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Thermal rate constants are calculated for the H + CH4f CH3 + H2 reaction employing the potential energy
surface of Espinosa-Garcı́a (Espinosa-Garcı́a, J. J. Chem. Phys. 2002, 116, 10664). Two theoretical approaches
are used. First, we employ the multiconfigurational time-dependent Hartree method combined with flux
correlation functions. In this way rate constants in the range 225-400 K are obtained and compared with
previous results using the same theoretical method but the potential energy surface of Wu et al. (Wu, T.;
Werner, H.-J.; Manthe, U. Science 2004, 306, 2227). It is found that the Espinosa-Garcı́a surface results in
larger rate constants. Second, a harmonic quantum transition state theory (HQTST) implementation of instanton
theory is used to obtain rate constants in a temperature interval from 20 K up to the crossover temperature
at 296 K. The HQTST estimates are larger than MCTDH ones by a factor of about three in the common
temperature range. Comparison is also made with various tunneling corrections to transition state theory and
quantum instanton theory.

1. Introduction
Thermal rate constants are of central importance in many

chemical contexts. Accurate rate constants are usually obtained
by experimental measurements, but for simple systems theoreti-
cal calculations are becoming increasingly competitive. Presently
reactions of methane with different atoms provide the benchmark
examples which define the state of the art for accurate, first
principle based reaction dynamics studies. The H + CH4f CH3

+H2 reactionhasbeen in the focusof theoreticaldevelopment.1-23

Considering in particular rigorous quantum dynamics calcula-
tions for reaction rates, calculations for the six-atom reactions
H + CH4f CH3 + H2,19-23 its isotopically substituted variants
D + CH4

23 and CH3 + H2/HD/D2,24 and the O + CH4f CH3

+ OH reaction26 represent the present limit. The computational
method used in these studies combines the multiconfigurational
time-dependent Hartree approach (MCTDH)27,28 with flux
correlation functions.29-31 These quantum dynamics studies are
quite demanding, and it is of interest to develop less compu-
tationally demanding and still reliable methods for rate constant
calculations. To be able to treat tunneling in larger molecular
systems, transition state theory (TST) based approaches seem
to be ideal. Following this idea, the present work will investigate
the recently developed harmonic quantum transition state theory
(HQTST)32 implementation of instanton theory, apply it to the
H + CH4 reaction, and compare the results with accurate
quantum dynamics results and results from other TST-based
approaches.

In transition state theory a dividing surface is defined which
minimizes the flux between reactants and products. Conventional
harmonic transition state theory approximates the dividing

surface as a hyperplane that contains the saddle point on the
minimum energy path that connects the reactants and products.
TST completely neglects the effects of tunneling and recrossing
of the transition state. In a proper quantum treatment of a
chemical reaction it is not possible to separate tunneling from
recrossing as they are intrinsically interwoven. HQTST ap-
proximately accounts for these effects by lowering the effective
barrier height for the reaction. We assess here how well this
works for the H + CH4 f CH3 + H2 reaction.

Within the context of transition state theory, quantum
delocalization effects can be added in all bound degrees of
freedom by using quantum partition functions. This is most
commonly done by using the harmonic approximation and
calculating the vibrational partition functions for a collection
of 1D quantum harmonic oscillators. However, motion through
a barrier cannot be treated in such a straightforward way. There
are two main approaches to dealing with quantum tunneling in
TST. The most common approach is to calculate a tunneling
correction factor to conventional (variational) TST. This is done
by defining tunneling paths and calculating the semiclassical
imaginary action along these paths. This was first suggested by
Marcus33 and has since then been developed into a successful
suite of methods by Truhlar and co-workers34-39 implemented
into the POLYRATE program.40 Alternatively, different versions
of quantum transition state theory (QTST) have been developed.
Various approaches for approximations have been tried, and
those based on the imaginary time Feynman path integral41,42

(FPI) have been particularly successful,43-49 which is also the
basis of HQTST. These methods require the specification of
some dividing surface separating reactants and products just as
in conventional TST. However, the Heisenberg uncertainty
principle makes it impossible to have a well-defined dividing
surface in configuration space since both the positions and
momenta of the particles have to be exactly defined at the same
point. This has made it necessary to extend the definition and

† Part of the “George C. Schatz Festschrift”.
* Corresponding authors, nyman@chem.gu.se and hj@hi.is.
‡ University of Gothenburg.
§ University of Iceland.
| Universität Bielefeld.

J. Phys. Chem. A 2009, 113, 4468–44784468

10.1021/jp811070w CCC: $40.75  2009 American Chemical Society
Published on Web 03/10/2009

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

W
A

SH
IN

G
TO

N
 o

n 
Se

pt
em

be
r 1

6,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
): 

M
ar

ch
 1

0,
 2

00
9 

| d
oi

: 1
0.

10
21

/jp
81

10
70

w



develop new methods to identify a dividing surface for quantum
mechanical systems.

One particularly simple version of FPI based rate theory is
the instanton theory. Instanton theory was developed indepen-
dently by researchers in chemical physics50 and quantum field
theory51,52 in the 1970s. It has found widespread use in quantum
field theory53,54 but has so far only found limited use in the
chemical physics community. The theory is formally equivalent
to the ImF55-57 (imaginary free energy) theory of the rate of
escape from metastable states. Miller and co-workers58 applied
instanton theory to the collinear H + H2 reaction and found
good agreement with accurate quantum dynamics results.
Benderskii and co-workers59 recognized the potential of instan-
ton theory for low-temperature chemical systems and applied
it to two-dimensional test problems. Due to problems of
implementing an efficient routine to calculate periodic orbits,
“instantons”, on the upside-down potential, which is the
traditional approach, the method was not used for studies of
systems with more degrees of freedom. Siebrand and co-
workers60,61 have developed the approximate instanton method,
in which one-dimensional (1D) motion along the reaction path
is separated from the rest of the system. It is then more or less
trivial to find the instanton along this reaction path. To calculate
rate constants the instanton action is needed and this is done
by correcting the basic 1D instanton action by terms from the
modes that are orthogonal to the reaction path. This method
has been successfully applied to calculating unimolecular rate
constants and tunneling splittings in relatively large molecular
systems in an efficient manner.

The recently developed harmonic quantum transition state
theory (HQTST)32 is an implementation of instanton theory
which is based on the fact that the instantons are stationary
points of the Euclidean action or more precisely (first-order)
saddle points.62 By basing the implementation on imaginary time
FPIs, it has been possible to recast the search for an instanton
as an efficient saddle-point search on a generalized temperature-
dependent potential energy surface or an “action surface”. This
has made it possible to apply instanton theory to multidimen-
sional systems without invoking any approximations other than
purely numerical ones. HQTST generally requires much fewer
force calls than methods where a full (Monte Carlo) evaluation
of properties using FPIs is required. The HQTST method can
therefore be combined with first principles evaluations of the
forces. While this aspect is not used in the present work, it
suggests that HQTST may become highly useful in many
contexts of rate constant calculations. HQTST has previously
been found to perform well, but somewhat underestimate the
rate constants at low temperature, for one- and two-dimensional
model problems where accurate results are available.32 It is thus
of great interest to evaluate HQTST also for real chemical
reactions that involve more degrees of freedom.

The TST-based theories discussed above all require different
approximations, and it is necessary to validate the accuracy of
the approximate approaches by comparing with exact quantum
dynamics results. Tests for the H + CH4 reaction rate have
already been provided for the tunneling corrected TST approach
of Truhlar and co-workers.12 These tests employed the
Jordan-Gilbert potential energy surface,63 which was used for
the first accurate quantum dynamics calculation studying the H
+ CH4 reaction.19-21 More recent work applying the quantum
instanton approach of Miller et al.49 to the H + CH4 reaction,64

however, employed the newer potential energy surface of
Espinosa-Garcı́a16 (PJEG). The main goal of the present work
is to apply the HQTST approach to the H + CH4 reaction and

to compare the results with accurate quantum dynamics results
and the results of the other TST-based theories. Since quantum
instanton results are available only for the PJEG PES, this PES
will be employed in the present work. However, accurate
quantum dynamics results for this PES have not been published
up to now. Therefore in the present work such calculations using
the MCTDH-flux correlation function approach will be per-
formed. These results then also allow for a comparison of rate
constants for the PJEG PES with the rate constant obtained for
the more accurate WWM PES.22,23

The paper is organized as follows. Section 2 discusses the
two theoretical approaches employed in this work. The section
is divided into two parts, where part 1 briefly describes the
MCTDH reaction rate calculations and part 2 briefly describes
the HQTST calculations. Section 3 gives numerical details, and
in section 4 results are presented and discussed. We conclude
with a summary and some final remarks.

2. Theory
2.1. Quantum Dynamics Calculations of Reaction Rate

Constants. The present work uses the approach introduced in
ref 65 to accurately calculate reaction rates by quantum
dynamics simulations. The approach combines MCTDH wave
packet propagation27,28 with the use of flux-correlation func-
tions29-31 and an efficient evaluation of ensemble averages.66,67

As a result, the cumulative reaction probability for vanishing
total angular momentum is obtained for the given PES.

Assuming that the J-shifting68 approximation is valid, then
the rate constant k(T) at a temperature T is calculated from

where Qrot
‡(T) is the rotational partition function for the

transition state, Qr(T) is the reactant partition function, E is the
total energy, and N(E) is the cumulative reaction probability
for total angular momentum J ) 0. The reactant partition
function can be determined by accurate quantum dynamics
calculations employing MCTDH propagation in imaginary
time.69 However, typically sufficiently accurate Qr(T) values can
be obtained by calculating only the zero point energy exactly,
employing the harmonic approximation to describe vibrational
excitations, and using a classical approximation for rotational
and translational motions.69,70 This simplified scheme yields a
sufficiently accurate partition function of CH4 in the temperature
range investigated in the present work,69 and it is therefore
employed here.

The cumulative reaction probability obtained from the
quantum simulations can be written as a sum of several terms
Ni(E): N(E) ) ∑i Ni(E), 71 where each Ni(E) corresponds to a
pair of eigenstates of the thermal flux operator. The contribution
Ni(E) to N(E) can be viewed as the contribution of the ith
vibrational state of the activated complex. It is thus possible to
use N0(E) to calculate a contribution k0(T) to k(T) from the
ground vibrational state of the activated complex.

Using a harmonic approximation for the vibrational partition
function of the transition state referenced to the ground
vibrational state of the activated complex, Qho

‡, we can write

k(T) )
Qrot

‡(T)

2πpQr(T) ∫ dE N(E) exp(-E/kBT) (1)

k0(T) )
Qrot

‡

2πpQr
∫ dE N0(E) exp(-E/kBT) (2)
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If the Ni(E) values obey

then eq 3 is identical to eq 1. The expression in eq 4 can
therefore be considered as a vibrational analogue to the J-shifting
approximation68 for rotational motion, meaning that the vibra-
tional motions orthogonal to the reaction path are dealt with as
the overall rotation of the complex in the J-shifting approximation.

The approximate expression for the rate constant, eq 3, can
easily be related to harmonic transition state theory (HTST).
HTST assumes that N0(E) ) Θ(E - Eb), where Θ is the
Heaviside step function and Eb is the vibrationally adiabatic
ground-state barrier height in the harmonic approximation. Using
this we have that ∫ dE N0(E) exp(-E/kBT) ) kBT exp(-Eb/kBT)
and obtain

Finally, it should be noted that if the harmonic approximation
is used for the transition state, it should also be used for the
reactant partition function.70 However, if the energy of the
vibrational ground state of the activated complex includes
anharmonic effects, as in eq 3, then this should also be the case
for the reactant partition function.

2.2. Harmonic Quantum Transition State Theory Calcu-
lation of Reaction Rate Constants. The harmonic quantum
transition state theory (HQTST) implementation employed here
builds on the instanton implementation of Arnaldsson and
Jónsson.32 They have applied HQTST to one- and two-
dimensional model problems and to reactions occurring on solid
surfaces and in the gas phase.32 For low-dimensional systems,
analytic potentials were used, but tunneling in multidimensional
systems was studied using forces calculated directly by density
functional theory (DFT). This shows that HQTST is also of
practical use in a “direct dynamics” implementation, where rate
calculations are interfaced with an electronic-structure code.
Here we give a brief summary of the HQTST method with
emphasis on the features of relevance to the present study.

Quantum mechanical partition functions may be evaluated
as the trace of the density matrix. That is, only the diagonal of
the density matrix is needed, and using Feynman path integrals
this means that only closed paths have to be included. These
closed Feynman paths (CFPs) have a period of p/(kBT). In HTST
the rate constant is obtained by evaluating partition functions
at the point of highest energy along the minimum energy path
(MEP), which is a saddle point, leading from reactants to
products. This choice is made as the MEP is the path of highest
statistical weight in classical systems. The quantum mechanical
analogue of the MEP is the minimum action path (MAP).46,72

It connects reactants and products such that the Euclidean action
along the path is minimized. This is the path that contributes
most to the quantum partition function. Along the MAP, each
point is a CFP. The CFP of maximum action along the MAP is
a saddle point of the action and is called the instanton.

The Euclidean action of the CFP can be written42

where H is the classical Hamiltonian of the system and τ is the
magnitude of imaginary time. In its discretized form the CFP
can be represented by a cyclic chain of images of the system,73

or “system replicas” or “beads”, connected by temperature-
dependent harmonic spring forces. Using this representation the
Euclidean action is calculated as46

where the spring constants are given as

P is the number of images, qk are coordinates of image k,
Veff(q, T) is an effective potential energy surface, and µ is the
mass of the degree of freedom in question. Subscript mod results
from the path being closed so that image P is connected to image
1. The rightmost part of eq 7 makes it clear that weighting each
closed path in the quantum partition function by exp(-SE(q)/p)
is equivalent to weighting by exp(-Veff(q, T)/(kBT)).

Above the crossover temperature43,59,62

all images collapse onto a single point, the classical saddle point
along the MEP. Here ω‡ is the magnitude of the imaginary
frequency at the classical saddle point. This collapse results from
the spring constant ksp becoming larger than the curvature of
the real potential. Below Tc tunneling is the dominant transition
mechanism.

As mentioned above, the instanton is a saddle point of the
Euclidean action. Using a discretized CFP, the corresponding
“action surface”, given by SE(q), has NP dimensions where N
is the number of degrees of freedom of the physical system
and P is the number of images in the CFP. To find the instanton
therefore requires a saddle-point optimization in an NP-
dimensional space.

In HTST the rate constant is found by expanding the potential
energy surface to second order at the saddle point. An analogous
procedure in the quantum case is to expand the action, or
equivalently Veff, to second order at the instanton, which results
in an instanton rate constant45

Here index inst stands for instanton, ∆τ ) τ/P ) p/(kBTP) is
the imaginary time step, and λj are generalized vibrational
frequencies of the instanton chain. For a system of N degrees
of freedom there are NP - 2 real nonzero frequencies, one

kho(T) )
Qrot

‡Qho
‡

2πpQr
∫ dE N0(E) exp(-E/kBT) (3)

Ni(E) ) N0(E - (Ei - E0)) (4)

kHTST(T) ) kBT
Qrot

‡Qho
‡

2πpQr
exp(-Eb/kBT) (5)

SE ) ∫0

p/kBT
H dτ (6)

SE(q) ) p
kBT∑k)1

P

[ksp(T)

2 |qmod(k,P)+1 - qk|2 +
V(qk)

P ] )
pVeff(q, T)

kBT
(7)

ksp(T) ) µP(kBT

p )
2

(8)

Tc )
pω‡

2πkB
(9)

kinst )
1
Qr" S0

2πp
1

∆τ|∏ j
′ λj|

exp[-Veff(qinst, T)/(kBT)] (10)
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imaginary frequency corresponding to the unstable instanton
mode, and one zero-valued frequency corresponding to the “zero
mode” resulting from a rotation of the chain of images, i.e.,
shifting the images along the instanton. The prime on the product
of frequencies in eq 10 indicates that the zero frequency is not
included in the product. Instead, with the zero mode there is
associated an action

which is twice the free-particle instanton action.
Expanding to second order is equivalent to using the harmonic

approximation for the contributions to the partion function from
each system replica of the instanton. The expansions are not
done at the saddle point on the classical potential but at the
geometries of the system replicas. These geometries reflect the
full potential energy surface, not just a harmonic approximation
around the classical saddle point. The assumption in instanton
theory is that the instanton is the dominant tunneling path and
only paths in its vicinity will contribute significantly to
tunneling. Instead of evaluating the action of these additional
paths explicitly, a harmonic expansion is made along the
instanton to calculate the rate constant in an efficient, albeit
approximate, manner. As described in section 2.1, in the
quantum dynamics we always find the ground-state flux
anharmonically at the transition state but have the option of
harmonically approximating the excited states.

The discussion so far is relevant to reactions that occur on
or inside a solid where only vibrational motion has to be
considered. For gas-phase reactions also translational and
rotational motions must be considered. In HQTST it is assumed
that translational, rotational, vibrational, electronic, and nuclear
degrees of freedom are separable. Note that for the present study
of the H + CH4 reaction this was also done in the quantum
dynamics evaluation of the rate constant. Electronic and nuclear
degrees of freedom can be left out for the present application.
Thus we add contributions from translational and rotational
motions to kinst. For the present application these can be treated
classically.

We have until now only discussed the partition functions at
the transition state. The reactant partition function however also
has to be evaluated. The translational and rotational contributions
are evaluated classically. To be consistent with the harmonic
evaluation of the vibrational modes of the instanton, also the
vibrational reactant partition function is evaluated harmonically
in HQTST.

3. Numerical Details

In this section we discuss some of the numerical details
pertaining to the MCTDH and the HQTST calculations.

3.1. Quantum Dynamics. The present work uses the com-
putational approach introduced in ref 65. The approach has
already previously been applied to the H + CH4f CH3 + H2

reaction19,20,22,23 using other PESs. Therefore the details of the
approach will not be repeated here and only specific details
relevant to the present application will be given. The coordinates
used in the propagation are obtained by first finding the normal
mode coordinates of the transition state and then, for numerical
reasons, making a linear transformation of two of the modes.19,20

Here the transformation is such that mode 1, the mode with the
imaginary frequency, is mixed with mode 9

The two modes Q1 and Q9 largely correspond to motions of
the H atoms located on the C3V symmetry axis. Here we set γ
) -135°. The dividing surface can now be defined as Q1′ ) 0,
and the transformed coordinates Qi′ are employed in the
wavepacket propagation.

The parameters used to represent the wave function, the
numbers of single particle functions and the grid sizes, have
been determined by convergence tests. The procedure is lengthy
but has been described in refs 20, 21, and 23. Table 1 gives the
parameters used in the converged calculations.

An important parameter in the quantum dynamics simulations
is the reference temperature Tref.74,75 While the results are
formally independent of Tref, they are numerically dependent
on it as Tref determines the energy range in which N(E) can be
reliably computed. In the present study Tref was set to 300 K.

3.2. HQTST. The HQTST calculations are performed in
Cartesian coordinates, i.e., no special internal coordinates have
to be specified and the number of degrees of freedom, N, is 18
instead of 12 as in the MCTDH calculations. First, a choice is
made of the number of images, P, in the discretized CFP used
to optimize the instanton. In our calculations P has been varied
between 16 and 1024 to test convergence.

In order to initialize the calculations, first the classical saddle
point is optimized. This will facilitate the calculations since the
instanton coincides with the classical saddle point at the cross-
over temperature Tc (eq 9). For the PJEG surface the imaginary
frequency at the saddle point is 1293i cm-1, which gives Tc )
296.2 K. Therefore, the first instanton optimization has been
performed at a temperature just below Tc, in this case at 295 K.
As an initial guess for the CFP chain, the images are distributed
within a small distance from the classical saddle point along
the corresponding unstable normal mode. Then the instanton
has been found and optimized using a saddle-point finding
algorithm of the minimum-mode following type76 with a
Lanczos iterative approach to finding the minimum mode.77 Note
that this saddle-point optimization is performed on the NP-
dimensional action surface as discussed in section 2.2. For the
case of 1024 images this therefore requires optimization in
18432 dimensions.

Note that above Tc the instanton collapses onto the classical
saddle point. Even though the instanton can be (trivially)
optimized above Tc the algorithm will not give any sensible
rate constants so it makes no sense to apply HQTST at higher
temperatures.

It has been found that the instanton chain does not form open
ring structures.32 Rather the images in the chain collapse pairwise
onto a “stringlike” structure. Therefore the calculations only
require forces to be calculated for half of the images since they
will be pairwise equivalent to the other half. Such a collapsed
structure is enforced in our calculations since it has clear
advantages with respect to computational effort.

Once the instanton is optimized to within a sufficient force
convergence criterion the optimization is stopped. Generally, a
maximum force of 10-4-10-3 eV Å-1 will ensure sufficiently
converged rate constants, but in this case the convergence
criterion was set to 10-6 eV Å-1 to make sure that there is no
significant numerical uncertainty in the calculated rate constants.
Following optimization the calculation of the normal-mode
frequencies of the instanton is performed. These are the
frequencies that enter into the calculation of the rate constant,

S0 )
µkBTP

p ∑
k

P

(qmod(k,P)+1 - qk)
2 (11)

(Q1′
Q9′ ) ) (cos γ -sin γ

sin γ cos γ )(Q1

Q9
) (12)
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kinst (eq 10). As mentioned in section 2.2 there should be NP -
2 real nonzero frequencies, one imaginary and one zero-valued
frequency.

When the first instanton has been optimized, it can subse-
quently be used as initial guess for an instanton optimization at
a somewhat lower temperature. The same procedure can then
be followed for calculations at yet lower temperatures. As the
harmonic spring constants connecting the images (eq 8) become
smaller with decreasing temperature, the instanton will spread
out more and more. Note that the instanton is in no way
constrained to remain connected to the classical saddle point,
the minimum energy path, or any other point in configuration
space. Its shape will be solely decided by the location of the
instanton saddle point in action space.

The spacing of consecutive temperatures is typically around
10 K. However, at low temperatures it might be necessary to
make this spacing smaller. In principle it seems as the most
efficient manner to proceed is to have inVerse temperatures that
are roughly equally spaced rather than to have equal spacing in
temperature. Given a reasonable initial guess the optimization
of the instanton will require on the order of 102 force calls per
image for the smallest numbers of images considered and up
to 103-104 force calls per image for the largest numbers of
images. At least part of the increase of the number of force
calls can be related to the decreasing forces from the PES on
each image as the number of images is increased (see eq 7).
The optimization for a large number of images can therefore
be perturbed by numerical noise, which leads to slower
convergence.

Below a given temperature a second imaginary frequency can
appear among the instanton frequencies. This is a clear sign
that the number of images is insufficient and needs to be
increased. The calculation of the rate constant might still give
a reasonable result, but already above this temperature the rate
constants will have started to deviate significantly from the fully
converged results (see section 4.2).

The reactant vibrational partition function that enters in the
calculation of the instanton rate constant (eq 10) is not calculated
using the analytic expression for the quantum harmonic oscil-
lator as done in standard TST. To be consistent with the
evaluation of the instanton vibrations, it is calculated as the
vibrational partition function of a CFP located at the reactant
minimum. This CFP has the same number of images as the one
used to describe the instanton. With all images collapsed to one
point the normal mode calculation will therefore include a
combination of force constant terms from the minimum of the
potential energy surface and the spring constants of the CFP.32

To calculate the rotational partition function of the instanton,
it is treated as a classical rotor. The moments of inertia of each
image in the instanton chain are evaluated, and finally the
geometric mean of these moments of inertia is calculated and
used in the instanton rotational partition function. An alternative
would be to treat the whole instanton as a “supermolecule” and

calculate its moments of inertia.32 In fact the two approaches
produce almost equal results and give differences in the
calculated HQTST rate constants of at most 6% (at 20 K). Note
that for the MCTDH rate constant calculations the classical
saddle point geometry is used to evaluate the transition state
rotational partition function. However, the difference between
the instanton and saddle point rotational partition functions is
at most 8% in the range of temperatures where the HQTST and
MCTDH calculations are compared.

4. Results and Discussion

We begin this section by comparing our rate constants
obtained from the present quantum dynamics calculations
employing PJEG to previous rate constant calculations using
the same methodology but the Shepard interpolated potential
energy surface23 (section 4.1). Thereafter, in section 4.2, we
compare the presently obtained quantum dynamics and HQTST
rate constants on PJEG to each other and illustrate the HQTST
calculations. We also compare the rate constants to previously
obtained quantum instanton64 and transition state theory rates
on PJEG. In section 4.3 the convergence of the HQTST
calculations is evaluated, and in section 4.4 the conceptual and
visual benefits of studying tunneling using HQTST are discussed.

4.1. Quantum Dynamics Rates on Different Potentials.
The present work focuses on the PJEG potential energy surface
of Espinosa-Garcı́a.16 Reaction rates for this PES have been
published using several different approximate quantum transition
state approaches. Therefore this PES provides an ideal example
for a comparison of quantum transition state theories.

However, the PJEG PES is a semiempirical potential energy
surface based on a functional form similar to the older and
widely used Jordan and Gilbert PES.63 Rate constants calculated
using a tunneling corrected version of transition state theory,
CVT/µOMT,34-39 have been used to calibrate parameters
employed in the definition of the PJEG PES. Recently, more
accurate ab initio based potential energy surfaces for the H +
CH4f CH3 + H2 reaction have become available. The WWM
PES22,23 employs high level ab inito data and a Shepard
interpolation approach to provide a very accurate description
in the vicinity of the reaction barrier and to thereby facilitate
the calculation of reaction rates with a controlled accuracy.

In Figure 1, accurately calculated thermal rate constants for
the PJEG surface obtained in the present work by the MCTDH
approach are shown. The rate constants computed for the PJEG
surface are compared with the accurate rate constants previously
calculated using the WWM surface. It is seen that the PJEG
surface results in rate constants that are approximately a factor
3 to 4 larger than the WWM rates. It is not surprising that the
PJEG rate constants are larger as the barrier height is substan-
tially lower (12.9 vs 14.93 kcal/mol). Actually, the fact that
the difference is not larger reflects that there are also other
differences. The imaginary frequency at the saddle point, for
example, is lower on the PJEG surface (1293i vs 1414i cm-1).

TABLE 1: Parameters for the MCTDH Representation of the Wavefunction

coordinate no. of single-particle functions grid size grid type grid range for FFT (a.u.)

Q1′ 7 48 FFT [-100,140]
Q2/Q3 4 15 Hermite DVR
Q4 3 32 FFT [-100,100]
Q5/Q6 3 10 Hermite DVR
Q7/Q8 2 8 Hermite DVR
Q9′ 5 48 FFT [-155,85]
Q10 2 8 Hermite DVR
Q11/Q12 3 8 Hermite DVR
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4.2. Accurate and Approximate Rate Constants. We begin
this section by comparing the rate constants calculated on PJEG
using accurate quantum dynamics to the HQTST rate constants
obtained on the same surface. In Figure 2 these rate constants
are shown. It can be seen that HQTST gives rate constants that
are about a factor of 3 larger than the quantum dynamics based
rate constants. Figure 2 also shows results from harmonic
transition state theory (HTST). In HTST the vibrational partition
functions are evaluated quantum mechanically in the harmonic
approximation and rotations are treated as classical rigid rotors.
No account is taken of tunneling, and therefore these rate
constants become smaller than the others as the temperature is
lowered. Also included in the figure is a tunneling corrected
TST, the canonical variational theory with microcanonically
optimized multidimensional tunneling (CVT/µOMT), where the
calculations have been performed with the POLYRATE code40

in the same way as in the paper by Espinosa-Garcı́a,16 which
included results for only a limited number of temperatures. CVT/
µOMT seems to somewhat overestimate the effect of tunneling
but is still in better agreement with MCTDH than HQTST down
to 225 K, where the two approximate methods give ap-
proximately equal results. The quantum instanton (QI) method49

was derived to create an instanton-like theory using the quantum
Boltzmann operator in the derivation of the theory rather than

the approximate semiclassical Boltzmann operator as in standard
instanton theory. In QI there is no instanton path and the rates
are evaluated using Path Integral Monte Carlo methods. We
will return to the QI results64 shown in Figure 2.

Figure 3 shows the ratios of the MCTDH rate constants and
the HTST rate constants on the PJEG surface. It is seen that
this ratio increases with decreasing temperature as expected.
At Tc ) 296 K MCTDH gives a rate constant that is more than
a factor 2 larger than HTST, so below Tc tunneling will dominate
the rate constant. At the lowest temperature considered, 225 K,
the MCTDH rate constant is 6 times larger than the HTST rate
constant. It should be noted that the increase of the rate constant
due to tunneling is significantly smaller for the PJEG PES than
for the more accurate WWM PES.

In Figure 4 the ratios of rate constants obtained from the
approximate methods and the MCTDH rate constants are shown
for the H + CH4 f CH3 + H2 reaction on PJEG in the
temperature range 225-400 K. Apart from the approximate
methods already shown in Figure 2 this also includes three
common versions of tunneling corrections applied to transition
state theory. One of these uses an analytic exact tunneling
correction for a parabolic barrier

Figure 1. Accurate quantum dynamics rate constants for H + CH4f
H2 + CH3 using the Shepard interpolated potential (solid line) (ref 22)
and PJEG (dashed line).

Figure 2. Rate constants for the H + CH4f CH3 + H2 reaction using
PJEG. The accurate quantum dynamics rate constants are denoted
MCTDH. QI refers to quantum instanton rate constants.64 Tc denotes
the crossover temperature. See the text for details.

Figure 3. The ratio of MCTDH rate constants and HTST rate constants
as function of temperature.

Figure 4. The ratio of the rate constants of approximate rate theories
and MCTDH accurate rate constants. See the text for details.

κ(T) )
pω‡/2kBT

sin(pω‡/2kBT)
(13)
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which was first derived by Wigner.78 This will be referred to as
“full Wigner”. The rates obtained in this way become singular
as the temperature is lowered to reach the crossover temperature.
Therefore we do not show it for temperatures below Tc. Another
is the popular “simple” Wigner correction59,79,80

which is an expansion of eq 13 to third order. Such an
approximation is expected to work reasonably well if the
tunneling contribution to the rate constant comes from tunneling
close to the top of the barrier, i.e., if tunneling is of small to
moderate importance compared to classical “over-the-barrier”
transitions. This is what should be the case above Tc but not
below. In the temperature range shown, the simple Wigner
correction accounts for tunneling resonably well.

Also shown in Figure 4 are results from CVT/ZCT, which
we obtain using the POLYRATE program.40 ZCT stands for
zero curvature tunneling and is a less sophisticated tunnneling
correction than that used in CVT/µOMT, which picks the larger
of two tunneling corrections (SCT ) small curvature tunneling
and LCT ) large curvature tunneling). In ZCT the tunneling
path is assumed to lie along the minimum energy path, while
in SCT and LCT “corner-cutting” is included. Tunneling paths
will generally be shorter than the path along the MEP, i.e., they
“cut the corner” of the potential energy surface. However, also
CVT/ZCT produces rate constants in good agreement with the
accurate ones in the temperature range shown. In the case of H
+ CH4 corner-cutting therefore does not seem to be so
pronounced in this temperature range (see section 4.4). It should
also be noted that the CVT/µOMT rate constants are practically
identical to the CVT/SCT results indicating that the tunneling
paths are relatively close to the MEP. CVT/µOMT and HQTST
show different behavior. While the ratio between the CVT/
µOMT and MCTDH rate constants becomes increasingly larger
as T decreases, the HQTST rate constants show the opposite
behavior by a decreasing ratio with lower T.

For several one- and two-dimensional model systems Ar-
naldsson32 found excellent agreement between rates obtained
with HQTST and accurate quantum dynamics. The HQTST rates
were typically found to be somewhat higher than the accurate
ones just below Tc and slightly lower at low temperatures. Why
this behavior is not seen for the case of the H + CH4 reaction
is not clear. Apart from the obvious fact that HQTST is a
semiclassical method that does not include purely dynamic
quantum effects, it is interesting to also consider the treatment
of the reactant. As discussed above, the reactant partition
function in the HQTST calculations has been obtained in the
harmonic approximation, while “anharmonicity” to some extent
is included in the instanton. Even though the instanton is a
saddle-point in action space and a harmonic expansion is made
around it to calculate the rate constant, it cannot be described
as being harmonic along a reaction path in configuration space.
The word “harmonic” would normally imply the use of a
parabolic approximation to the barrier. In HQTST there is no
approximation to the potential and the instanton is found by
sampling the potential energy surface. When the reactant state
partition function is evaluated, the CFP is collapsed at the
reactant minimum, because the minimum of the potential energy
surface is also a minimum in action space. Therefore it is
conceptually clear that the reactant vibrational partition function
should be calculated by a harmonic expansion of the CFP at
the minimum, in the same way as for the instanton CFP. Because

the instanton explores some anharmonicity of the PES, one
would be tempted to use an anharmonic evaluation of the
reactant vibrations. Even though this is not rigorously justifiable,
it could suggest to which extent the harmonic treatment of the
reactant adds to the discrepancy between HQTST and accurate
quantum dynamics. A limiting case would be to evaluate the
reactant partition function fully anharmonically. The main effect
however comes from adjusting the reactant zero point level for
anharmonicity. This can be done by multiplying the rate constant
by exp(-∆EZPE/RT), where ∆EZPE is the difference between the
harmonic and the accurate zero point energy, which comes out
to be 183.7 cm- 1. Such a correction lowers the HQTST rate
constants by a factor 2.4 at 296 K and 3.2 at 225 K, which
makes the agreement with the accurate rate constant much better.
At the same time the typical behavior of the HQTST rate
constant discussed above is recovered (cf. Figure 4). This could
imply that a large part of the discrepancy between the HQTST
and MCTDH rate constants comes from the harmonic ap-
proximation of the reactant. Whether this is generally true
requires more investigation.

To extend the comparison between the different methods,
Figure 5 shows the ratio of the different calculated rate constants
and the HTST rate constants in the temperature range 125-1000
K. At temperatures well above Tc all approximate methods,
except CVT/ZCT, agree quite well. As discussed above all
methods agree fairly well around Tc, except the full Wigner
correction, which turns singular. Down to 200 K the more
elaborate approximate methods, QI, HQTST, and CVT/µOMT,
agree quite well with each other and show similar temperature
dependence as the MCTDH rate constants. As discussed above,
a major source for this difference could be the harmonic
treatment of the reactant vibrations in HQTST (and CVT/
µOMT). In QI no harmonic approximations are made so it would
be expected to show better agreement with MCTDH (see
discussion below). At 200 K the HQTST and CVT/µOMT rate
constants practically coincide, differing by only 1%, while the
QI rate constant is a factor 1.8 larger than the other two. Below
200 K the HQTST and CVT/µOMT rate constants start to
deviate more and more with decreasing temperature. The simple
Wigner correction, which works quite well above Tc, does not
give a qualitatively correct description of tunneling below Tc,
as would be expected. The CVT/ZCT rate constants show a
qualitatively correct behavior but fall below the more accurate

κ(T) ) 1 + 1
24

(pω‡/kBT)2 (14)

Figure 5. The ratio of rate constants for methods including tunneling
and HTST rate constants.

4474 J. Phys. Chem. A, Vol. 113, No. 16, 2009 Andersson et al.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

W
A

SH
IN

G
TO

N
 o

n 
Se

pt
em

be
r 1

6,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
): 

M
ar

ch
 1

0,
 2

00
9 

| d
oi

: 1
0.

10
21

/jp
81

10
70

w



treatments by increasing amounts as temperature decreases. At
125 K the difference to CVT/µOMT and HQTST is 2 orders of
magnitude.

The deviation between the HQTST and CVT/µOMT rate
constants becomes larger as temperature is decreased further
as seen in Figure 6. Here we show rate constants calculated on
PJEG using HTST, HTST with the simple Wigner correction,
HQTST, CVT/µOMT, and CVT/ZCT down to 20 K. This figure
illustrates the need to treat tunneling accurately at low temper-
ature. As noted above the Wigner correction cannot treat
tunneling even qualitatively correct below Tc so it is just
included for comparison. The HQTST, CVT/µOMT, and CVT/
ZCT rate constants seem to account for tunneling in a
qualitatively correct way. At 20 K the HQTST rate constant is
5 orders of magnitude larger than the CVT/µOMT rate constant
and 9 orders of magnitude larger than the CVT/ZCT rate
constant. However, the HQTST rate constant is 104 orders of
magnitude larger than the HTST rate constant at 20 K. At the
lowest temperatures the rate constants are likely too small to
be measurable in experiments. The main reason for including
them is to demonstrate that HQTST is able to treat tunneling at
temperatures that are considerably lower than Tc. Accurate
quantum dynamics results are not included as we are not able
to conclusively converge those calculations below 225 K.
Therefore it is difficult to estimate the quality of the calculated
rate constants. However, it has previously been shown that
HQTST gives better agreement with quantum dynamics than
TST with a small-curvature tunneling correction for model
systems at low temperatures.32 There it was also noted that the
HQTST and SCT results agreed well close to Tc, as also seen
for H + CH4 (see Figures 2, 4, and 5). If this is generally true,
an efficient way of calculating rate constants including tunneling
would be to use TST with a semiclassical tunneling correction
for temperatures above and around Tc and connect those to
HQTST results in the deep tunneling regime below Tc. This
however requires further investigation.

As a final point we note that the quantum instanton results
shown in Figure 4 are larger than the quantum dynamics results
by factors of about 2 to 3 over the temperature range shown.
Since the same potential energy surface has been used, errors
in the surface can be ignored in this comparison. In the quantum
dynamics calculations, possible inaccuracies could arise from
the use of the J-shifting approximation and the neglect of the
vibrational angular momenta Hamiltonian. It has been possible
to assess the accuracy of the J-shifting approximation for several

reactions, viz., Cl + H2,81-83 O + HCl,84-87 H2 + OH85,88,89

and HCl + OH.90 The J-shifting approximation generally works
best when the moments of inertia change little, as a percentage
of their values, over the geometry range which determines if
reaction occurs, which typically is the case if the barrier is
pronounced. This suggests that for H + CH4 the J-shifting
approximation for the rate constants should only cause errors
below 10%. Similar arguments also indicate that the neglect of
the vibrational angular momenta do also not cause relevant
errors. The calculations themselves are converged to within 10%
or better. Thus, the error of the quantum dynamics calculation
of the rate constants should not exceed 20%.

Also the quantum instanton calculations are expected to work
well for the H + CH4 reaction. Issues to consider in the quantum
instanton calculations are recrossing and convergence with
respect to number of samples and other parameters. The
quantum dynamics show that the flux-flux correlation function
quickly settles on its long-term value and before that it only
overshoots by less than 30%; see Figure 7. This overshoot is a
combined effect of recrossing and tunneling. These effects are
not separable, but the small overshoot indicates that recrossing
is not a major effect. Overall the difference between the quantum
dynamics and quantum instanton results is somewhat larger than
what might have been expected, but we do not have an explicit
explanation for this.

4.3. Convergence Properties of HQTST Calculations.
Figures 8 and 9 illustrate how the HQTST rate constants
converge when the number of images used is increased. The
results are displayed as ratios of the instanton rate constant with
P images over the one calculated using 1024 images. Since the
results from using 768 and 1024 images differ by at most 20%
(Figure 9) the 1024-image calculations are assumed to be
converged to within at least 20% in the calculated rate constants.
Therefore the 1024-image rate constants are taken as the
converged reference limit. As discussed in section 3.2, the
instanton calculations will start to deteriorate once a second
imaginary frequency appears. For 16 images this happens
already at 250 K, for 32 images below 200 K, and for 64 images
below 100 K. For this reason no results are included for
temperatures where a second imaginary frequency is present.
In the figures P refers to the total number of images in the CFPs.
As discussed in section 3.2 only half the images are actively
taken into account in the optimization of the instanton.

From Figure 8 it can be seen that convergence with respect
to the number of images is from below when the temperature
is above 200 K and from above when the temperature is below
200 K. The 16-image rate constants are within 20% of the
converged values, the 32-image rate constants are within 5%,

Figure 6. Rate constants for H + CH4f CH3 + H2 using PJEG. The
keys are explained in the text.

Figure 7. MCTDH flux-flux correlation function, C(t), for H + CH4

using PJEG.
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and above 200 K the 64-image rate constants are within 1% of
the converged values. At their lowest reliable temperature, 100
K, the 64-image rate constants are 50% higher than the
converged ones. At this temperature the 128-image rate constant
is 11% off the converged value and the 256-image rate constant
is only 3% off. At still lower temperatures (Figure 9) the rate
constants for 128 and 256 images are less than a factor 3 higher
than the converged result at their respective lowest reliable
temperatures. At 35 K the 256-image rate constant is 2.5 times
larger than the 1024-image rate constant, the 512-image rate
constant 1.2 times larger, and the 768-image rate constant 1.05
times larger. To conclude, convergence is rapid with respect to
the number of images and for all temperatures studied the
calculated rate constants remain within the same order of
magnitude as long as no second imaginary frequency appears.

4.4. Visualizing Quantum Tunneling with HQTST. Apart
from the fact that HQTST calculations seem to be an efficient
way to calculate quantum rate constants, they have an additional
strength as providing visual diagnostic tools for studies of
tunneling in molecular systems. The instantons can be visualized
in a straightforward way and be compared to the classical saddle
point. HQTST also accounts for quantum effects by lowering

the effective barrier height, as defined by eq 7. This is illustrated
in Figure 10 where the effective barrier height is shown as a
function of temperature.

As the temperature is lowered the instanton becomes more
delocalized. This is illustrated in Figure 11 where it is seen how
the instanton, on PJEG, becomes more and more spread out as
the temperature is lowered from the crossover temperature Tc

) 296 K through 200 to 100 K. It is clear that it is the reactive
atom that delocalizes the most. At 100 K it is apparent that

Figure 8. Convergence of the HQTST rate constants with number of
images for H + CH4 f CH3 + H2 using PJEG. The ratio of rate
constants for calculations with P images and the converged rate
constants (1024-image calculations) is shown as a function of temperature.

Figure 9. Convergence of the HQTST rate constants with a number
of images for H + CH4 f CH3 + H2 using PJEG. Ratios are given as
in Figure 8.

Figure 10. HQTST effective barrier height vs temperature, for H +
CH4 f CH3 + H2 using PJEG.

Figure 11. HQTST instantons at (a) the crossover temperature Tc )
296 K (coinciding with the classical saddle point), (b) T ) 200 K, and
(c) T ) 100 K.
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also the carbon atom plays an active role in the tunneling event
as it is clearly quite delocalized. Figure 11 also shows the
classical saddle point in (a) since the instanton collapses onto
it at Tc.

It is well-known that as the temperature is lowered, the
reaction “cuts the corner” more and more, i.e., deviates from
the minimum energy path. The instantons in Figure 12 clearly
illustrate this effect. Again the delocalization of the instanton
is seen. As was discussed in section 4.2 in connection to CVT/
ZCT and CVT/µOMT tunneling does not seem to lead to strong
corner-cutting effects close to Tc. This is seen for the instanton
at 280 K, which lies quite close to the saddle point and the
MEP. At the lower temperatures the instantons move off the
MEP to an increasingly larger extent. This illustrates why
the CVT/ZCT rate constants, in which tunneling paths follow
the MEP, fall increasingly below the HQTST and CVT/µOMT
rate constants as temperature is decreased.

5. Conclusions

Thermal rate constants have been calculated for the H + CH4

f CH3 + H2 reaction employing the potential energy surface
of Espinosa-Garcı́a.16 Two theoretical approaches have been
employed. First we employ the multiconfigurational time-
dependent Hartree method combined with flux correlation
functions. In this way rate constants in the range 225-400 K
have been obtained. These were compared with previous results
using the same theoretical method but the potential energy
surface of Wu et al.22 It was found that the Espinosa-Garcı́a
surface results in larger rate constants. This is connected to the
procedure Espinosa-Garcı́a used to obtain the surface, which is
semiempirical.

Second, a harmonic quantum transition state theory (HQTST)
implementation of instanton theory was used to obtain rate
constants in a temperature interval from 20 K up to the crossover
temperature at 296 K. In comparing to the accurate quantum
dynamics results, we noticed that the HQTST rate constant is
larger by a factor of about 3. Part of this may relate to the fact
that HQTST treats the reactant(s) harmonically, while some of
the anharmonicity at the transition state is accounted for.

We compared the quantum dynamics rate constants obtained
in the present work to the previously obtained quantum instanton
rate constants64 on the same surface. The rates agree to within
a factor of about 2 at 400 K and 3 at 300 K.

Finally, we used the instanton to illustrate delocalization and
corner cutting in the H + CH4 f CH3 + H2 reaction.
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