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Many Electron Systems

Permutations:

Consider a system of n identical particles. By identical particles we mean that all
intrinsic properties of the particles are the same, such as mass, spin, charge, etc.

In classical mechanics we can in principle follow the trajectory of each individual
particle. They are, therefore, distinguishable even though they are identical. In quantum
mechanics the particles are not distinguishable if they are close enough or if they interact
strongly enough. The quantum mechanical wave function must reflect that.

When the particles are indistinguishable, the act of labeling the particles is an arbi-
trary operation without physical significance. Therefore, all observables must be unaffected
by interchange of particle labels. The operators are said to be symmetric under interchange
of labels. The Hamiltonian, for example, is symmetric, since the intrinsic properties of all
the particles are the same. Let ψ(1, 2, . . . , n) be a solution to the Schrödinger equation,
(Here n represents all the coordinates, both spatial and spin, of the particle labeled with
n). Let Pij be an operator that permutes (or ‘exchanges’) the labels i and j:

Pijψ(1, 2, . . . , i, . . . , j, . . . , n) = ψ(1, 2, . . . , j, . . . , i, . . . , n).

This means that the function Pijψ depends on the coordinates of particle j in the same way
that ψ depends on the coordinates of particle i. Since H is symmetric under interchange
of labels:

H(Pijψ) = PijHψ, i.e., [Pij , H] = 0.

Therefore, Pijψ is also a solution of the Schrödinger equation with the same eigenvalue as
ψ.

Exchange Degeneracy: There are n! different permutations of n lables and all the n!
wave functions have the same energy. Some linear combination of the n! functions gives the
proper description of the system. Since [Pij , H] = 0, i.e. Pij is a constant of the motion,
the linear combination that describes the system initially, is the proper linear combination
for all time.
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The density (i.e. probability distribution) must be unaffected by P

|Pijψ|2 = |ψ|2

but that is not the case with the wavefunction, which is not an observable. Therefore, the
functions ψ and Pijψ can differ in phase

Pijψ = eiαψ

where α is a real number. Applying Pij again will undo the permutation, so we must have

Pij(Pijψ) = P 2
ijψ = ψ

that is
(eiα)2 = 1.

There are only two distinct solutions α = 0 and α = π corresponding to

Pijψ =

{

+ ψ symmetric under interchange
− ψ antisymmetric under interchange .

It turns out that both solutions are found in nature. For some particles, called Fermions,
the wavefunction should be antisymmetric (α = π). Examples are electrons, protons
and neutrons. For other particles, called Bosons, the wavefunction should be symmetric

(α = 0). Examples are photons (particles with integral spin).
The behavior of the wavefunction when composite particles (not elementary), such as

atoms, are interchanged can be deduced by counting the number of Fermions. For example:
When two 4He atoms are interchanged

2 Electrons: Pick up factor (−1)(−1) = +1
2 Protons: Pick up factor (−1)(−1) = +1
2 Neutrons: Pick up factor (−1)(−1) = +1 .

So the wavefunction should not change sign, i.e. 4He atoms behave as Bosons.
When two 3He atoms are interchanged:

2 Electrons: Pick up factor (-1)(-1) = +1
2 Protons: Pick up factor (-1)(-1) = +1
1 Neutron: Pick up factor (-1) .

So the wavefunction should cange sign, 3He atoms are Fermions.
Since hydrogen atoms are very light, one often needs to use a quantum mechanical

description of the motion of the nuclei as well as the elecrons. The wave function changes
sign if we interchange labels of two electrons (electrons are Fermions) and it changes sign
if we interchange the lables of two nuclei (the nuclei consist of one proton which is a
Fermion), but if we interchange two H atoms (both electron and proton), then we pick up
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a factor of (−1)(−1) = +1, i.e., the wavefunction does not change sign. Hydrogen atoms
behave as Bosons.

Therefore, given a function ψ(1, 2, . . . , n) that satisfies the Schrödinger equation but
does not have the right exchange symmetry, we must construct a linear combination of per-
mutations that is symmetric when we are dealing with Bosons and antisymmetric when we
are dealing with Fermions. Let P be any one of the n! permutations. It can be constructed
from a sequence of pairwise permutations. Let the number of pairwise permutations re-
quired be rP . For example:

(1, 2, 3)

(1, 3, 2) r = 1 odd

↓ P13

(2, 3, 1) r = 2 even

↓ P12

(2, 1, 3)
{

r = 3
or r = 1

odd

The normalized symmetric linear combination appropriate for Bosons is

ψ+ =
1√
n!

∑

p

Ppψ(1, 2, . . . , n) .

The index p runs over all the n! permutations. Similarly, the normalized antisymmetric
linear combination appropriate for Fermions is:

ψ− =
1√
n!

∑

p

(−1)rpPpψ(1, 2, . . . , n) .

We can define operators that perform the required linear combination. The symmetrizer,
S, is

S ≡ 1√
n!

∑

P

and the antisymmetrizer, A, is

A ≡ 1√
n!

∑

(−1)rpP .

Then ψ+ = Sψ and ψ− = Aψ.

Non-Interacting Electrons: (the simplest case)
The total Hamiltonian of the system is a sum of terms, each acting only on a single

electron:
H = H1 +H2 + . . .Hn.
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Since the Hamiltonian separates, a solution to the Schrödinger equation can be found that
is a product of one electron functions:

χ(1, 2, . . . , n) = χa(1)χb(2) . . . χ0(n) .

The one electron functions are called spin-orbitals and depend both on spin and spatial
coordinates and the product function, χ(1, 2, . . . , n), is called a Hartree Product. The
properly antisymmetrized many electron wavefunction is:

ψ(1, 2, . . . , n) = A χ(1, 2, . . . , n)

=
1√
n!

∣

∣

∣

∣

∣

∣

∣

∣

χa(1) χb(1) . . . χ0(1)
χa(2) χb(2) . . . χ0(2)

...
...

...
...

χa(n) χb(n) . . . χ0(n)

∣

∣

∣

∣

∣

∣

∣

∣

.

Applying some general rules about determinants, we can see that this wavefunction has
the required properties: When the determinant is expanded out there are n! terms half of
which have a − sign. A permutation Pij corresponds to interchanging the rows i and j,
which causes the determinant to change sign. Therefore the antisymmetry is built in. We
will frequently be dealing with determinantal wave functions in this section. It is therefore
essential to have a convenient short hand notation for such functions. Following Szabo et.
al we will use the notation

ψ(1, 2, . . . , n) = |χa(1)χb(2) . . . χ0(n) > .

The pointed bracket will therefore have a different meaning in this section than it had
previously.

If two spin orbitals are equal, for example χa = χb then two columns are the same and
the determinant vanishes, ψ = 0. That is, two electrons cannot be in the same spin-orbital.
This is referred to as Pauli exclusion.

Assuming the hamiltonian does not couple spatial coordinates and spin, the spin-
orbitals can be written as a product of spatial and spin functions. For example, if electron
1 is in spatial orbital a and has spin up, the spin-orbital is

χa(1) = φa(~r1)α(ω1) .

Since we have used the symbols of the ket notation to mean a determinantal wave function
in this section, we will be explicitly dealing with functions rather than kets. To deal with
the spin, we therefore imagine having functions α(ω) for spin up and β(ω) for spin down
and introduce, purely for convenience, a hypothetical variable, ω. Eventually, we will
always integrate over expressions involving the functions α and β and the important thing
to remember is that they are orthonormal

∫

dω α∗(ω) β(ω) = 0
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and
∫

dω α∗(ω) α(ω) = 1.

The Hartree product is truly an independent electron wavefunction. But the antisym-
metrizer introduces some correlation between electrons with parallel spin. This is called
the exchange correlation. The effect can be seen by looking at the electron density in
configuration space. Consider a two electron Slater determinant:

ψ(1, 2) = A χa(1)χb(2) = |χa(1)χb(2) > .

First assume the two electrons have opposite spins and occupy different spatial orbitals

χa(1) = φa(~r1)α(ω1)

and
χb(2) = φb(~r2) β(ω2) .

(α means spin up and β spin down). Expanding the determinant we get:

ψ(1, 2) = φa(~r1)α(ω1)φb(~r2)β(ω2) − φa(~r2)α(ω2)φb(~r1)β(ω1) .

The simultaneous probability of finding electron 1 within ~r1 and ~r1 + d~r1 and electron 2
within ~r2 and ~r2 + d~r2 is obtained from |ψ(1, 2)|2 by ‘integrating out’ the ‘spin variables’:

P (~r1, ~r2)d~rd~r2 =

∫

dω1

∫

dω2 |ψ(1, 2)|2d~r1d~r2

=
1

2

[

|φa(~r1)|2|φb(~r2)|2 + |φa(~r2)|2|φb(~r1)|2
]

d~r1d~r2 .

The first term is the product of the probability of finding electron 1 within ~r1 and (~r1+d~r1)
times the probability of finding electron 2 within ~r2 and (~r2 + d~r2) given that electron 1
occupies φa and electron 2 occupies φb. The second term has electron 2 occupying φa and
electron 1 occupying φb. Since the electrons are indistinguisable, the correct probability
is the average of the two terms. Therefore the electrons are still fully uncorrelated if their
spin is opposite.

Alternatively, assume the two electrons have the same spin, say spin down. Then

χa(1) = φa(~r1)β(ω1)

χb(2) = φb(~r2)β(ω2) .

Then the probability distribution becomes:

P (~r1, ~r2) =
1

2

[

|φa(~r1)|2|φb(~r2)|2 + |φa(r2)|2|φb(~r1)|2

− 2Re
{

φ∗a(~r1)φb(~r1)φ
∗

b(~r2)φa(~r2)
}]

.

The extra term makes the probabilities correlated. In particular P (~r1 = ~r, ~r2 = ~r) = 0,
i.e., two electrons with parallel spin cannot be found at the same point in space. A Fermi

hole is said to exist around each electron.
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Calculation of Matrix Elements using Slater Determinants:

Let ψ(1, 2, 3, . . . , N) be a normalized Slater determinant

ψ(1, 2, . . . , N) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

χi(1) χj(1) . . . χk(1)
χi(2) χj(2) . . . χk(2)

...
...

...
...

χi(N) χj(N) . . . χk(N)

∣

∣

∣

∣

∣

∣

∣

∣

where the χi are spin-orbitals. We will use the shorthand notation

ψ(1, 2, . . . , N) = |χiχj . . . χk >

where it is understood that the electron labels are in the order 1, 2, . . . , N . Because of the
antisymmetry we have, for example:

| . . . χm . . . χn . . . >= −| . . . χn . . . χm . . . > .

Given an operator O and two N -electron determinants |K > and |L >, the problem now
is to evaluate the matrix element < K|O |L >. We need to obtain an expression involving
integrals over the individual spin-orbitals. In particular we need to evaluate the energy,
< H >.

There are two types of operators that are relevant:

One electron operators:

O1 =
N

∑

i=1

h(i)

where h(i) only involves the i − th electron and the summation index, i, runs over all
electrons. For example

h(i) = − h̄2

2m
∇2

i .

Two electron operators:

O2 =

N
∑

i=1

N
∑

j>i

v(i, j) ≡
∑

i<j

v(i, j)

where v(i, j) is an operator that depends on the coordinates of both electrons, i and j. An
important example is the Coulomb interaction e2/rij and we will be using that example
in the discussion that follows.

Regarding the determinants |K > and |L >, there are three different situations:
Case 1: The two determinants are equal, i.e.,

|L >= |K >= | . . . χmχn . . . > .

Case 2: The two determinants differ by one spin-orbital: For example, replacing χm by
χp in |L >

|K >= | . . . χmχn . . . >
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|L >= | . . . χpχn . . . > .

Case 3: The two determinants differ by two spin-orbitals: For example, replacing χm by
χp and χn by χq in |L >

|K >= | . . . χmχn . . . >

|L >= | . . . χpχq . . . > .

It can easily be shown that the matrix elements of O1 are zero if |K > and |L > differ
by more than one spin-orbital, and that the matrix elements of O2 are zero if |K > and
|L > differ by more than two spin-orbitals.

It is essential to use some convenient shorthand notation for the various integrals.
Unfortunately there are two different notations in common use, that are sometimes referred
to as ‘chemists notation’ and ‘physicists notation’. We will use square brackets, [ ], for
the former and pointed brackets, < >, for the latter. The definitions are as follows:

[ij|kℓ] ≡
∫

dx1

∫

dx2 χ
∗

i (1)χj(1)
1

r12
χ∗

k(2)χℓ(2) ‘chemists notation′

=< ik|jℓ > ‘physicists notation′

and

[i|h|j] ≡
∫

dx1χ
∗

i (1)h(~r1)χj(1) ‘chemists notation′

=< i|h|j > ‘physicists notation.′

The integration variable xi denotes both the spatial and spin coordinates of electron i. We
will also use a short hand notation for the difference between two integrals in the ‘physicists
notation’:

< ij||kℓ >≡< ij|kℓ > − < ij|ℓk > .

The following table gives the matrix elements of one-electron operators in terms of
the spin-orbitals of the determinants.

O1 =
N

∑

i=1

h(i)

Case 1: |K >= | . . .mn . . . >

< K|O1|K >=
N

∑

m

[m|h|m] =
N

∑

m

< m|h|m >
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Case2 : |K >= | . . .mn . . . >
|L >= | . . . pn . . . >

< K|O1|L >= [m|h|p] =< m|h|p >

Case3 : |K >= | . . .mn . . . >
|L >= | . . . pq . . . >

< K|O1|L >= 0

The following table gives the matrix elements of the two-electron operator representing
Coulomb interaction of N electrons in terms of the spin-orbitals of the determinants.

O2 =
N

∑

i=1

N
∑

j>i

r−1

ij

Case 1: |K >= | . . . nm . . . >

< K|O2|K >=
1

2

N
∑

m

N
∑

n

[mm|nn] − [mn|nm] =
1

2

N
∑

m

N
∑

n

< mn||mn >

Case2 : |K >= | . . .mn . . . >
|L >= | . . . pn . . . >

< K|O2|L >=
N

∑

n

[mp|nn] − [mn|np] =
N

∑

n

< mn||pn >

Case3 : |K >= | . . .mn . . . >
|L >= | . . . pq . . . >

< K|O2|L >= [mp|nq] − [mq|np] =< mn||pq >

Example: To illustrate how the rules in the table come about we will work out the matrix
elements for a determinant (case 1) made up of two spin-orbitals:

|ψ >= |χ1χ2 >
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One Electron Operator:

< ψ|h(1)|ψ > =

∫

d~x1

∫

d~x2

1√
2

(

χ1(~x1)χ2(~x2) − χ2(~x1)χ1(~x2)
)

∗

h(~r1)
1√
2

(

χ1(~x1)χ2(~x2) − χ2(~x1)χ1(~x2)
)

=
1

2

∫

d~x1

∫

d~x2

(

χ∗

1(~x1)χ
∗

2(~x2)h(~r1)χ1(~x1)χ2(~x2)

+ χ∗

2(~x1)χ
∗

1(~x2)h(~r1)χ2(~x1)χ1(~x2)

− χ∗

1(~x1)χ
∗

2(~x2)h(~r1)χ2(~x1)χ1(~x2)

− χ∗

2(~x1)χ
∗

1(~x2)h(~r1)χ1(~x1)χ2(~x2)
)

.

Since the operator h(1) does not involve coordinates of electron 2 we can easily carry out
the ~x2 integration. In the first two terms, ~x2 only appears in the same spin-orbital within
each term. Therefore using the fact that both χ1 and χ2 are normalized, the integration
over ~x2 gives 1 in the first two terms. However, in the last two terms ~x2 appears in both χ1

and χ2 within each term. The integration over ~x2 then gives zero because the spin-orbitals
are orthogonal. We are left with

< ψ|h(1)|ψ > =
1

2

∫

d~x1χ
∗

1(~x1)h(~r1)χ1(~x1)

+
1

2

∫

d~x1χ
∗

2(~x1)h(~r1)χ
∗

1(~x2)

=
1

2

2
∑

m

< m|h|m > .

Similarly

< ψ|h(2)|ψ >=
1

2

2
∑

m

< m|h|m > .

Adding the two gives case 1 in the table for the one-electron operator, O1.

Two Electron Operator: O2 = 1/r12

< ψ| 1

r12
|ψ > =

1

2

∫

d~x1

∫

d~x2

(

χ∗

1(~x1)χ
∗

2(~x2)
1

r12
χ1(~x1)χ2(~x2)

+ χ∗

2(~x1)χ
∗

1(~x2)
1

r12
χ2(~x1)χ1(~x2)

− χ∗

1(~x1)χ
∗

2(~x2)
1

r12
χ2(~x1)χ1(~x2)

− χ∗

2(~x1)χ
∗

1(~x2)
1

r12
χ1(~x1)χ2(~x2)

)
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Since 1/r12 = 1/r21 we can interchange the indices on the dummy integration variables.
Therefore the first term is the same as the second, and the third term is the same as the
fourth. Using the ‘physicists’ notation for two electron integrals:

< ψ| 1

r12
|ψ > = < 12|12 > − < 12|21 > ≡ < 12||12 > .

Using the ‘chemists’ notation instead

[11|22] =< 12|12 >

and
[12|21] =< 12|21 > ,

the matrix element can be written as

< ψ| 1

r12
|ψ >= [11|22]− [12|21] .

This illustrates case 1 in the table for the two-electron operator, O2.

Example: Evaluate matrix elements for determinants that differ by one spin-orbital (case
2). Again use two spin-orbitals and choose different ones for the two determinants:

|ψA >= |χ1χ2 >

and
|ψB >= |χ3χ4 > .

We clearly have
< ψA|h(1)|ψB >= 0

because the ~x2 integration gives zero in all terms,

0 =

∫

d~x2χi(~x2)χj(~x2) when i 6= j.

This illustrates case 3 in the table for the one electron operator, O1.
The two-electron matrix element is, by definition,

< ψA|
1

r12
|ψB >= [13|24]− [14|23] =< 12||34 > .
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The energy of a determinantal wavefunction:

Using the tables, we can readily find the expectation value of the total energy in a
single determinant state |K > of N electrons

< H > =< K|H|K >=< K|O1 + O2|K >

=

N
∑

m

< m|h|m > +
1

2

N
∑

m

N
∑

n

< mn||mn >

The sums run over all the occupied spin-orbitals. The one electron operator h inclues the
kinetic energy of the electron and the interaction with all the nuclei

h(i) = −1

2
∇2

i −
∑

A

ZA

riA

The summation index A runs over all nuclei that electron i interacts with. Here the electron
charge has been set to one, e = 1, and ZA is the nuclear charge in units of the electron
charge, e. Each occupied spin-orbital χi in |K > contributes < i|h|i > to the energy and
every unique pair of occupied spin-orbitals χi, χj contributes < ij||ij >. Note that

1

2

∑

m

∑

n

< mn||mn > =
∑

m

∑

n>m

< mn||mn >

since
< mn||mn > = < nm||nm >

and
< mm||mm > = 0.
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