
University of Iceland Lecture notes by

Masters course in theoretical chemistry Hannes Jónsson

Numerical Evaluation of Wavefunctions Using Finite Differences

The definition of a derivative of a function, u(x):

u′(x) = lim
h→0

u(x + h) − u(x)

h

cannot be implemented directly using a digital computer which represents real numbers

with finite precision. Eventually, as h becomes small enough, the difference calculation

[u(x + h) − u(x)] becomes meaningless. The simplest way of dealing with this is to make

h small but keep it finite

u′(x +
h

2
) ≈

u(x + h) − u(x)

h

with h being ‘small enough’ and yet ‘not too small’. This estimate of the derivative can

be used as an approximation anywhere in the interval between x and x + h, but it is most

appropriate at the midpoint (x + h
2). When used at the midpoint, this approximation is

called a central finite difference approximation. Any differential equation involving one or

more derivative of a function u(x) can be turned into a relationship among values of u(x)

(not differentiated) at two or more points: u(x), u(x ± h), u(x ± 2h), etc. One example

of this is the Schrödinger equation, which can be written as

u′′(x) = f(x)u(x)

where f(x) = (2m/h̄2)(V (x)−E). V (x) is the potential energy function. Here it is assumed

that the energy of the system, E, is known and the task is to find the eigenfunction corre-

sponding to that energy. The straightforward way of proceeding is to use a finite difference

approximation for u′′(x) on the left hand side. A central finite difference approximation

for the second derivative can be obtained in an analogous way as the expression for u′

above (apply the finite difference formula to u′ to get an expression for u′′)

u′′(x) ≈
u(x + h) + u(x − h) − 2u(x)

h2
.

43

Inserting this into the Schrödinger equation gives

u(x + h) = (2 + h2f(x))u(x)− u(x − h).

This is a recursion relation that can be used to obtain the function u(x) at any point

u(x + nh) once it is known at two adjacent points. The fact that we need to know two

values to start the calculation is directly related to the fact that Schrödinger equation is

a second order differential equation and it takes two boundary (or initial) conditions to

specify a unique solution.

It is relatively easy to use some kind of finite difference approximation to transform a

differential equation into a recursion relation. But, not all ways of doing this are equally

good, and some may not work at all. Two questions arise: (1) Is the algorithm stable?

And, if so, (2) how accurate is the algorithm? The first question is hard to answer. The

algorithm is stable if small errors (which necessarily are always there in a finite precision

computer) made at a given step do not get magnified in subsequent steps. While there are

mathematical ways to analyse stability, most practitioner in chemistry and physics start

out by just trying the algorithm and too see if it is stable. It is always important to start

working with simple problems for which the solution is known to test the algorithm, before

proceeding to the harder problems. The issue of stability will be addressed more below.

It turns out that one has to be careful to apply the recursion relation only in ‘the right

direction’, in some cases.

The tool needed to address the second question, i.e. to analyse the accuracy is Taylor

series expansions. This will also lead to an improved algorithm. A better way of deriving

the algorithm above is to expand u(x+h) and u(x−h) about x and add the two expressions

u(x + h) + u(x − h) = 2u(x) + h2u′′(x) +
2h4

4!
u(4)(x) + hot

where hot stands for ‘higher order terms’. i.e. terms involving higher than the fourth

power of h. We can eliminate the term involving u′′(x) by using the Schrödinger equation,

u′′(x) = f(x)u(x). If we now ignore the term involving h4 and the higher order terms,

the result is the recursion relation derived before. From this analysis it is clear that the

leading correction term (i.e. the term that is of lowest order in h of all the terms that have

been neglected) is of fourth order. That is, the algorithm is correct to order h4.

44

The Numerov Algorithm

It is possible to improve on the standard finite difference algorithm using a trick

that is often applicable, not just on the time-independent Schrödinger equation. The

improvement is substantial and this faster algorithm, called the Numerov method, is the

method of choice in this case.

The higher the power of the step size, h, in the correction term, the larger the stepsize

can be and fewer calculations need to be done. The algorithm we derived last time had

a correction term of order h4. It is possible to eliminate this correction term and get an

algorithm that is of order h6. The tool for doing this is again Taylor series expansions.

We can do a Taylor series expansion for the second derivative of the wave function, u, at

point x:

u(2)(x + h) = u(2)(x) + hu(3)(x) +
h2

2
u(4)(x) +

h3

3!
u(5)(x) + . . .

and

u(2)(x + h) = u(2)(x) − hu(3)(x) +
h2

2
u(4)(x) −

h3

3!
u(5)(x) + . . .

Add the two expressions to get

1

2
[u(2)(x + h) + u(2)(x − h)] = u(2)(x) +

1

2
h2u(4)(x) + O(h6)

This gives an expression for the first and largest error term in the previous algorithm,
h4

4! u
(4)(x), without introducing unknown quantities. The second derivative can easily be

evaluated directly from the Schrödinger equation. The expression is

h4

4!
u(4)(x) =

h2

24
[u(2)(x + h) + u(2)(x − h) − 2u(2)(x)]

After inserting this expression to eliminate the error term in the previous algorithm, and

then using the Schrödinger equation to eliminate the second derivative, i.e. replacing u(2)

with f(x)u(x) , the algorithm becomes

u(x + h) =

(

2 + (10/12)h2f(x)

1 − (1/12)h2f(x + h)

)

u(x) − u(x − h) + O(h6)

This rather complicated recursion relation is the Numerov algorithm.

This is a very fast and stable method for calculating a wavefunction as long as the

iterative procedure is not carried out (deep) into a classically forbidden region. The reason

45

for the instability can be understood in the following way. The general solution is a linear

combination of an exponentially decreasing and an exponentially increasing function. The

true wavefunction is exponentially decreasing into the classically forbidden region. At each

step in the iterative calculation, a numerical error is necessarily made, first of all due to

finite precision of the computer and secondly due to truncation errors (i.e. the higher order

terms in the Taylor series expansions that were neglected). These numerical errors mix

in a bit of the other component of the general solution, the exponentially increasing one.

Since these errors grow at the same time that the true solution decreases, the function

that is generated by the recursive algorithm is eventually dominated by the errors and

becomes meaningless. Therefore, it is important to always start the Noumerov iterations

deep inside a classically forbidden region and intergrate out towards lower potential energy

regions.

Determining bound state energies

When determining bound states, we are dealing with a two point boundary condition

for the Schrödinger equation

u(x) → 0 as x → −∞

and

u(x) → 0 as x → ∞.

This means that we can’t start up the finite difference algorithm using the boundary

conditions directly. Also, the algorithm requires that we know the energy, but the bound

state energies are unknown. The way to cope with this is as follows.

An iterative procedure is used where a guess is made for the energy, a solution of the

differential equation is generated and then a correction to the energy is estimated. This

process is repeated several times. Eventually, the algorithm converges to the true bound

state energy (usually the one closest to the guess). A solution to the differential equation

is generated by starting deep into the classically forbidden region at low x (on the left

side of the well). Since the true solution decays exponentially, the wavefunction can safely

be set to zero at a point that is deep enough into the classically forbidden region. This

function will be called vL(x), and the starting point is vL(1) = 0. In order to start the

iterative algorithm, a value of the function is needed at the next point, vL(2). Since the

46

normalization of the wavefunction is arbitrary at this point (but will be fixed later), any

value of vL(2) can be chosen. A large value of vL(2) will simply make the norm of the

wavefunction large. Its good to work with a function whose maximum is on the order of

unity, and it is typically sufficient to have about 5 significant figures of accuracy, so a value

of vL(2) = 10−6 is a reasonable choice. Now the iterative algorithm can be started and a

sequence of values for the wavefunction, vL(n), generated. As the iterations are continued

beyond the potential minimum and into the classically forbidden region on the other side,

the algorithm will become unstable. To cope with this, a second, function is generated

starting from the other side, i.e. starting deep into the classically forbidden region on the

large x side, iterating towards decreasing values of x (the iteration formula is the same,

but the time step becomes negative, h < 0). This function will be called vR(x).

A true solution to the boundary value problem should be continuously differentiable

(unless the potential is singular, the kinetic energy term blows up if the first derivative is

not continuous). This means the function and its first derivative are continuous. We can

construct a function for the whole interval from the two pieces vL(x) and vR(x) by picking

a joining point, xj and defining u(x) = vL(x) if x < xj and u(x) = vR(x) if x > xj . This

function satisfies the two boundary conditions in the sense that the function is zero at

points deep into the classically forbidden regions, and it satisfies the Schrödinger equation

(to a certain accuracy) at all points except xj . There, the function is, in general, neither

continuous nor is the first derivative continuous. The discontinuity of the function can

easily be fixed by fixing the normalization. For example, dividing each function with the

value at xj u(x) = vL(x)/vL(xj) if x < xj and u(x) = vR(x)/vR(xj) if x > xj guarantees

continuity of the function at xj . The second problem, that the first derivative will in general

not be continuous results from the fact that the energy value used in the finite difference

algorithm is not a bound state energy. In fact, the difference between the derivative of the

left hand solution, v′

L(xj), and the right hand solution, v′

R(xj), can be used to improve

the guess that was made for the bound state energy. We can derive the iteration formula

by evaluating the expectation value of the energy, < H >, using the generated function,

v(x). Calling the initial guess for the energy Q, the new guess for the energy is

Qnew = < H >

(This is very much in the spirit of iterative solutions to second order equations, for example,

and converges only if the guess is ‘close enough’).

47

The expression for < H > can be derived as follows:

< H > =

∫

v(x)
[

− h̄2

2M
d2v
dx2 + V (x)v(x)

]

dx
∫

v2(x) dx
.

(Note that the wavefunction that is generated by the iterative algorithm is necessarily real

since we started with real values at the two starting points. Hence v2 rather than |v|2 in

the denominator). The function v has been constructed in such a way that

−
h̄2

2M

d2v

dx2
= (Q − V (x))

at all points where the finite difference algorithm was applied. If this was true at all points,

then < H >= Q. But, at one point, xj , is there a correction, because two different solutions

have simply been joined together there. The first derivative is (in general) discontinuous

there. The first derivative of the joined function can be written as

u′(x) = Θ(x − xj) (u′

R(x) − u′

L(x)) u′

L(x)

where Θ(x) is the Heavyside function,

Θ(x) = 0 when x < 0

= 1 when x > 0 .

When the second derivative is taken, the discontinuity at xj results in a delta function

contribution, analogous to
d

dx
Θ(x) = δ(x) .

Therefore, the second derivative of the joined function is

−
h̄2

2M

d2v

dx2
= (Q − V (x)) + (−

h̄2

2M
) (v′

R(xj) − v′

L(xj) δ(x − xj) .

Plugging this into the integral expression for < H > above, gives

< H > = Q −
h̄2

2M

(v′

R − v′

L)v(xj)
∫

v2(x) dx

so the original guess Q should be corrected with the second term before next iteration.

Sometimes this estimate tends to overshoot, so it is often good to be more conservative and

48

use only some fraction of the calculated change in the energy (i.e. multiply the correction

term with a factor between zero and one).

In order to use this expresssion, an efficient estimate for the first derivatives, v′

R and

v′

L, at the point xj is needed. The simplest central difference formula is

u′(x) =
[u(x + h) − u(x − h)]

2h
.

Again, the accuracy of this formula can be analysed by applying Taylor series expansions.

Expanding u(x + h) and u(x − h) about x and subtracting, gives

1

2
[u(x + h) − u(x − h)] = hu′ +

h3

3!
u(3) + hot

so the leading error term is of third order in h, much worse than the Numerov algorithm

itself which is of sixth order. A better approximation can be derived in a way analogous

to the derivation of the Numerov algorithm. An expression is developed for the leading

error term, h3

3!
u(3), by Taylor expanding the second derivatives and subtracting

1

2
[u(2)(x + h) − u(2)(x − h)] = hu(3) +

h3

3!
u(5) .

Using the Schrödinger equation to eliminate the second derivatives and multiplying with

h2/3! gives a formula for the error term

h3

3!
u(3) =

h2

12
(f(x + h)u(x + h) − f(x − h)u(x − h))

which is good to fifth order, nearly as good as the Numerov algorithm itself. The final

expression for the first derivative is

u′(x) =
h

24

([

12

h2
− f(x + h)

]

u(x + h) −

[

12

h2
− f(x − h)

]

u(x − h)

)

.

49

