coordinate
(G. Johannesson & HJ, JCP 2001)

Projection onto 2-D



Another example: H, adsorption/desorption from Cu(110)

PES: Empirical potential of the EAM type where the H-Cu
interaction is fitted to the LEPS potential of Depristo et al.

Evaluate the reversible work required
to shift the system from reactants
towards products to get AF

If H, comes from a gas with
temperature equal to that of the surface, then TST applies!



Energy difference (eV)

1.4

1.2 |
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|
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MEP Potential ——

Purely classical,
quantum effects not included here

100K -
JOOK ©
600K =~

2H-Clu

1 2 3 4 5
Reaction coordinate (Angstroms)



Sampling of TS
hyperplane for
dissociative adsorption
at T=600 K

Three snapshots from
thermal sampling of TS
(which includes 5 degrees of
freedom).

Only one of the 6 dof. of the
H, molecule is constrained.




Challenge:

full dividing surface

1mize a

Parametrize and opt

Need to enclose the initial state.

lllll

One possibility: Use a mosaic of hyperplanar

segments, and optimize orientation and

placement of each one (as well as the number of

segments).
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Ongoing quest ...



Correct or incorrect? (talk to your neighbor)

The transition state is a first order saddle point.

Transition state theory estimate of the rate constant 1s most
accurate 1f there 1s a dip in the energy surface near the top
of the potential energy curve (see picture in Atkins' P-Chem book).

Transition state theory can be used to estimate the rate constant
only 1if the reaction mechanism 1s known.

Transition state theory assumes there 1s strong coupling to the heat
bath so that a Boltzmann distribution of energy in each degree of
freedom 1s maintained as the system climbs up the potential
energy surface.



