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Abstract 

The objective function used when determining parameters in models for multiphase flow in porous 
media can have multiple local minima.  The challenge is then to find the global minimum and also to 
determine the uniqueness of the optimized parameter values. A method for mapping out local minima 
to search for the global minimum by traversing regions of first order saddle points on the objective 
function surface is presented. This approach has been implemented with the iTOUGH2 software for 
estimation of models parameters. The methods applicability is illustrated here with two examples: a test 
problem mimicking a steady-state Darcy experiment and a simplified model of the Laugarnes 
geothermal area in Reykjavík, Iceland. A brief comparison with other global optimization techniques, 
in particular simulated annealing, differential evolution and harmony search algorithms is presented.  
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1. Introduction 

The development of reservoir models often 
involves inverse modeling, i.e. an estimation of 
model parameters by fitting calculated values of 
the response of the system to measurements at 
discrete points in space and time. The 
difference between the model calculation and 
the measured data at the calibration points can 
be represented by an objective function of the 
model parameters. The task of estimating the 
best set of model parameters is thereby 
formulated as an optimization problem where 
the goal is to determine the parameter values 
that minimize the objective function. Even for 
models with only a few parameters, the 
resulting objective function can have more than 
one minimum. This is illustrated in Fig. 1, 
which shows a one-dimensional cut of an 
objective function for a geothermal reservoir 
model described below. Within the parameter 
interval shown, three local minima are present. 
The occurrence of multiple local minima is 
more likely in models with a larger number of 
parameters.  Hence, the task becomes to find 
the global minimum of the objective function 
among several local minima. This is a 
challenging problem. Furthermore, it is 
important to know whether additional local 
minima, with only insignificantly higher 
objective function values are present since they 
could, for practical purposes, represent nearly 
as good parameter values as the global 
minimum. 

Numerical algorithms for optimization can 
be broadly categorized into local optimization 
methods and global optimization methods. 
Local optimization algorithms involve an 
iterative process where starting from some 
initial guess, new parameter values are found so 
as to lower the value of the objective function. 
Such algorithms only find local minima, 
typically the local minimum nearest to the 
initial guess. Typically, local optimization 
methods rely on the evaluation of the gradient 
of the objective function. Some examples are 
steepest descent, conjugate gradient, Quasi-

Newton and Levenberg-Marquardt methods. By 
carrying out multiple minimizations starting 
from different initial guesses, such methods can 
be used to find the global minimum but this 
becomes an inefficient procedure when many 
parameters are varied.  

 

Figure 1. A one-dimensional cut of the objective 
function for a geothermal reservoir model of 
the Laugarnes area described in section 4. 
The logarithm of the permeability is varied. In 
addition to a global minimum (near -14.1), 
two local minima are present (near -16.5 and 
-13.0). 

Global optimization algorithms, on the 
other hand, attempt to find the global minimum 
by also allowing the increases of the objective 
function during the iterative procedure. Some 
examples are, simulated annealing using 
Markov chain Monte Carlo methods and 
evolutionary algorithms such as differential 
evolutionary, harmony search, and particle 
swarm optimization. These methods do not 
make use of the gradient of the objective 
function and tend to converge more slowly to 
minima of the objective function, but have the 
advantage over local optimization methods that 
they can identify the global minimum. Three of 
these algorithms will be briefly described here, 
the simulated annealing, differential evolution 
and harmony search algorithms. These are 
implemented in the iTOUGH2 software, and 
will be compared with the global optimization 
method proposed here.  
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Simulated Annealing (Kirkpatrick et al., 
1983 ) is an iterative procedure where an initial 
guess of the parameter values is iteratively 
updated with random increments and a 
selection criterion until a termination condition 
is reached. There, the objective function is 
taken to represent an 'energy' of the system, and 
a fictitious temperature is introduced. The 
temperature is introduced to control the 
probability of accepting increases in the 
objective function as an intermediate step to 
ultimately reach lower function values. A 
central issue in simulated annealing 
calculations is the ‘time scale’ of the cooling of 
the system from high temperature to zero 
temperature. The slower the cooling rate, the 
more likely the global minimum is found, but 
the computational effort becomes larger. It has 
been shown that in the impossible limit of 
infinitely long simulations with infinitesimal 
cooling rate, the method is guaranteed to give 
the global minimum (Haario and Saksman, 
1991; Tsallis and Stariolo, 1996). For a given 
amount of computational effort, an 
implementation that can simulate a longer time 
interval is, more likely to reach the global 
minimum. 

The Differential Evolution algorithm 
(Storn and Price 1996) uses a randomly 
generated initial population, preferably 
covering the entire parameter space, which is 
then modified by differential mutation and 
crossover along with a selection criterion to 
find the minimum of the objective function. It 
has emerged as one of the simplest and most 
efficient techniques for solving global 
optimization problems. The method has been 
applied to diverse domains of science and 
engineering, such as mechanical engineering 
(Joshi and Sanderson 1999), chemical 
engineering (Wang and Jang 2000), machine 
intelligence, and pattern recognition (Das et al. 
2008). Some weaknesses of the method have 
been identified (Lampinen and Zelinka 2000). 
Furthermore, the performance of the method 
deteriorates as the number of parameters 
increases (Ali et al. 2012). Several suggestions 

for improving its performance have been 
proposed (Ali and Pant 2011).  

Harmony search (Geem et al., 2001) is 
also a population-based optimization algorithm 
using a stochastic random search (Lee and 
Geem, 2004). It has been applied to a wide 
variety of optimization problems (Geem et al., 
2002, 2005; Kang and Geem, 2004; Kim et al., 
2001; Lee and Geem, 2004). However, 
problems with the method, such as the need for 
parameter tuning, have been a topic of much 
research over the last 10 years where 
improvements have been proposed (Fourie at 
al., 2013). 

The global optimization method presented 
here can be considered as a descendant of a 
method for long time scale simulations of 
atomic scale models of solids, known as 
adaptive kinetic Monte Carlo (AKMC) 
(Henkelman and Jónsson, 2001). The AKMC 
method has been successfully applied to atomic 
scale problems in solid-state physics and 
chemistry, see for example: (Henkelman and 
Jónsson, 2003; Karssemeijer et al., 2012; 
Pedersen et al., 2009a, 2009b; Pedersen and 
Jónsson 2010). There, the time evolution is 
described by visiting local minima on the 
energy surface and identifying transitions by 
searching for first order saddle points on the 
objective function surface (Henkelman and 
Jónsson, 1999). Here, we modify the AKMC 
method to adapt it better to global optimization 
(Pedersen et al., 2012). The method, which we 
will refer to as global optimization using saddle 
traversals (GOUST) is described in detail 
below. It has been implemented in the EON 
software (Pedersen and Jónsson 2010), which 
makes it possible to carry out the 
calculations using distributed and cloud 
computing 

2. GOUST method 

The GOUST method relies on a fast way to 
identify first order saddle points on the 
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objective function surface. We therefore first 
describe briefly the tool used for this purpose. 
A more detailed description is given in 
Henkelman and Jónsson (1999). 

2.1. Minimum mode following  

Let the number of variables of the objective 
function (parameters in the model to be fitted) 
be denoted by N. The objective function can be 
denoted as  
 
!:!ℝ! → !ℝ    (1) 
 
this defines a surface in N-dimensional space. 
The function is assumed to be differentiable. 
The extremal points where the gradient 
vanishes, ∇f = 0, and the function value is low 
are of particular interest as these are local 
minima and low lying saddle points. To 
distinguish between these two kinds of extrema, 
the matrix of second order derivatives (the 
Hessian matrix, Eq. (2) ) can be used.  The 
Hessian has only positive eigenvalues at a local 
minimum, whereas one of the eigenvalues is 
negative at a first order saddle point (SPs).  

!!" = !2!
!!!!!!

    (2) 

To locate SPs, it is assumed that the 
gradient ∇f of the objective function can be 
evaluated readily (recent developments in 
automatic differentiation see (Gregory et al., 
1997)) could prove valuable in this context), 
but second derivatives are not needed. The 
method used to find SPs involves a 
minimization using a transformed gradient 
where the component along the minimum mode 
of the Hessian has been reversed  
 
∇!!"" = ∇! − 2 ∇! ⋅ !! !!  (3) 
 
here, !! is a normalized eigenvector 
corresponding to the minimum eigenvalue, λ, of 
the Hessian. This projection (Eq. (3)) locally 
transforms the gradient in the vicinity of a SP to 

a gradient characteristic of the vicinity of a 
minimum. A number of local minimization 
methods can then be used to converge on SPs 
when ∇!!""is used as input, for example the 
conjugate gradient method. This will be 
referred to as the minimum mode following 
(MMF) method. It is important to note that only 
the minimum mode of the Hessian matrix is 
required here.  The minimum mode vector can 
be estimated efficiently using either the dimer 
method (Henkelman and Jónsson, 1999) or the 
Lanczos method (Lanczos, 1950) where only 
first order derivatives are required. The full 
Hessian does not need to be computed. 

Once a SP search has exited the region 
around a local minimum where all eigenvalues 
are positive, a steepest descent search path is 
stable and deterministic. That is, a MMF search 
starting from a point outside the positive region 
will converge on a particular SP. 

2.2. The algorithm 

The GOUST algorithm is based on the 
principle of finding new local minima on the 
objective function surface by climbing up from 
known minima so as to identify SPs, and then 
sliding down from there using a local 
minimization algorithm. For a given local 
minimum, several SP searches are carried out 
starting from slightly perturbed values of the 
variables. For each of the perturbed parameter 
values, the MMF method is used to climb up 
the surface and converge onto a SP. After a SP 
has been located, the adjacent local minima are 
found. This is done by displacing the system 
along the minimum mode in both directions 
from the SP, followed by a local minimization 
to slide down to the minima. The method is 
presented in greater detail below. 

GOUST algorithm: 
1. From the parameter values, x0, provided 

by the user as an initial starting point, a 
local minimization is carried out to 
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bring the system to a local minimum. A 
list of minima is initialized by storing 
this local minimum, xm0, and the 
corresponding value of the objective 
function, f (xm0). 

2. n new parameter values, xr
1, xr

2, … xr
n, 

are generated as starting points for 
saddle point searches by applying small 
random displacements, sampled from a 
Gaussian distribution, to the parameter 
values at the minimum. The 
displacements are small and all 
parameter sets xr

1, xr
2, … xr

n are in the 
vicinity of the minimum. (The 
superscript “r” stands for random).  

3. From each parameter set, a saddle point 
search using the MMF method is 
conducted.  

4. Step 2 and step 3 are repeated until a 
predetermined number of unsuccessful 
attempts to locate new saddle points has 
been exceeded.   

5. This minimum is marked as visited. 
6. All saddle points found are stored in the 

list of saddle points, xsp1, xsp2, …xspn and 
f (xsp1), f (xsp2), … f (xspn). Each saddle 
point is listed only once.  

7. The saddle point (which has not been 
sampled) with the lowest value of the 
objective function is selected, and a 
displacement along the minimum mode 
vector made in both directions from the 
saddle point followed by local 
minimization to determine the two 
adjacent minima, xm1 and xm2.  

8. The minima, xm1, xm2 and f (xm1), f (xm2), 
are stored in the list of minima (each 
minimum only listed once). 

9. This saddle point is marked as sampled. 
10. The lowest minimum in the list of 

minima that has not been visited is 
selected and steps 2 through 9 repeated 
until (a) all saddle points have been 
sampled, (b) all minima in the list have 

been visited, and (c) any other stopping 
criterion is fulfilled such as CPU time, 
maximum number of iterations, etc. 

Finally, the sorted list of minima is reported 
as output, the lowest one being the best 
estimate of the global minimum and the other 
low lying minima giving an indication of how 
unique the optimal values of the parameters are. 
The algorithm, thereby, generates a map of the 
relevant minima. One advantage of the 
algorithm can be that only relatively low values 
of the objective function need to be evaluated 
and the regions with high values, which can be 
less well defined, are avoided. An example of 
this is discussed below. 

The GOUST algorithm can be applied in 
many different contexts. Here, we report our 
work on interfacing the algorithm with 
iTOUGH2 for inverse modeling. The goal is to 
demonstrate its applicability to 
parameterization of geothermal reservoir 
models. The algorithm is illustrated below in 
the context of two application problems. 

3. Model 1: steady-state Darcy experiment 

We illustrate the occurrence of multiple 
minima and the performance of the 
optimization algorithm proposed here with a 
test problem presented in the iTOUGH2 
documentation (Finsterle, 2007). Water is 
injected at constant pressure into a one-
dimensional, horizontal column filled with 
uniform, partially saturated sand. This setup is 
similar to the steady-state Darcy experiment 
(Finsterle, 2007). However, there is a certain 
amount of free gas initially present in the 
column. Information about the transient 
behavior of pressure and flow rate is used to 
determine two-phase flow parameters. The 
model parameters to be optimized are the 
permeability of the sand and the initial gas 
saturation.  
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3.1. Objective function 

The objective function (see Eq. 4) is defined 
as the squared deviation between measured and 
calculated pressure and flow rate at two 
selected points within the column. 
 

S(p1, p2 ) =
Pi
* −Pi p1, p22( )"# $%

2

σ
Pi
*
2

i=1

60

∑ +
Qi
* −Qi p1, p2( )"# $%

2

σ
Qi
*
2

i=1

60

∑  (4) 

 
here, p1 and p2 are the two variable parameters: 
logarithm of permeability and initial gas 
saturation. P and Q stands for pressure and flow 
rate respectively, the superscript  ‘*’ denotes 
measured data and is the variance. 

Fig. 2 shows the shape of the objective 
function as the two parameters are varied. This 
was obtained by mapping out the function on a 
two-dimensional regular grid using the grid 
search option implemented in iTOUGH2. It is 
clear that the objective function has several 
minima. The global minimum occurs for log 
(permeability) of -11.7 and initial gas saturation 
of 0.30. One local minimum occurs in the 
vicinity of  (-13.1, 0.32), and another minimum 
is located beyond the boundary of the 
parameter space, in the vicinity of  (-11.6, 0). 
Even though these local minima are shallow 
compared to the global minimum and one of 
them is located outside the predefined 
parameter space, they still signify a problem in 
that local minimization algorithms can 
converge onto these values, as will be shown in 
the next section. Models involving more 
parameters are likely to have more local 
minima, several of which can correspond to 
reasonable parameter values. We use simple 
two-parameter examples here to illustrate the 
problem, but the goal is to be able to deal with 
multiple local minima in realistic problems 
involving many parameters. 

 

Figure 2. Objective function surface for the steady-state 
Darcy experiment test problem showing the 
effect of varying two parameters: logarithm of 
permeability [log (k)] and initial gas 
saturation. The arrows point to the position of 
minima (m) and saddle points (SP). In 
addition to the global minimum (white 
arrow), one shallow local minimum is within 
the allowed parameter range and one is just 
outside that area. 

For each local minimum, there exists a 
range of parameter values such that a steepest 
descent minimization converges onto this local 
minimum. The parameter space can be divided 
up into such basins of attraction corresponding 
to each of the local minima. The boundaries of 
the basins of attraction correspond to ridges on 
the objective function surface.  Minima along 
these ridges correspond to SPs on the objective 
function surface.  

3.2. Finding the nearest local minimum  

The Levenberg-Marquardt minimization 
algorithm is found to perform well for most 
iTOUGH2 applications (Finsterle, 2007) and 
can be made to converge efficiently by 
selecting appropriate values for the Levenberg 
parameter and Marquardt parameter. However, 
as for most other local minimization 
algorithms, it only strives to converge to the 
minimum closest to the initial guess of the 

σ 2
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model parameters. This is illustrated in Fig. 3 
showing minimization paths obtained using the 
iTOUGH2 software and the Levenberg-
Marquardt minimization algorithm starting 
from two different initial guesses for the 
parameter values. Minimization paths obtained 
using the Gauss-Newton minimization 
algorithm and the conjugate gradient method 
from the same initial guesses are also shown for 
comparison.  

 

Figure 3.: Minimization paths using Levenberg-
Marquardt  algorithm (black lines), Gauss-
Newton algorithm (red lines) and conjugate 
gradient algorithm (blue lines) for the steady-
state Darcy experiment test problem. 
Calculations are started from different initial 
guesses (squares) for the two parameters:  log 
(Permeability) and initial gas saturation. This 
illustrates the possibility that a minimization 
using these methods can lead to convergence 
to a local minimum with a substantially 
higher value of the objective function than the 
global minimum.  

The above example illustrates the need for 
exploring the objective function surface beyond 
local minima nearest to the initial guess. While 
it is easy to set up enough minimization 
calculations to cover a fine grid of possible 
initial parameter values when the number of 
parameters is small, this will quickly become 
unmanageable as the number of parameters 
increases. 

3.3. Comparison of various optimization 

methods 

In this section, four of the global 
optimization algorithms mentioned above are 
illustrated by application to the two-parameter 
Darcy experiment test problem using the 
iTOUGH2 software. Since this application only 
involves two parameters, making it easier to 
visualize the results, it does not represent a 
proper benchmark problem where a 
performance, such as computational efficiency 
and robustness can be tested. However, the 
different approaches can be illustrated with this 
example. Figs. 4 - 7 show results of simulated 
annealing, differential evolution, harmony 
search and the proposed GOUST algorithms. In 
all cases, the calculation is started from the 
same initial parameter values, (-13.0, 0.30), 
from which a local minimization would lead to 
convergence to one of the local minima rather 
than the global minimum.  

 

Figure 4: A simulated annealing minimization for the 
steady-state Darcy experiment test problem 
with two parameters: log (Permeability) and 
initial gas saturation. The initial guess for the 
parameter values was (-13.0, 0.3). Each 
evaluation of the objective function is shown 
with a ‘x’. The calculation does reveal the 
global minimum but requires a large number 
of objective function evaluations, a total of 
3404. 

log(Permeability[m2])

ga
s 

sa
tu

ra
tio

n

−13 −12.5 −12 −11.5 −11

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45



 - 8 - 

 

Figure 5: A differential evolution minimization for the 
steady-state Darcy experiment test problem 
with two parameters: log (Permeability) and 
initial gas saturation. The initial guess for the 
parameter values was (-13.0, 0.3). Each 
evaluation of the objective function is shown 
with a red circle. The calculation reveals the 
global minimum and requires 778 objective 
function evaluations. 

 

Figure 6: A harmony search minimization for the 
steady-state Darcy experiment test problem 
with two parameters: log (Permeability) and 
initial gas saturation. The initial guess for the 
parameter values was (-13.0, 0.3). Each 
evaluation of the objective function is shown 
with a red circle. The calculation reveals the 
global minimum and requires 569 objective 
function evaluations. 

 
Figure 7: A GOUST exploration of the objective 

function for the steady-state Darcy 
experiment test problem by traversing from 
one local minimum to another via first order 
saddle points. Given an initial guess (square), 
a minimization is carried out (solid black 
line) converging to a local minimum (m1).  
Then, a random increment of the parameter 
values from the minimum is made (dashed 
black lines) and the minimum mode following 
method used to climb up (red lines) the 
objective function surface to home in on first 
order saddle points (sp1). Then an increment 
of parameter values along the mode with 
negative curvature is made and minimization 
carried out (blue lines) leading to a new 
minimum (m2). The process is repeated at m2 
and as a result both the global minimum and 
the local minima were found.  

Because the position of the global minimum 
is known, we can assess the accuracy of the 
result reported by the algorithms by calculating 
how large the deviation is from the global 
minimum. All the calculations successfully find 
the global minimum within a certain margin. 
The computational effort will be reported in 
terms of the number of objective function 
evaluations (OFE) needed, since they are by far 
the dominant part of the calculations. An 
evaluation of the objective function requires 
running the TOUGH2 software to evaluate the 
forward model. The number of OFE for these 
global optimization methods is, of course, 
significantly larger than for the local 
minimization calculations shown in Fig. 3.   

The simulated annealing algorithm was 
allowed run for 200 iterations and the 
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simulation was repeated 12 times. The global 
minimum was always identified and the 
average number of OFE was 3404. This turned 
out to be the most computationally demanding 
method. The progress of one of the calculations 
is shown in Fig. 4. 

The differential evolution algorithm was 
first allowed to run 30 iterations with a 
predefined population size of 20 individuals. 
For these conditions it converged only 
approximately to the global minimum, 
requiring 623 OFE. In an attempt to increase 
the accuracy, the number of iterations was 
increased to 35, 40, 45 and 50 while keeping 
the same population size of 20 individuals. The 
number of OFE then increased to 723, 823, 923 
and 1023, respectively. In all cases, the end 
result was the same except for the run with 45 
iterations where the global minimum was 
identified more precisely. Overall the results do 
not seem to depend strongly on the number of 
iterations. The effect of increasing the size of 
the population was then tested by increasing it 
to 25, 30, 35, 40 and 45 while number of 
iterations was kept at 30. The number of OFE 
was then equal to 778, 933, 1088, 1243 and 
1398, respectively. The size of the population 
had a stronger effect on how closely the 
simulation got to the global minimum. Overall 
the best choice in terms of accuracy turned out 
to be 30 iterations and a population size of 25 
individuals. Then the number of OFE was 778.  
The progress of that calculation is shown in 
Fig. 5. 

In calculations using the harmony search 
algorithm, the number of iterations was set to 
200 but the following values of the ‘harmony 
memory’ were tested: 15, 20, 25, 30 and 35. 
The calculations required 544, 580, 569, 459 
and 481 OFE, respectively. The global 
minimum was most accurately identified for 
harmony memory of 25. The progress of that 
calculation is shown in Fig. 6. 

In the case of the GOUST algorithm, an 
evaluation of the objective function requires 
running iTOUGH2, which then runs the 

TOUGH2 software to evaluate the objective 
function and its gradient. The GOUST 
algorithm was evaluated in three cases 
configured to run the same number of 
iterations, same stopping and convergence 
criteria for saddle points and minima searches 
but different number of SP searches at each 
minimum. The simulation was repeated 12 
times. In all cases the global minimum was 
accurately identified. For one, two and three SP 
searches per minimum the average number of 
iTOUGH2 evaluations of the objective function 
and gradient was 212, 264 and 358, 
respectively. Since the gradient is evaluated 
here by finite differences, the number of OFE is 
three times larger. An implementation making 
use of automatic differentiation to obtain the 
gradient without finite differences could be 
more efficient. The increase in the number of 
SP searches per minimum does not affect how 
close the results are to the global minimum 
because the convergence criterion is based on a 
tolerance in the gradient. The progress of one of 
the calculations is shown in Fig. 7. From the 
initial guess of the two parameter values, a 
local minimization is first conducted using the 
conjugate gradient minimization method. This 
reveals the local minimum at (-13.06, 0.32). 
From there, a small random displacement was 
generated and a SP search conducted using the 
MMF method. A SP was located at (-12.8, 
0.31). To continue, a small displacement was 
made along the minimum mode and a new local 
minimization conducted to converge onto a new 
minimum located at (-11.7, 0.30). The same 
process was repeated for the newly found 
minimum. Two searches are conducted, one of 
which converges onto a SP already visited, but 
a new SP is discovered at (-11.6, 0.12). At this 
stage, the second SP is selected and the process 
is repeated until no new SPs are located below 
a given threshold value of the objective 
function. Finally, a map of the minima is 
generated and the global minimum reported as 
the lowest minimum found. This corresponds to 
the best estimated parameter set, which in this 
case is log (Permeability) equal to -11.7 and 
initial gas saturation equal of 0.3.  
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While the two-parameter Darcy experiment 
test problem is too small and simple to truly test 
the performance of the various methods, it 
illustrates well how different they are.  The 
GOUST method is somewhat systematic in that 
local minima are identified one after another.  
The gradient of the objective function is used to 
navigate on the objective function surface.  As 
a result, the method can deal with a large 
number of adjustable parameters without a 
significant increase in computational effort. The 
most important aspect of the GOUST method is 
a rather slow increase in computational effort 
with the increase in the number of parameters. 

4. Model 2: Laugarnes geothermal area. 

A second illustration of the proposed global 
optimization method is given by inverse 
modeling of a geothermal field called 
Laugarnes, located in Reykjavík, Iceland. This 
field has been studied extensively 
(Thorsteinsson and Eliasson, 1970) and only a 
brief description is presented here. The 
Laugarnes geothermal area is fed by three 
aquifers: A, B and C, with water temperature of 
110-120, 135, and 146 ºC, respectively. Tuffs 
and sediments act as aquicludes between the 
aquifers. The active reservoir underlies an area 
of 5 km2 and has a base temperature about 145 
ºC (Bodvarsson and Zais, 1978). Prior to 
exploitation, the hydrostatic pressure at the 
surface in the geothermal field was 6-7 bars 
(Gunnlaugsson et al., 2000) and about 10 l/s of 
88 ºC water issued in free flow from the hot 
spring (Thorsteinsson and Eliasson, 1970). 

A model of the area was constructed using 
mainly a hexagonal Voronoi mesh with 38 
volume elements, covering an area of 12 km2 , 
see Fig. 8. The model extends to a depth of 
2235 m in 8 layers. There is a single volume 
element in layers 1 and 8, both of which are 
inactive and represent the reservoir top and 
bottom. Layers 3, 5 and 7 represent aquifers A, 
B and C respectively. Layers 2, 4 and 6 

represent aquicludes and were assigned lower 
permeability values, see Fig. 9. 

 

Figure 8. An aerial view of the central region of the 
Laugarnes geothermal area. The Voronoi 
mesh used for the TOUGH2 modeling is 
shown. Red and blue circles are production 
and observation wells, respectively. 

 

Figure 9. View of layers the model of the Laugarnes 
geothermal reservoir. Colors correspond to 
different values of permeability and z is depth. 

A three-dimensional representation of the 
model is depicted in Fig. 10. Two types of 
sources have been included. First, a mass 
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source located at the bottom of the reservoir 
was positioned in the area where the upflow is 
thought to be located. Second, heat sources 
were placed at scattered positions on the 
bottom. Six calibration points are used, as 
shown in Fig. 10. The red line represents the 
observation well and it has 4 calibration points 
at 4 different depths. Starting from the top, 
point 1 represents the pressure at the top of the 
reservoir. Points 2, 3 and 4 represent the 
temperature in aquifers A, B and C, 
respectively. Points 5 and 6 are in the same 
location and represent water flow rate from the 
hot spring and enthalpy of the water, 
respectively. 

 

Figure 10. A 3-dimensional view of the model of the 
Laugarnes geothermal reservoir. Colors 
correspond to values of permeability. From 
the top, points from 1 to 4 in red color and 5 
to 6 in blue color are calibration points. The 
red asterisks in the bottom layer represent the 
heat sources. 

The model has been constructed to 
represent a realistic system while being simple 
enough to serve as a convenient test problem 
for inverse modeling. The data at the calibration 
points was artificially generated using 
iTOUGH2. Gaussian noise was then added to 
represent observed field data. The inverse 
modeling is applied to determine the natural 
state of the system. The fixed parameters in the 
model, were chosen to have reasonable values 
consistent with what has previously been 
reported for this reservoir. By fitting generated 
data instead of field data, the location of the 
global minimum is known beforehand, making 

it easier to analyze the accuracy of the 
simulated results. 

4.1. Objective function 

The objective function (see Eq. 5) is chosen 
to be the squared deviation of the calculated 
pressure from the observed pressure values at 
calibration point 1, temperature at calibration 
points 2 - 4 and water flow rate and water 
enthalpy at calibration points 5 and 6.  
 
S(p1, p2 ) =

[Pi
* −Pi (p1, p2 )]

2

σ
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*
2
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∑ +
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2
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*
2
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+
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2
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2
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*
2
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100

∑
i=1

100

∑

 (5) 

 
Here, p1 and p2 are the two variable parameters: 
logarithm of permeability and logarithm of flow 
rate in this case. P, T, H and Q are pressure, 
temperature, water enthalpy and flow rate 
respectively. The superscript  ‘*’ denotes 
measured data and is the variance. 

Fig. 11 shows the variation of the objective 
function as the logarithm of the permeability of 
aquiclude layers and the logarithm of the mass 
flow rate are varied. The grid search method 
implemented in iTOUGH2 was used to obtain 
the data for the figure. This provides the 
complete topography of the function for this 
two-dimensional parameter space. However, 
this method is computationally too demanding 
for most applications (Finsterle, 2007) where 
more parameters are typically being varied and 
is used here only for illustrative purposes. 
Three minima are present on the objective 
function surface. The global minimum is 
known to be located at log(Permeability)=-
14.00 and log (Mass flow rate)=1.00 and 
hereafter will be referred to as m2. Two local 
minima are also present, one at (-16.46, 1.10), 
(denoted m1) and another at (12.79, 1.76), 
(denoted m3).  The saddle point between 
minimum m1 and m2 is labeled as sp1 and the 
one between minimum m2 and m3 is labeled as 
sp2. 

σ 2
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Figure 11. The variation of the objective function for 
inverse modeling of the Laugarnes 
geothermal reservoir as two parameters are 
varied:  logarithm of permeability and 
logarithm of mass flow rate. For values of log 
(Permeability) smaller than -15.5 and values 
of log (Mas flow rate) larger than 1.2, point-
like spikes can be seen, possibly because of 
numerical instabilities in the forward model. 
The area where these occur is near a 
maximum, away from the minima and saddle 
points, thus not affecting the GOUST 
calculation significantly.  

Both local minima correspond to a 
significantly higher value of the objective 
function, but as mentioned earlier they will 
attract minimization paths started from nearby 
regions in parameter space.   

Fig. 11 shows that point-like spikes are 
present which may be caused by numerical 
instabilities in the forward model. It is not clear 
at this point what causes these instabilities, but 
since they occur only where the objective 
function is relatively large, away from the 
minima and saddle points, the GOUST 
calculation is not severely affected. 

4.2. searching for multiple minima. 

Fig. 12 illustrates how the GOUST 
algorithm finds the global minimum as well as 
the two local minima for the Laugarnes model. 
From an initial guess of the parameter values of 
(-16.38, 1.40), a local minimization is 

conducted using the conjugate gradient 
minimization method, converging on a local 
minimum located at (-16.38, 1.40). From there, 
a random displacement is generated and a SP 
search conducted using the MMF method. A SP 
is found at (-15.96, 0.93). To continue, a 
displacement along the minimum mode is made 
and a new local minimization conducted to 
converge onto a new minimum located at (-
14.0, 1.0). The same process is repeated at the 
new minimum. Two searches are conducted, 
one of which converges onto the a SP already 
visited. From the second search, a new SP is 
revealed at (-13.0, 1.42) which leads in a 
subsequent minimization to a new minimum at 
(-12.76, 1.77).  In general, the process is 
repeated from each new minimum until no 
more SPs are found below a given threshold 
value of the objective function. The global 
minimum as well as the two local minima are, 
thereby, identified. 

 

Figure 12: A GOUST exploration of the objective 
function for the Laugarnes reservoir inverse 
modeling. The global minimum as well as two 
local minima are found by traversing from 
one minimum to another via first order saddle 
points. First, starting from an initial guess 
(square), a minimization is carried out (solid 
black line) converging to a local minimum 
(m1). Then, a random increment of parameter 
values from the minimum is made (dashed 
black line) and the minimum mode following 
method used to climb up (red line) the 
objective function surface to home in on a 
saddle point (sp1). Then, an increment of the 
parameter values along the direction of 
negative curvature away from saddle point is 
made and another minimization carried out 
(blue line) converging to a new minimum 
(m2). The process is repeated from m2 
revealing a new saddle point (sp2) and a new 
minimum (m3).  
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The paths in Fig. 12 go through the vicinity 
of the SPs.  The tolerance for convergence onto 
the SP can be large since the precise value of 
the objective function there is not important.  
The fact that the paths taken from one 
minimum to another go through the vicinity of 
SPs means that parameter regions with large 
values of the objective function are avoided. 
This can be advantageous since unphysical 
parameter values can lead to convergence 
problems, ill-defined values of the objective 
function and large computational effort.  

5. Conclusion 

The objective functions used in inverse 
modeling of multiphase flow in porous media 
can have multiple minima and the task of 
finding the global minimum can be a 
challenging one. For objective functions that 
are continuous and differentiable, the gradient 
can be used to navigate systematically on the 
objective function surface so as to move from 
one local minimum to another. A method we 
refer to as global optimization using saddle 
traversals, GOUST, is presented.  It is based on 
climbing up the objective function surface to 
home in on first order saddle points is used to 
map out the local minima. This not only gives 
an estimate of the global minimum (as the 
lowest minimum found) but also an estimate of 
the uniqueness of the optimal values found for 
the parameters.  

The applicability of the method to reservoir 
modeling has been demonstrated by coupling it 
with the iTOUGH2-TOUGH2 software. The 
basic features of the method were illustrated 
with two simple test problems including just 
two parameters but the method can easily be 
applied to models involving a large number of 
parameters. In simulations of atomic scale 
systems, such saddle point searches are 
routinely carried out for systems with hundreds 
or even thousands of parameters (i.e. atomic 
coordinates) (Pedersen and Jónsson, 2009). 
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