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Abstract. EON is a software package that uses distributed comput-
ing, systematic coarse graining and bookkeeping of minima and first
order saddle points too speed up adaptive kinetic Monte Carlo simula-
tions. It can be used to optimize continuously differentiable functions
of a large number of variables. The approach is based on finding min-
ima of the cost function by traversing low-lying, first-order saddle points
from one minimum to another. A sequence of minima is thus generated
in a path through regions of low values of the cost function with the
possibility of 'temperature’ controlled acceptance of higher lying saddle
points. Searches of first order saddle points are carried out using dis-
tributed computing and the minimum-mode following method. Coarse
graining which involves merging local minima into composite states and
the recognition of previous search paths and saddle points are used to
accelerate the exploration of the cost function. In addition to obtaining
an estimate of the global minimum, a simulation using this approach
gives information about the shape of the cost function in the regions
explored. Example applications to the simulated annealing of a cluster
of water molecules on a platinum metal surface and grain boundary in
copper are presented.
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1 Introduction

Annealing has for a long time been used to improve the atomic scale structure
of materials by eliminating strain and defects. Glassblowers, for example, use
annealing to prevent new glass structures from cracking. When a material is
annealed, its temperature is brought to an elevated level to accelerate thermally
activated mobility of defects. However, the elevated temperature can also in-
crease the population of defects. By cooling slowly enough from the elevated
temperature, the defects become less stable while still being mobile enough to
get annihilated. The result of this treatment is a lowering of the energy as the
arrangement of the atoms is optimized. If the cooling is slow enough, all defects
will be eliminated and the global energy minimum reached. This, however, my
require impossibly long time.

Optimization of functions of many variables is often carried out using com-
puter simulated annealing algorithms that mimmic roughly the annealing of
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materials. The 1983 article by Kirkpatrick, Gelatt and Vecchi [1] where such
an approach was promoted and applied to circuit design now has over 12000
citations. The cost function to be minimized is taken to give the ’energy’ of the
system. A Monte Carlo algorithm based on random numbers is used to simulate
an annealing process were changes in the arguments of the cost function are ac-
cepted or rejected in accordance with a fictitious ‘temperature’. The reason for
introducing temperature is to introduce and control the probability of accepting
increases in the cost function since they may be an essential intermediate step
to ultimately reach lower values.

The Adaptive kinetic Monte Carlo algorithm (AKMC) [2] can be used to
accelerate simulations of the time evolution in materials without the need for a
priori information about possible transitions in the system. This is unlike the
regular KMC algorithm where the mechanism and rate of possible transitions
is needed as input [3]. It is also different from the Metropolis Monte Carlo al-
gorithm [4] in that the changes made to the variables represent likely transition
mechanisms rather than just random moves and one can estimate the ’time’
evolved at each iteration. The AKMC method has been applied successfully to
several different problems for example annealing of grain boundaries in met-
als [5], reactions at surfaces [6] and surface annealing during crystal growth [7].
In AKMC the possible transitions are found by locating first-order saddle points
on the energy surface that are in the vicinity of currently known local minima.
The probability of the possible transitions decreases exponentially as a function
of the height of the saddle point over the current minimum. A random number
is used to pick the next transition according to the relative rates of possible
transitions. Several additional features in the implementation have been devel-
oped to speed up the simulation such as (1) distributed computing using BOINC
were hundreds of computers connected by internet can be used simultaneously
for the saddle point searches; (2) systematic coarse graining were local minima
separated by low-lying saddle points are grouped together to form composite
states; (3) bookkeeping of previously found saddle points and search paths to
suggest new, short searches and terminate searches that are likely to converge to
known saddle points. The software package EON [8] has been written to carry
out such simulations. While it has so far been applied to studies of atomic scale
systems, it can in principle be used for optimization of any cost function where
first derivatives are continuous and can be evaluated readily. Since the algorithm
follows regions where the cost function is relatively small, this approach may be
particularly useful when the calculation of high values of the cost function can
be problematic because of, for example, convergence problems.

In this article we describe briefly the algorithms on which the EON software
is based and discuss two applications: (1) ordering of water molecules in a cluster
on a Pt surface, and (2) atomic ordering at a grain boundary in Cu. We conclude
with some remarks on the applicability of this software to other, more general
optimization problems.
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2 The cost function

The cost function is assumed to be a continuously differentiable function of N
variables

fRY SR (1)
In typical applications of AKMC such as the ones described below, N is on the
order of 103. The cost function defines a surface in high dimensional space and
the goal is to find the global minimum, or a representative minimum if there
are several roughly equally low minima. When navigating on the surface, the
extremal points where Vf = 0 and the function value is low are of particular
interest, namely local minima and first order saddle points. At a minimum, the
Hessian matrix, H = %, has only positive eigenvalues but at a first order
saddle point it has one negative eigenvalue. Hereafter, a saddle point will be
taken to mean first order saddle point. An optimal path is such that at each
point on the path the gradient is pointing along the path [9, 10]

Vf-Vf-#7 =0 (2)

were 7 is the normalized tangent vector for the path at that point [11]. A first
order saddle point is a maximum along an optimal path between two minima.
We assume that the gradient V f of the cost function can be evaluated readily
(recent developments in automatic differentiation [12] could prove valuable in
this context), but second derivatives are not needed. The method used to find
first order saddle points involves a minimization using a transformed gradient
where the component along the minimum mode of the Hessian is reversed

Vil =V f —2(Vf-0y)on (3)

Here, v, is a normalized eigenvector corresponding to the minimum eigenvalue,
A, of the Hessian. This projection locally transforms the gradient in the vicinity
of a first order saddle point to a gradient characteristic of the vicinity of a
minimum and the conjugate gradient method (without line search [13,14]), for
example, can be used to converge on the first order saddle point. The minimum
mode vector is found using the dimer method [13] without having to evaluate
the Hessian or any of the second derivatives. Given a local minimum, a small
random change of the variables away from the minimum is first made and the
minimum mode following (MMF) method is then used to climb up the cost
function surface and converge on to a saddle point. For more detail about this
method and its performance, see refs. [14].

Once a search trajectory exits the region in the neighborhood of a minimum
where all eigenvalues are positive, the MMF search path is stable and determin-
istic, i.e. a given point outside the positive region will converge onto a certain
saddle point. A basin of attraction can be defined as illustrated in Fig. 1.

3 Adaptive Kinetic Monte Carlo algorithm

The kinetic Monte Carlo method (KMC) [3] is an iterative algorithm where a
Markov chain of states is generated using a predefined rule for transitions and
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Fig. 1. Left panel: A model cost function and paths from multiple saddle point searches
carried out with the MMF method. Minima are denoted by a white dot and saddle
points by a white 4+ with arms pointing along the eigenvectors of the Hessian. Shaded
regions are basins of attraction of the saddle points. For each local minimum, several
paths (solid lines) leading to saddle points are generated using the MMF method. The
paths tend to merge as they approach a saddle point. Searches that lead to saddle points
outside the figure are not shown. Right panel: Schematic illustration of an iteration in
the AKMC method. For each saddle point, a rate can be evaluated from Eqn. 6. The
normalized rate for each of the three possible transitions gives a transition probability,
represented by the colored regions in the column, and a random number can be used
to pick the next transition.

their rate constants
CKMC:{f07f17f27"'f7]}' (4)

The mechanism and probability of transitions needs to be read in as input before
the simulation starts. In the adaptive kinetic Monte Carlo method (AKMC) [2]
this input is not required but at each state, which is a minimum of the cost
function, multiple low lying saddle points are found by MMF searches starting
from slightly different starting points (as illustrated in Fig. 1) where the displace-
ments are drawn from a Gaussian distribution . Each saddle point or rather the
optimal path going through the saddle point, represents a transition mechanism
and a possible new state in the Markov chain. After several low lying saddle
points have been found, a random number in the interval [0,1] is used to pick
one of the possible transitions according to the relative rates. By repeating this
procedure, a chain of minima and associated saddle points is generated

CARME — L LF32, JT Y ASsP 157 A F ) - (5)

The rate constant for a transition from ¢ —1 to ¢ via saddle point 7 is an expo-
nential function of the value of the cost function at the saddle point, consistent
with Boltzmann distribution of thermal energy
fP = f—m’f‘}

K3 11—

(6)

ki = A exp {— T

where T is the temperature and A is some prefactor which can in the simplest
approach be taken to be the same for all transitions. In transition state theory
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(TST) of thermal transitions on an energy surface [15], the rate constant is
estimated from the probability of a thermal fluctuation that brings the system
to a transition state separating the initial state from other states multiplied
by the rate of crossing the transition state. After making second order Taylor
expansions of the cost function about the saddle point and the minimum, the
expression for the prefactor becomes [16]

D ..

AHTST _ [T v (7)
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I

where vg ; is the frequency associated with eigenmode j at the minimum and
Vsp,; at the saddle point. The mode with negative eigenvalue at the saddle point
is not included. This expression does require the evaluation of the Hessian at the
minimum and at the saddle point. It assigns higher probability for transitions
where the ’valley’ widens when going from the minimum to the saddle point
and lower probability if the valley narrows. But, typically the value is similar for
transitions in a given system and AKMC simulations are sometimes carried out
using just a fixed prefactor, thereby avoiding the evaluation of second derivatives
all together. The saddle point searches are continued until a predefined criterion
has been reached, for example that the lowest saddle point has been found a
certain number of times, or that no new saddle point in the relevant range
(defined by the temperature) has been found in the last n searches where n is
some predefined number.

From all the successful saddle point searches from the current minimum, ¢, in
the Markov chain (some searches may not converge, and some may converge to
a saddle point that is not directly connected by an optimal path to the current
minimum), a table of possible transitions and their normalized probability, P;
is constructed. This is illustrated in Fig. 1. A random number is then used to
pick one of the possible transitions and the system advanced to a new state,
found by sliding down forward along the optimal path from the saddle point.
From the Poisson distribution of residence time, the expectation value of the
time evolved in each iteration can be estimated to be 7 = 1/, k; where the
sum extends over all possible transitions from this state. Random sampling from
this distribution is made by picking another random number, x, in the interval
[0,1] and estimating the time increment as 7 = —log x/>_, ki.

3.1 Distributed computing

The most computationally demanding part of an AKMC simulation is the search
for saddle points. But, each search is independent of the others and can for large
systems take several minutes so these can be distributed to several computers
connected by internet. The EON software is based on such a distributed comput-
ing approach [8]. In the first version, the communication middleware Mithral was
used [17] but a more recent version of EON is based on the BOINC communica-
tion framework [18]. In the later implementation, the client software is executed
as a remote procedure and the communication uses http. BOINC offers stability
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of the central server as the core parts are a SQL database and an Apache server.
The client and server are decoupled which is particularly useful when debugging
since the client calculation can be run as stand-alone calculation and ordinary
debugging tools applied.

Even though BOINC supports distributed computing using public comput-
ers, we typically only run EON clients on local resources in clusters dedicated
to research where EON-clients get executed when nodes become idle. Currently,
EON is being extended to work also with the ARC-middleware [19] which will
enable execution of EON on the Nordic data grid [20] and it is, furthermore,
being extended to run on Amazon’s ’elastic cloud’ [21].

A rough estimate of the performance of a distributed AKMC simulation using
EON carried out on a cluster of 2.8 GHz Intel Pentium 4 computers with GB
internet connection shows that if a calculation on the client takes ca. 5 min. then
the server can on average keep 100 clients busy. When saddle point searches are
too fast for the server to keep up, two or more searches can be sent to the client
at a time, thus saving on the overhead in the distribution of the tasks.

3.2 Coarse Graining

Kinetic Monte Carlo simulations, including AKMC, often get stuck in a small
subset of states. This happens, for instance, when two states are connected by a
transition that is much faster than any transition away from the pair. Essentially,
the problem arises where there is large disparity in rate constants. To address
this problem, a coarse graining algorithm has been developed and implemented
in EON. The problem is two-fold: (1) to automatically identify such sets of states
and group them into a composite state, and (2) devise an algorithm for escaping
the composite state and estimating the time that would have been spent there
in the absence of coarse graining.

The first issue is addressed by defining a reference value of the cost function
for each state, f{? which starts out being equal to the minimum value f;? =
fmn. Each time this minimum is entered and added to the Markov chain, the
reference value is incremented by a small amount, €

= o
€ = € fsp _ fmin (8)
i low
where f{" is the lowest minimum found in the simulation so far and ¢, is some

constant chosen for the simulation (the results of the simulation are unaffected
by the choice of €y over several orders of magnitude as illustrated in a test case
below). When a transition occurs with f;* < fi9,, then state i is merged with
state i — 1 to form a new composite state. If either of the states ¢ or ¢ — 1 or both
already belong to a composite state, then the composite states are extended
by an additional state or two composite states are merged depending on the
situation.

This process of merging states into composite states is illustrated in Fig. 2.
The simulation starts at the state corresponding to the second lowest minimum
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and there is a high saddle point separating it from the global minimum. Only
after all the minima close to the initial minimum have been grouped into one
large composite state, can the high saddle point be overcome and then the global
minimum is found after only a few iterations. This example illustrates how EON
could be used to find the global minimum of a cost function where multiple
local minima are present and one or more high saddle point separate groups of
minima. When a composite state has been formed from a set of minima, the
time evolution within that set of states becomes irrelevant and only two things
need to be determined: (1) From which one of the local minima will the system
escape the composite state? (2) How long time will the system spend in the
composite state before escaping. These questions can be answered rigorously
using absorbing Markov chain theory [22].

Cost function [f(r)]

Variable [r]

Fig. 2. Example of a cost function of one variable where the annealing simulation starts
in a basin consisting of several local minima but is separated by a large barrier from
the global minimum. Without coarse graining the simulation would be stuck for many
iterations between the initial state (green star) and the adjacent shoulder state. These
two are the first to get merged into a composite state (1). Then a new composite state
(2) is formed, also by merging two minima. In the third merger the two composite
states are combined into a composite state with four minima (3). Eventually, the large
barrier is overcome when all 10 minima have been merged into one composite state
(9). Then, the global minimum (red star) is quickly reached.

Test: Annealing in one-dimension. A problem where the coarse graining
algorithm was tested on a cost function of one variable is illustrated in Figure 3.
An AKMC simulation both with and without coarse graining was used to esti-
mate the time it takes the system to go from a high initial state minimum to the
global minimum, traversing a high barrier. The results are presented on Table 1
and show that the coarse graining does not affect the estimated time, even as
the basic increment, €, is varied over several orders of magnitude.

This simple test illustrates how the coarse graining speeds up the annealing
simulation without affecting the results, in particular the estimated time. In
this case, the acceleration is up to 100 fold. But, more importantly, the coarse
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graining can make a simulation doable while it is impossible without the coarse
graining (for example, this problem at a significantly lower temperature). Fig. 3
shows how the number of iterations needed in a KMC simulation increases for
the simple one-dimensional test case as the temperature is lowered. Without the
coarse graining, the number of iterations needed to reach the global minimum
is about three orders of magnitude larger at a temperature of 0.007 than at 0.1,
but with the coarse graining there is only less than a factor of 2 increase.

Energy
)
(]

-
o
(=]

-
(=]

Average Number of Transitions

1 10 100 1e3 1e4
Time

Fig. 3. A model cost function of one variable used to test the coarse graining algorithm.
Starting in state H, the AKMC simulation with and without coarse graining was used
to estimate the time needed to reach the global minimum, L. The results are given in
Table 1 and show that the coarse graining does not affect the estimated time, even as
the basic increment, ¢, is varied over many orders of magnitude. Right panel: Average
number of transitions (iterations) needed in the simulations versus the estimated mean
time needed to go from point H to point L for different ’temperatures’. While the regular
KMC needs many more iterations at low temperature, the coarse grained simulation
only requires slightly more.

Table 1. The elapsed time and number of transitions required to move from local
minimum H to global minimum L in Fig. 3, averaged over 1000 runs at a ’temperature’
of 0.09, with no coarse graining (no CG) and with using various values of the basic
increment, €p in the coarse graining algorithm. The prefactor was set to A = 10.

log €o Time Ave. Trans.
no CG 708 £ 23 1547 + 51
-5 670 £ 20 1287 £+ 31
-4 684 + 21 405 £ 6
-3 683 £ 18 7141
-2 698 £ 13 15+ 0

3.3 Other tricks to improve efficiency

Each minimum visited is stored, i.e. the value of the variables and the value of
the cost function. When a minimum is revisited, new saddle point searches are
not carried out unless the reference energy has increased beyond the region where
good sampling of saddle points has been obtained previously. Also, since search
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paths tend to merge together close to the saddle points, as shown in Fig. 1
intermediate points along search paths in the basin of attraction (where one
eigenvalue is negative) are stored and used to terminate later searches that come
close to a previous search path. Only the values of variables that change most
along the path are stored. We refer to this as the ’skipping-path’ method [23].
Around each of the stored intermediate points, a spherical region with small
radius is defined and any later search that comes within one of the spherical
regions gets terminated and the intermediate points of that search added to
the list. When thorough sampling of saddle points is carried out, this can save
substantial computational effort [23].

In some systems the transitions are 'local’ in that they only involve apprecia-
ble change in some small subset of the variables. Then, one transition may not
affect strongly transitions involving another set of variables. An example of that
from the atomic scale simulations is a rearrangement of atoms in one part of the
simulated system which only has minor effect on the atoms in another part of the
system, far away. The values of variables at a saddle point that was found before
a transition took place could, therefore, still be close to values of these variables
at a saddle point after the transition if the transition mainly involved changes
in other variables. The stored saddle points can, therefore, be good guesses for
new saddle point searches where only a few iterations in the MMF method are
needed to re-converge on saddle points. This can save substantial amount of
computational effort [24].

4 Applications

Two applications of simulations with EON are presented here briefly, both in-
volving the optimization of the structure of atomic scale systems. In the first, a
cluster consisting of 7 water molecules adsorbed on a Pt(100) surface is annealed
to find the optimal structure. The interaction potential function was developed
by Zhu and Philpott [25] but the interaction between the water molecules and
the surface has been scaled down to match recent density functional theory cal-
culations [26]. The initial configuration is generated by adding two molecules
to the optimal configuration of a cluster consisting of five molecules, which is a
pentagonal ring. The structure is shown in Fig. 4. A shallow minimum slightly
higher in energy has one of the molecules rotated in such a way that a hydrogen
atom gets pointed away from the surface. The AKMC simulation jumps between
those two states several times until eventually the two are joined in a composite
state. A significant barrier is involved in breaking up the pentagonal ring to
form a rectangular core of 6 molecules with one molecule weakly bound to the
edge, but this leads to substantial lowering of the energy. After that, the AKMC
simulation flips the under-coordinated edge molecule and this is repeated until
the two configurations get merged in a composite state.

The second example comes from a study of a twist and tilt grain boundary
in copper. The results of an extensive study have been presented elsewhere [5]
but here we present for the first time the improvement obtained by using coarse
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graining. A potential function of the EMT form is used here to describe the
intermolecular interactions [27]. The simulated system consists of 1309 atoms
but the two outermost layers parallel to the grain boundary are kept frozen so
the cost function (the energy of the system) is a function of 3567 variables, three
coordinates for each movable atom. The goal is to gain information about the
atomic arrangement at the grain boundary. Away from the grain boundary the
atoms are in a FCC crystal arrangement. One of the questions addressed in these
studies is how wide a region around the grain boundary atoms are anomalously
coordinated and what arrangement of atoms is most characteristic for the grain
boundary. Since the atoms that are not in an FCC crystal arrangement are the
focus here and are most likely to be involved in transitions, the initial random
displacement is generated in a spherical region including about 30 atoms centered
on a randomly picked, non-FCC atom. Typically, 1 to 10 atoms are displaced by
more than half an Angstrgm in a single transition [5].

The excess energy due to the non-FCC arrangement of atoms at the grain
boundary, the interface energy, is shown as a function of iterations in the sim-
ulation for a temperature of 300 K in Fig. 4. At first, the coarse graining was
turned off and while some transitions occurred and annealing took place, the
simulation was not making any progress for a long time. The energy in the last
200 iterations is shown far to the left in the figure. The system is going back and
forth between a few states with interface energy between 81.8 and 82.0 meV/ Az
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Fig. 4. Left panel: Simulation of a cluster of seven water molecules on a Pt(100) surface.
The labeled horizontal dashed lines show the reference level, f<9, after 100 and 200
transitions. First, the two states on the far left are merged into a composite state.
Then, the pentagonal ring breaks up and a rectangular hexamer core is formed with
one water molecule at the edge. The difference between the two deep minima to the
right is just orientation of the low coordinated molecule. This kind of rotational flipping
which does not represent a change in the energy or the structure is a significant problem
in many simulations when coarse graining is not used. Right panel: Interface energy
in a twist and tilt grain boundary in copper as a function of iterations in an AKMC
simulation. At the iteration marked as ’'0’, the coarse graining algorithm is turned on.
Before that, the simulation was caught in a subset of 11 states and little progress was
made. After coarse graining was turned on, a composite state of these minima was
formed and the simulation reached higher energy minima which lead to a significant
annealing event. By applying coarse graining, only 700 iterations were required, as
compared to 300.000 iterations without coarse graining.
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Then, coarse graining is turned on (iteration labeled ’'0’) and a composite state
is formed which enables the simulation to get to higher energy states, up to 82.4
meV/ A? and eventually find a transition that reduces the energy significantly,
an annealing event. It took less than 700 iterations from the time the coarse
graining was turned on and until the annealing event was observed. The same
kind of annealing event was also observed by continuing the simulation without
coarse graining, but then 300.000 iterations were needed.
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