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Density functional theory (DFT) is a (in principle exact) theory of electronic structure, based on the electrc
density distributiom(r), instead of the many-electron wave functMfri,ro,rs,...). Having been widely used

for over 30 years by physicists working on the electronic structure of solids, surfaces, defects, etc., it |
more recently also become popular with theoretical and computational chemists. The present article is direc
at the chemical community. It aims to convey the basic concepts and breadth of applications: the curr
status and trends of approximation methods (local density and generalized gradient approximations, hyl
methods) and the new light which DFT has been shedding on important concepts like electronegativi
hardness, and chemical reactivity index.

1. Introduction and Basics developed, there is no known systematic way to achieve an
arbitrarily high level of accuracy.

We shall now sketch the fundamentals of DFT. For details
we refer to refs 1 and 2. We limit ourselves here to the simplest
class of systemd\ nonrelativistic, interacting electrons in a
nonmagnetic state with Hamiltonian

Density functional theory (DFT) is primarily a theory of
electronic ground state structure, couched in terms of the
electronic density distribution(r). Since its birth, about three
decades ago, it has become increasingly useful for the under-
standing and calculation of the ground state densifs), and
energy, E, of molecules, clusters, and solidany system H=T+V+U (1.1)
consisting of nuclei and electronwvith or without applied static
perturbations. Itis an alternative, and complementary, approachwhere (in atomic units)
to the traditional methods of quantum chemistry which are
couched in terms of the many-electron wave function T=— }zv_z, V= zu(r_)

W(ry,...rn). Both Thomas-Fermi and HartreeFock—Slater 24 7 )

methods can be regarded as ancestors of modern DFT. But

whereas those theories are intrinsically approximate, modern 1 1

DFT is in principle exact. U= EZ _ (1.2)
Over the past 30 years, density functional theory has become L

the physicists’ method of choice for electronic structures of Notice that, for mathematical reasons, we are considering a
solids. More recently chemists also use it extensively, by itself broad class of Hamiltonians with electrons moving in an

or 10|r_1ed to o_ther methods. Th'§ article is aimed primarily at arbitrary external potentiad(r), not only the physically relevant
chemists. It is necessarily very incomplete, and we apologize Coulomb potentials due to point nuclei

for somewhat arbitrary choices, influenced by the authors’ own The starting point of DFT is the rigorous, simple lemma of

interests. i Hohenberg and Kohn (HK):The specification of the ground
Let us state right away the strengths and weaknesses of DFT giate densityn(r), determines the external potentiét) uniquely
when compared with traditional methods. The latter are (o within an additive constart),

ordinarily preferable when dealing with few-atom systeig,
< 5—10 and when high accuracy is required. DFT is preferable n(r) — »(r) (unique) (1.3)
whenNg 2 5—10 and a more modest accuracy is acceptable.
Apart from this quantitative complementarity, DFT and tradi- Sincen(r) also determine$l by integration, it determines the
tional methods are also conceptually complementary. The chieffull Hamiltonian H and thence, implicitly,all properties
building blocks of traditional methods are single-electron determined byH. Examples are the fuli-particle ground state
orbitals,y;, and many-electron wave function¥, constructed ~ Wave function®(ry,...rv), the electrical polarizability, theth
from them. The chief element of DFT is the electron density €xcitation energy, vibrational force constants, and potential
n(r) and, in the Kohr-Sham version (below), the fictitious ~ energy surfaces for chemical reactions. o
single-particle Ol'bita|Sq0]!(S. With the help_ of this lemma, a m|n|mal pnnmple for the
Finally, let us state an intrinsic limitation of “pure” DFT. In  €nergy as functional of(r) can be derived. For givenu(r)

traditional methods, an arbitrary level of accuracy can in ON€ defines the following energy functional ufr):

principle be obtained for any system, given a sufficiently

powerful computer. DFT depends on the adequate knowledge E,n[n(] = [v(r) n(r) dr + F[n(r)] (1.4)
of the exchange correlation energy functioBa{n(r)] (below),

and although more and more accurate forms are constantly beindN here

FIn(r)] = (Y[n(r)],(T+U)W[n(r 15
T Department of Chemistry, Queen’s University, Kingston Ontario, [n()] = (In(1( PN (1.5
Canada K7L 3N6. ; : . 4 . N .
* Department of Chemistry, University of North Carolina, Chapel Hill, is a functional ofn(r), sinceW is.* The minimal principle is
NC 27599.
® Abstract published irAdvance ACS Abstractsuly 1, 1996. E,n[N(N] = E,h[no(r)] = E (1.6)
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whereng(r) and E are the density and energy of the ground whereg(n) is the exchange-correlation energy per particle of

state. The equality in (1.6) holds onlyrifr) = no(r). a uniform interacting electron gas of density This quantity
By making simple approximations f&{n(r)], one can easily is known to a very high accuracy-0.1%). The LDA becomes

rederive the ThomasFermi approximation and its refinements. exact when the length scdlever whichn(r) varies is large, in

However, for most purposes a different approach has proved tothe sense

be more usefll. We extract from F[n] its largest and

elementary contributions, by writting | > d, (day)™? (1.11)

_ 1 n(r) n(r') . where d and ag are respectively the mean particle spacing
FIn(m] = Tdn(n] + 2f Ir—r'| drar + E[n]  (1.7) (=n~13) and the hydrogen radius. However, for fairly well-
) o ) ) understood reasons, it also gives useful results for most physical
whereTg[n(r)] is the kinetic energy of aoninteractingsystem and chemical applications, in which (1.11) generallynist
with densityn(r) (in the appropriat@(r)), and the next termis  gatisfied. The KS orbitals in the LDA are usually very close
the classical expression for the interaction energy. The remain-ig Hartree-Fock orbitals.
ing Ey, the so-called exchange correlation energydesined A next level of approximations are the so-called generalized

by eq 1.7 _ gradient approximations
If Exc is ignored, the physical content of the theory becomes

identical to that of the Hartree approximation. It is then no GGA __
surprise that the EuletLagrange equation associated with the S ff(n(r),|Vn(r)|) dr
stationarity ofE,[n] can be transformed into a new set of self-
consistent (so-called KoktSham or KS) equations

(1.12)

in which f(n,|Vy|) is a suitably chosen function of its two
variables. These and other approximations and illustrative
1, n(r') applications are discussed section 2.
(— Vot o(r) + fﬁ dar' + v, (r) — ej)(pj(l‘) =0 The computing time in DFT, for a system of many atoms
2 Ir=ri (1.8a) with no geometric symmetries, grows roughly likg? or Na¢.
This is much better than traditional methods, where computing
N time grows as®. (o ~ 1). As previously remarked, this makes
n(r) = Z|¢j(r)|2 (1.8b) DFT attractive for many-atom systems; still, the present upper
= bound isNg ~ 100-200, which excludes many interesting
systems (macromolecules, solutions, many glasses, etc.). Itis
vy(r) = OE, [n(r))/on(r) (1.8¢) therefore significant that, in principle, DFT can be reformulated
so that computing time grows onljnearly in Ny (so-called
which differ from the Hartree equations only by the inclusion O(N) methods). The practicality of these methods is currently
of the exchange correlation potentigl(r). Thelocal equations being explored.
(1.8) must be solved self-consistently, like the Hartree equations,  Although for simplicity we have limited our remarks to the
calculatinguc in each cycle from eq 1.8c, with an appropriate  simplest class of electronic systems, DFT has, since its inception,
approximation forEx[n(r)] (see below). The extra computa- been applied to many other systems: spin-polarized ground
tional work, compared to a Hartree calculation, is very minor. states, magnetic and electric susceptibilities, relativistic correc-
However, we point out that, in spite of the appearance of simple, tions, finite temperature ensembles, excited states, superconduc:
single particle orbitals, the KS equations are in princigtact tors, time-dependent phenomena, etc. However, so far its main
provided that the exadEy is used in (1.8c). In other words, usefulness has been in applications to spin-unpolarized or

the only error in the theory is due to approximationseef. -polarized ground states. Much work remains to be done in
The ground state energy is given by the other areas.
We have discussed DFT agamputationatool for the study
v 1 .n(r) n(r) , of electronic structure. However, it has also helped to illuminate
E= Zei o Ef Ir—r| dr dr’ — important chemicatoncepts This is the subject of section 3.

S ) () dr + E,[n(r)] (1.9) 2. Density Functional Computational Chemistry

Real progress in the application of KohBham theory to
chemistry was not realized until the early 1980s. There is
considerable older literature on atomic systems, but initial
molecular applications were clouded by numerical uncertainties.

where thegj andn are the self-consistent quantities.
The individual eigenfunctions and eigenvaluesande;j, of
the KS equations (1.8) have no strict physical significance, with

one exception: For isolated systems wiftp) = 0, thg highest  The first applications of DFT to chemistry (late 1960s) utilized
elgenvalueﬁN,_controIs _the asymptotic decay fifn|” and of scattered-wave or “muffin tin” numerical techniques adapted
the total physmal densit(r) and hence_ can b_e shown to be  from the solid state repertoife.These proved inadequate to
the negative of Fhe exact, many-body, lonization potenthl. describe finite molecules. One-electron spectroscopic properties
Atthe same timeall ¢ andg; are Of great semlquantlta_mve could be usefully estimated, but potential energy curves and
value, much like HartreeFock energies and wave functions, accurate densities could not. Through the 1970s, various basis
often more so, bgcause they reflect. also COfFe'a“O“ effects, andggy methodologies were combined with numerical integration
are consistent with the exact physical densit). . techniques to handle the nonanalytical exchange-correlation
_ To put this theory to practical use, we need good approxima- ohjem and by 1980 reliable computational technologies for
tions for Ex[n], of which the simplest, and at the same time et chemistry were finally in place.
surprisi_)ngly serviceable, is the local density approximation v computational difficulties under control, assessments
(LDAY): of the theory itself in chemical applications were possible. The
old Xa model, a parametrized exchange-only DFT variant much
E [n(r)] = f €,(n(r)) n(r) dr (1.10) popularized in the scattered-wave era, proved erratic in its
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predictions of molecular properties. Bond energies, in particular, P 2
deviated from experiment by electronvolts in many cases and g — ELSDA — bX f” 413 7 dr (2.4a)
showed no obvious overbinding or underbinding trend. Early - (1+ 6by, sinh )

molecular tests of the local spin-density approximation (LSDA),
the spin-dependent generalization of eq 1.8, also revealed large
deviations from experimenf. Later, a clearoverbinding where
tendencyemerged. The @molecule, for example, is overbound

in the LSDA by an enormous 55 kcal/mol, with average [ELSDA — _§(i)l’3zfn 413 (2.4b)
deviations of order 2630 kcal/mol per bond. Nevertheless, X 4z &7 7 '
other important properties such as bond lengths, bond angles,

vibrational frequencies, charge moments, etc., tend to agreeypq

surprisingly well with experimeat12in “ordinary” chemical

bonds (i.e., H bonds and van der Waals interactions excepted). 1= |Vna|/n54/3 (2.4¢)

The LSDA is therefore a remarkably useful structural, though
not thermochemical, tool.

The severe overbinding character of the LSDA is disappoint- With one semiempirical fitted parameteb, = 0.0042 au,
ing. A clear trend such as this, however, suggests that €xchange energies of atomic systems are remarkably accurate
fundamental lessons and accompanying remedies are not farThis functional is effectively an interpolation formula between
away. Extension of the LSDA to include local spin-density the small- and largg-limits of the exchange energy density.
gradientsis the next logical step. The lowest-order gradient Also noteworthy is the 1986 exchange GGA of PerdévBased

correction of exchange type on a parameter-free coordinate-space model of inhomogeneous
systems, it gives chemical results very similar to those of eq
(Vn)2 2.4. _ . . .
B 3 (2.2) Correlation GGAs (that is, for “dynamical”, electron-gas-like
n correlation) have also received considerable attention. The
. . chemical consequences of gradient corrections for correlation
had been well-studied by the mid-1986s.It does not, are relatively small compared to their exchange counterparts,

unfortunately, offer improved chemistry, though evidence of 5nq e shall therefore limit our discussion of correlation GGAs
this fact is sparse in the literatuté. As reported in 1986,  accordingly. The most popular dynamical correlation function-
however;®a simple modification of eq 2.1 yields excellent DFT 515 presently are those of Lee, Yang, and Palrased on the

bond energies (rms error of only 0.3 eV or 7 kcal/mol) in first- - y4e| of Colle and Salve®), Perdew 19862 and Perdew and
and second-row homonuclear diatomic tests. This modification \yang 199123 The latter is a logical generalization of Perdew’s

addressed the unacceptable asymptotic behavior of eq 2.1 faharameter-free coordinate-space model for exchigraye is
from a finite system: namely its divergent functional derivative, entirely free of empirical parameters as well. Of the many
eq 1.8c. In the process, absolute atomic exchange energiegossible exchange-correlation combinations, several are cur-
themselves were significantly improvéd. . rently in use. As long as both are of the same class (i.e., LSDA,
This path to improved DFT chemistry attracted the interest GGA or perhaps some future explicitly nonlocal variety), the
of computational and theoretical researchers alike. Computa-gpecific choice of exchange and correlation functional is much

tional chemists found substantial applications in areas unreach-jgss important than the differences between the LSDA and GGA
able by traditional wave function methods (notably Ziegler in {hemselves.

organometallic chemist#), and theoreticians were encouraged T symmarize, the LSDA generally gives good molecular
by the promising practical dividends of exchange-correlation sty ctures, vibrational frequencies, and charge densifiéin
functional development. Several alternative gradient-corrected strongly bound systems (i.e., H bonds and van der Waals
exchange and cor_relat|on functlonals rap|d_ly followed_and_ are jnteractions excepted). It is not useful, however, for thermo-
now known _coIIectlver as generalized gradient approximations chemistry. GGAs, on the other hand, yield good thermochem-
(GGAs) as in eq 1.12. . . istry, with average errors of order 6 kcal/mol in standard
The term GGA means, essentially, going beyond the lowest- thermochemical testd. Their domain extends even to the
order gradient correction of eq 2.1. Indeed, ldege gradient energetics and structures of hydrogen-bonded systénitsis

limit, at the level of the weakest chemical interactions, namely van
der Waals interactions, that GGAs apparently 4ailAlso, both
x= vnl_, (2.2) the LSDA and the GGA leave much room for improvement in
n3 predicting reaction barrier height&2”

We cannot end this overview of LDA and GGA chemistry
where y is the appropriatedimensionlessneasure of local without mentioning the dramatic impact of Koh8ham theory
inhomogeneity, is nicely amenable to theoretical analysis in in the field of ab initio molecular dynamics. An elegant
finite systems. Large; corresponds in coordinate space to suggestion by Car and Parinéfian 1985, and related theoretical
distances far from a finite system. There, the exchange energyand computational developmerfshave made large-scale

takes the simple asymptotic form simulations of molecules and materials a reality. Ongoing
attempts to linearize the scaling of these methods promise even

E,=-— QIQ dr. r— oo (2.3) greater things. Let us mention as well that DFT treatment of
20 r 7 ' excited states and multiplet structure has also progressed. The

early model of Ziegler, Rauk, and Baereffiis now group
as the density itself becomesgponential An exchange GGA theoretically automate#, and recent formal advanceme®ts
has been fourld that exactly reproduces this asymptotic offer additional scope for further work. DFT predictions of
exchange energy behavior. We reproduce it below to display electromagnetic properties are also under¥esnd much awaits
what a typical GGA looks liked is a spin-label): to be learned in this area.
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Nonlocality. Both the LSDA and the GGA are based on tions in convenient and widely distributed software packages.
localizedmodel exchange-correlation holes. Only local density Critical assessment of popular functionals on a scale heretofore
information (or local density gradient information) is utilized unseen is thus under way in all areas of computational chemistry.
at each reference point. The fact that LSDA and GGA model Itis an exciting time for density functional theory. Furthermore,
holes satisfy the same normalization constraints as “real” holesthese recent technical advances have beautifully facilitated the
accounts for much of their success. Their intrinsic locality testing and application of the exact-exchange mixing scheme
further implies that real exchange-correlation holes in molecular described above. A true marriage of density functional and
systems are also relatively localized. This conclusion, though Hartree-Fock ideas and technologies has emerged, and a
largely true, is certainly not absolute. Special situations, such potentially very beneficial cross-fertilization between DFT and
as H* at large separation, simply cannot be modeled by traditional wave function methods has begun.
localized holes. Even in ordinary chemical bonds, exchange-

correlation holes undoubtedly have a small nonlocal component.

Very recently, proposals to incorporate nonlocality into DFT
chemistry* have spawned a new class of hybrid Hartr€eck/
GGA theories with precision surpassing that of pure GGAs.
They are motivated by the following centrally important formula,
the adiabatic connectionor coupling strength integration
formula®® for the exchange-correlation hole in Koh8ham
DFT:

he(rr) = [hrr) di (2.5)
where the hole generatds,; through the following double
integration:

E, = % i r:(—lrz)hxc(r,r') dr dr’ (2.6)

Spin decomposition of these formulas is possible, but will not
concern us heré. Equation 2.5 literally “connects” the Kokn
Sham independent-particle reference systérs (0) with the
real, fully interacting systeni.(= 1) through a coupling strength
parametei. The parametet smoothly turns on interelectronic

Coulomb repulsion while an appropriate one-body potential (also

A dependent) holds the total electronic density fixed. Notice,
however, thaﬂ‘ﬁxc(r,r') has nonlocalizedcharacter atl = O,

3. Chemical Concepts

A great strength of the density functional language is its
appropriateness for defining and elucidating important universal
concepts of molecular structure and molecular reactivity. In
traditional quantum chemistry this has, of course, also been a
major goal, but it is tortuous to try to conceptualize how many-
body wave functions are related to structure and behavior. In
DFT not only is the electron density itself very easy to visualize,
but there is the big advantage that the electron nuribeas a
central place in the theory. After all, much of chemistry is about
the transfer of electrons from one place to another.

Consider an electronic ground state for a systemNof
electrons moving in an external potentigt), usually just the
potential due to the nuclei. Solution of the minimization
problem of eq 1.6 will give the electron density and energy.
The minimization in the first instance is constrained to be at
fixed N. However, we can enlarge the domain of the minimiza-
tion principle to include allN if we append the constraint
condition with a Lagrange multiplier, the value of which is to
be determined. So we have, as an important extension of eq
1.6,

O{E[n(r)] — «[N[n(r)]} =0 3.1)

whereu is thechemical potentiabf the system, a function of

because the hole in this independent particle limit is the pure N and a functional ot(r), N[n] = /n(r) dr, and the subscript

and exact exchange hole of the KetfBham Slater determinant
(i.e., no correlation whatsoever). This hole@orly represented
by localized LSDA or GGA models imolecular bondsand
hence the small-region of the coupling strength integration is
problematic3436

A simple but effective cure for the = 0 problem is
replacement of thenodelGGA hole atA = 0 with the exact

hole, resulting in the following exchange-correlation expression:
34,36

Exc — DCFT + aO(E)I(Exact_ E)I(DFT) (2.7)
The parameteg, reflects the importance of nonlocality in the

real exchange-correlation hole. In current practice, it is fit to
experimental thermochemical data, taking values of 20% or
higher depending on the choice of correlation GGA. This kind

of exact-exchange mixing reduces average bond energy error

from about 6 kcal/mol for pure GGAs to roughly 2 kcal/mol.
Improvements are particularly striking in nonhydride and
multiple bonds, where pure GGAs suffer overbinding errors as

high as 20 kcal/mol. Reaction barrier heights are also improved

by exact-exchange mixingf,though a thorough study of this
important area remains to be undertaken.

In the past few years, modifications of well-established and
powerful Hartree-Fock programs to include density functional
computation¥-3” have stimulated an explosion of interest in
DFT. All the features of HartreeFock technology, including
energy second derivatives, are now available for DFT applica-

S

v on E has been suppressed. One must imagine solving (3.1)
for everyu and then selecting thevalue which gives the correct
number of electrons for the system of interest.

From the fundamental theory of Lagrange multipliess,
measures how sensitive the extreménis to a change i,

1 = (9E/oN), (3.2)

HereE is assumed to be a smooth functiol\gfan assumption

to which we return at the end of this secti®n.This result
contains considerable chemistty= u[N,v] characterizes the
escaping tendency of electrons from the equilibrium sysfem.
Systems (e.g., atoms or molecules) coming together must attain
at equilibrium a common chemical potential. This chemical
potential is none other than the negative of the electronegativity
concept of classical structural chemistry. For, the finite-
difference approximation tg for a system with ionization
potentiall and electron affinityA is

_1+A
2

(3.3)

and one half of + A s just the original Mulliken formula for
electronegativity. The idea that electronegativity is a chemical
potential originates with Gyftopoulos and Hatsopoufbs.

The chemical potential of the DFT variational principle of
eq 3.1 is a small one-electron energy much less than the total
electronic energyE which enters the variational principle of
traditional quantum chemistry. DFT thus promises relief from
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the old curse of needing to difference large numbers in making large (other things being equal), one expects high stability and

chemical predictions. low reactivity. When it is small, one expects low stability and
Long ago, Sanderson postulated that there was a principle inhigh reactivity. These predictions are well borne out in the good

chemistry that electronegativity tends to equalize. Electrone- correlation that exists between HOMQUMO gap and the

gativity being synonymous with chemical potential, the cor- organic chemists’ concept afromaticity.

rectness of Sanderson’s principle immediately follows fromthe  Now let us turn to changes iN andv. The most general

fact that the chemical potential of DFT is a property of an differential energy change will be given by

equilibrium state. The chemical potential (electronegativity) is

expected to be sensitive to the external potential and may not dE = dN+ fn(r) du(r) dr (3.9)

be necessarily easy to calculate, but it is a concept securely

rooted in DFT. Semiempirical electronegativity equalization where the second term follows from conventional first-order

methods now are widely uséd. perturbation theory. Note how apt this equation is for chemistry,
E versusN plots are not straight lines but are generally convex where the main action so often is addition or subtraction of

upward. Their curvatures define another property of substantial electrons. There is no reason to restrict eq 3.9 to an isolated

importance, théhardness$? system. It can be applied to atoms or weakly coupled functional
groups in a molecule, which are open systghtse which a
n= (azElaNZ)U = (duldN), (3.4) generalized density functional theory will apply. (Compare the
great Gibbs extension of closed-system thermodynamics to
The finite-difference approximation for this is open-system thermodynamics.)
Second-order energy changes will be covered by integration
n=1-A=0 (3.5) of eq 3.9 provided that we can master thandz dependencies

of the quantitiesu and »(r). The first needed differential

The inverse of hardness foftness? coefficient is the hardnesgof eq 34, already discussed. The

_ second is a quantity long familiar and much discussed in
S= (IN3), (3.6) chemical physicsthe linear response functiofpolarizability
kernel)

Accordingly, one may write, if onlyN changes,
on(n)/ov(r)]y = [on(r")du(r 3.10
E=FE° +ﬂ(N _ No) + 1/277(N _ No)2+ (37) [ ( ) U( )]N [ ( ) Z/( )]N ( )
_ Finally, we have the Fukui functiéf
and one can verify that to second order the number of electrons
transferred between A and B induced by a difference in chemical f(r) = [an(r)/aN], = [ul/duv(r)] (3.11)
potentials between A and B is given by
This quantity integrates to unity. Note the use here of Maxwell
|yBO - /,¢A°| reciprocal relations. Combining these results gives the funda-

AN=—""— (3.8) mental equation
7]30 + 77AO

whereua® = ua(Na?), etc. The hardness can be thought of as du = ndN + [1(r) da(r) dr (3.12)
a resistance to charge transfer. The softness measures ease gf \yhich all quantities have the greatest chemical and physical
transfer; softness is associated with high polarizabffity. interest.

The hardness and softness defined in eqs 3.4 and 3_.6 are theé The name Fukui function is appropriate fifr) because it
“hardness” and “softness” that enter two well-known principles ¢jearly is a chemical reactivity index in the sense of “frontier
in chemistry: the HSAB principle and the maximum hardness qita|” theories of reactivity. The HOMO and LUMO orbital
principle. The hard and soft acids and bases principle statésygnsities are known to be decisive for determining chemical
that hard acids “prefer” hard bases and soft acids prefer soft gactivity: high or low frontier density at a molecular site often
bases, thermodynamically and kineticaty. The maximum  confers high chemical reactivity to that site. This, in essence,
hardness principle asserts that molecular systems usually tends \what the Fukui function is measuring. For the finite-
to states of high hardne$s. Though it is not easy to deduce gjtference formula fof(r), when electrons are added to a species
these principles rigorously or completely, they are consequencesg il be n(S-) — n(S = n.uvo, when electrons are subtracted
of eq 1.6 and/or its generalization to states at finite temperéture. n(S — n(S") = nuomo. S0, clearly f(r) is a proper chemical
From (1.6) energy decreases in going from nonequilibrium 10 e4ctivity measure. A difference between “right derivative” and
equilibrium. From its finite-temperature extension, the grand «eft derivative” is predicted in DFFS A variational principle
potentlal.de.crea.\ses. .The problem with cleanly deriving the 5 girect determination of(r) and band gap is know.

HSAB principle is to simply but properly model the system of | 4c4) softnesss an important quantity which combines the

approaching entitie¥. The problem with proving the maximum ;e reactivity index(r) with the global softness measuge
hardness principle is to find the right constraints to guarantee

its validity.*® One strategy for proving the HSAB principle is S(r) = [an(r)/du] = f(r)S (3.13)

to first establish the maximum hardness principle. The constant

chemical potential constraint often is pertinent for chemical There is an interesting fluctuation formula for this quantity in
problems®® For the latest on these various subtle matters, one finite-temperature DFT, where the averages are over all

may consult the contemporary literatte? members of a grand ensemble at temperafuffe This formula
It can be seen that the finite-difference expression for and other similar DFT fluctuation formul&=8 may provide a
hardness, eq 3.5, is no more no less thankted gapthat basis for fluctuation theories of catalysis(r) is measurable

plays such an important role in solid state physics and solid using scanning tunnel microscopy. For an infinite systgm),
state chemistrythe difference between the HOMO and LUMO is approximately the local density of states at the Fermi level
orbital energies in a simple orbital theory. When the gap is andS the total density of states at the Fermi le{/&t°
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interpolations can, but need not, use finite-difference methods,

can be usefully defined two-variable hardness and softnessproducing finite-difference formulas for properties of interest
kernels, from which can be generated local softness, global for systems of integral.5® In this way, we can imagine finite-

softness, Fukui function, a local hardness, and global har8hess.
Defining u(r) = o(r) — u, we have the softness kernel

s(rr') = —on(r)/ou(r) (3.14)
and the hardness kernel
n(r,r") = —ou(r)on(r') — 6*Flon(r) on(r’)  (3.15)
These satisfy
Sy n(e ) dr = o(r—r") (3.16)
Then we find
s(r) = [s(r,r) dr’ (3.17)
and if we definé?
n(r)= [f(r)s(r.r') dr' (3.18)
we obtain
S nr)dr=1 (3.19)
and
S= [s(r)dr (3.20)
and
n= [ [1r) n(r.r) f(r') or o (3.21)
We also find
n(r)=mn (3.22)

which would be very good if it were not for the fact that it
appears to eliminatey(r) as a candidate for a physically
meaningful local hardness. An alternative definition has recently
been suggested.

We have here put emphasis on the effectdafhange and
v change on thelectrondensity. There also are shifts in the
nuclear positions, of course, which ultimately must be incor-

difference formulas for all derivatives and functional derivatives
that enter the formal theory in whid¥is treated as a continuous
variable. The literature on the band gap (HOMOJUMO gap)
well illustrates the subtleties in these matt&%’

There is a quite different situation in whidk enters as a
continuous, nonintegral variable. Chemists perforce must be
much concerned with atoms or functional groups in molecules,
that is, with what aresubsystemsef a system with an integral
number of electrons. Consider, for example, the hydrogen atom
in the series HH, HF, HCI, HI, HBr. It varies, essentially
continuously, from one molecule to the next, and it bears exactly
one electron only in the first. If one accepts Bader’s definition
of the aton®3 its charge distribution is precisely calculable, for
example by DFT, and it constitutes a subsystem which in general
has a nonintegral number of electrons. The same is true for an
early DFT definition of an atom in a molecul®. For such
subsystems there are no discontinuitiebljrand the conceptual
ideas we have described in this section ought to apply.
Neighboring atoms in a molecule are strongly interacting,
however, and a correct detailed theory of their interaction is
very difficult to achieve?®.59

4. Concluding Remarks

In addition to the two reference texts which have been
mentioned;? there have been published many reviews and
edited volumes on DFT. We note in particular the book by
Norman MarchR® and a volume in the NATO ASI serigs.

Thousands of papers have appeared in this subject area, anc
interest in it is accelerating. Furthermore, not only is the
methodology for calculation steadily improving, but the content
of the theory is still evolving. Mathematical problems remain,
and the precise directions in which the subject will be moving
are not clear. One should remember that conventional quantum-
chemical methods have taken 70 years to develop. The present
account is thus neither definitive nor complete.

The calculational promise of DFT is, to a certain degree,

porated in a complete theory. Very recently, there has been aalready achieved. As described in section 2, current methods

vigorous start in this directiof?.63 Modeling of the hardness
kernel of eq 3.15 has been an active field for some fifne.

The Problem of Discontinuities in N. Historically, DFT

had its antecedent in the so-called “statistical” theory of Thomas,

Fermi, Dirac, and Slater. Also, the first good approximate
functionals in DFT, the family of LDA functionals, came out
of the “uniform gas” model, and modern improved functionals
largely arose from modifications of LDA (as described in section
2). It might seem that largd would be the condition for DFT

to work well. This is not correct, however; DFT works just
fine—at least in principle-even from systems with as few as
one or two electrons. The reason is that DFT is a proper
transcription of the Schrodinger equation famy number of
electrons.

The total number of electrons in any particular system we
are interested in is an integethe variableN possesses only

of calculation are of an accuracy that is approaching what
guantum chemists call “chemical accuracy” a few percent of
a chemical binding energy.

On the more purely theoretical side of the subject, we briefly
note two important contemporary lines of investigation. First,
much can be learned from examining the scaling properties of
the various functional® Second, one now knows how to
efficiently determine very accurate exchange-correlapon
tentials vxe(r), when an accurate electron density is known, and
this furnishes data and discipline to the search for better
approximate exchange-correlation potentials and enefgiés.

Continued research is needed on the problem of finding the
various unknown exchange-correlation functionals. Much of
the progress to date is rooted in the original LDA papehere
one builds on what is known about the uniform electron gas.
But a different route is possible: to take advantage of the

integral values. Does this cause a problem? Certainly not whenconsiderable knowledge of the density-matrix transcription of
we are calculating on an actual problem of interest. We need wave function theory. Here one starts from a proper description

only have good enough functionals for a gividrto calculate
at thatN. For moving from oneN to another (which, as we

have emphasized, is highly relevant for chemical processes),

no error is introduced if we arrange to connect all the correct
integralN functionals by applying suitable interpolation meth-
ods, to give functionals that are continuous M The

of the electror-electron repulsion when electrons are close
together and the empirical fact that the Hartré®ck or Kohnr-
Sham electron density is nearly correct. Hopefully, work on
improving functionals will eventually lead to a procedure to
improve DFT calculations systematically, from one approxima-
tion to the next.
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Finally, in our opinion the vocabulary of DFT ought to, indeed
c Baker, J.; Andzelm, J.; Muir, M.; Taylor, P. Ehem Phys Lett 1995

will, more and more permeate the description of electroni

structure of atoms, molecules, clusters, surfaces, and solids. DF
is a convenient and universal language for electronic structure
theory, which substantially helps unify organic chemistry,

inorganic chemistry, surface chemistry, and materials science.

It helps unify chemistry and physics.

Acknowledgment. We gratefully acknowledge support by
NSFDMR93-08011 (W. Kohn), NSERC (A. D. Becke), and
NSFCHE-9403431 (R. G. Parr).

References and Notes

(1) Parr, R. G.; Yang, WDensity Functional Theory of Atoms and
Molecules Oxford University Press: New York, 1989.

(2) Dreizler, R. M.; Gross, E. K. VDensity Functional Theory
Springer: Berlin, 1990.

(3) Hohenberg, P.; Kohn, WPhys Rev. B 1964 136, 864. We give

Kohn et al.

(27) Baker, J.; Muir M.; Andzelm, Jl. Chem Phys 1995 102 2063.

37, 53. Baker, J.; Muir, M.; Andzelm, J.; Scheiner, ACS SympSer,
to be published.
(28) Car, R.; Parrinello, MPhys Rev. Lett 1985 55, 2471.
(29) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos,
J. D.Rev. Mod. Phys 1992 64, 1045. Remler, D. K.; Madden, P. Mol.
Phys 199Q 70, 921. Pastore, G.; Smarglassi, E.; BudaPRys Rev. A
1991, 44, 6334. Galli, G.; Parrinello, M. IfProceedings of the NATO ASI
Meyer, M., Pontikis, V., Eds.; Kluwer Academic: Dordrecht, 1991.
(30) Ziegler, T.; Rauk, A.; Baerends, E.Theor Chim Actal1977 43,
61

(31) Daul, C.Int. J. Quantum Cheml994 52, 867.

(32) Gross, E. K. U.; Oliveira, L. N.; Kohn, WRPhys Rev. A 1988 37,
2805, 2809. Oliveira, L. N.; Gross, E. K. U.; Kohn, \Whys Rev. A 1988
37, 2821.

(33) Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R.
Am Chem Soc 1994 116 5898. Colwell, S. M.; Handy, N. CChem
Phys Lett 1994 217, 271.

(34) Becke, A. DJ. Chem Phys 1993 98, 5648;1996 104, 1040.

(35) Harris, J.; Jones, R. O.Phys F 1974 4, 1170. Gunnarsson, O.;
Lundqvist, B. I.Phys Rev. B 1976 13, 4274. Langreth, D. C.; Perdew, J.

here the derivations for systems with nondegenerate ground states. ForP. Phys Rev. B 1977 15, 2884.

degenerate ground states, see refs 4, 1, and 2.

(4) An alternative, broader definition &{n(r)] is F[n(r)] = min(¥n),
(T+V)Wy(r)) where the minimum is from among all antisymmetric wave
functionsWy() with densityn(r). Levy, M. Proc. Natl. Acad Sci U.SA.
1979 76, 6062;Phys Rev. A 1982 26, 1200. Lieb, E. H. InPhysics as
Natural Philosophy Shimony, A., Feshbach, H., Eds.; MIT Press: Cam-
bridge, MA, p 111.

(5) Kohn, W.; Sham, L. JPhys Rev. A 1965 140, 1133.

(6) Except for a uniform electron gas, this et the same as the
exchange-correlation energy of traditional methods.

(7) For a recent bibliography, see: Parr, R. G.; Yang,Aihu Rev.
Phys Chem 1995 46, 701.

(8) Reviewed in: Slater, J. CAdv. Quantum Chem1972 6, 1.
Johnson, K. HAdv. Quantum Chem1973 7, 143.

(9) Baerends, E. J.; Ros, lt. J. Quantum Chem Quantum Chem
Symp 1978 12, 169. Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R.
Chem Phys 1979 71, 3396, 4993. Delley, B.; Ellis, D. El. Chem Phys

1982 76, 1949. These STO, GTO, and numerical LCAO-based programs,
respectively, have seen considerable evolution and propagation. For later

developments, see: Boerrigter, P. M.; Velde, G.; Baerends, Ht.JJ.
Quantum Cheml988 33, 87. St-Amant, A.; Salahub, D. Rhem Phys
Lett 199Q 169 387. Andzelm, J.; Wimmer, El. Chem Phys 1992 96,
1280. Delley, BJ. Chem Phys 1990 92, 508.

(10) Becke, A. D.Phys Rev. A 1986 33, 2786.

(11) Density Functional Methods in Chemistrizabanowski, J. K.,
Andzelm, J. W., Eds.; Springer-Verlag: New York, 1991. Delley,JB.
Chem Phys 1991 94, 7245. Andzelm, J.; Wimmer, E.. Chem Phys
1992 96, 1280.

(12) Johnson, B. G.; Gill, P. M. W.; Pople, J. A.Chem Phys 1993
98, 5612.

(13) Sham, L. J. IlComputational Methods in Band Theoiarcus,

P. M., Janak, J. F., Wiliams, A. R., Eds.; Plenum: New York, 1971.
Kleinman, L.Phys Rev. B 1984 30, 2223 and references therein. Herman,
F.; Van Dyke, J. P.; Ortenburger, |. Bhys Rev. Lett 1969 22, 807;Int.

J. Quantum Chem Quantum ChemSymp 197Q 3, 827.

(14) Becke, A. D.Int. J. Quantum Chem1985 27, 585.

(15) Becke, A. D.J. Chem Phys 1986 84, 4524.

(16) For references to early work, see: Ziegler,Chem Rev. 1991

(36) A detailed analysis may be found in: Becke, A. D.Nfodern
Electronic Structure TheoryYarkony, D. R., Ed.; World Scientific:
Singapore, 1995.

(37) Gill, P. M. W.; Johnson, B. G.; Pople, J. Bhem Phys Lett 1993
209, 506. Murray, C. W.; Handy, N. C.; Laming, G. Nlol. Phys 1993
78, 997. Treutler, O.; Ahlrichs, RJ. Chem Phys 1995 102 346.

(38) Parr, R. G.; Bartolotti, L. JJ. Phys Chem 1983 87, 2810.

(39) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. B. Chem
Phys 1978 68, 3801.

(40) Gyftopoulos, E. P.; Hatsopoulos, G.Rtoc. Natl. Acad Sci U.SA.
1965 60, 786.

(41) Mortier, W.; Ghosh, S. K.; Shankar, SJJAm Chem Soc 1986
108 4315.

(42) Parr, R. G.; Pearson, R. G. Am Chem Soc 1983 105 7512.

(43) Yang, W.; Parr, R. GProc. Natl. Acad Sci U.SA. 1985 82, 6723.

(44) Politzer, P. JJ. Chem Phys 1987, 86, 1072.

(45) Pearson, R. Gl. Am Chem Soc 1963 85, 3533.

(46) Pearson, R. Gl. Chem Educ 1987, 64, 561.

(47) Mermin, N. D.Phys Rev. 1965 137, A1441.

(48) Chattaraj, P. K.; Lee, H.; Parr, R. & Am Chem Soc 1991, 113
1855.

(49) Parr, R. G.; Chattaraj, P. K. Am Chem Soc 1991, 113 1854.

(50) Parr, R. G.; Gazquez, J. . Phys Chem 1993 97, 3939.

(51) Chattaraj, P. K.; Liu, G. H.; Parr, R. @hem Phys Lett 1995
237, 171.

(52) Parr, R. G.; Yang, WAnnu Rev. Phys Chem 1995 46, 701.

(53) Bader, R. F. W.; Nguyen-Dang, T. Adv. Quantum Chenil 981,
14, 63.

(54) Parr, R. G.; Yang, WJ. Am Chem Soc 1984 106, 4049.

(55) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, Jr., JPhys Rev.
Lett 1982 49, 1691.

(56) Chattaraj, P. K.; Cedillo, A.; Parr, R. G.Chem Phys 1995 103
7645.

(57) Harbola, M. K.; Chattaraj, P. K.; Parr, R. Gr. J. Chem 199,
31, 395.

(58) Baekelandt, B. G.; Cedillo, A.; Parr, R. G.Chem Phys 1995
103 8548.

(59) Galvan, M.; Dal Pino, Jr., A.; Wang, J. Phys Chem 1993 97,

91, 651. For references to later work, see: Li, J.; Schreckenbach, G.; 783.

Ziegler, T.J. Am Chem Soc 1995 117, 486.

(17) Becke, A. D.Phys Rev. A 1988 38, 3098.

(18) Perdew, J. FPhys Rev. Lett 1985 55, 1665. Perdew, J. P.; Wang,
Y. Phys Rev. B 1986 33, 8800.

(19) Becke, A. D.J. Chem Phys 1992 96, 2155;1992 97, 9173.

(20) Lee, C.; Yang, W.; Parr, R. ®hys Rev. B 1988 37, 785.

(21) Colle, R.; Salvetti, QJ. Chem Phys 1983 79, 1404 and references
therein.

(22) Perdew, J. PPhys Rev. B 1986 33, 8822;1986 34, 7406.

(23) Perdew, J. P.; Wang, Y. Unpublished. Perdew, J. Eléntronic
Structure of SolidsZiesche, P., Eschrig, H., Eds.; Akademie Verlag: Berlin,

1991. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson,

M. R.; Singh, D. J.; Fiolhals, CPhys Rev. B 1992 46, 6671.

(24) Sim, F.; St-Amant, A.; Papai, |.; Salahub, D.RAm Chem Soc
1992 114, 4391.

(25) Kristyan, S.; Pulay, -Chem Phys Lett 1994 229 175. Perez-
Jorda, J. M.; Becke, A. DChem Phys Lett 1995 233 134.

(26) Fan, L.; Ziegler, TJ. Am Chem Soc 1992 114, 10890. Sosa,
C.; Lee, CJ. Chem Phys 1993 98, 8004. Deng, L.; Ziegler, T.; Fan, L.
J. Chem Phys 1993 99, 3823. Stanton, R. V.; Merz, Jr., K. M. Chem
Phys 1994 100, 434. Johnson, B. G.; Gonzales, C. A,; Gill, P. M. W.;
Pople, J. A.Chem Phys Lett 1994 221, 100.

(60) Cohen, M. H.; Ganduglia-Pirovano, M. V.; KudrnovskyJ.XChem
Phys 1994 101, 8988.

(61) Berkowitz, M.; Parr, R. GJ. Chem Phys 1988 88, 2554.

(62) Ghosh, S. KChem Phys Lett 1990 172 77.

(63) Cohen, M. H.; Ganduglia-Pirovano, M. V.; KudrovskyJJChem
Phys 1995 103 3543.

(64) Nalewajski, R. FZ. Naturforsch 1988 43A 65.

(65) Tachibana, Alnt. J. Quantum Chem1996 57, 423.

(66) Perdew, J. P.; Levy, MPhys Rev. Lett 1983 51, 1884.

(67) Sham, L. J.; Schtar, M. Phys Rev. Lett 1983 51, 1888.

(68) Tachibana, A.; Parr, R. Gnt. J. Quantum Chem1992 41, 527.

(69) Cioslowski, J.; Stefanov, B. B. Chem Phys 1993 99, 5151.

(70) March, N. H.Electron Density Theory of Many-Electron Systems
Academic Press: New York, 1991.

(71) Gross, E. K. U.; Dreizler, RFunctional Theory Plenum Press:
New York, 1993.

(72) Gorling, A.; Levy, M.Phys Rev. B 1993 47, 105.

(73) Zhao, Q.; Morrison, R. C.; Parr, R. 8hys Rev. A 1994 50, 2138.

(74) Gritsenko, O. V.; Leeuven, R. v.; Baerends,JEPhys Rev. A
1995 52, 1870.

JP960669L



