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Elastic sheet method for identifying atoms in molecules
Blas P. Uberuaga, Enrique R. Batista, and Hannes Jónssona)
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~Received 11 January 1999; accepted 17 September 1999!

We have developed a new method for finding and representing dividing surfaces which can, for
example, be used to identify ‘‘atoms’’ in molecules or condensed phases based on Bader’s
definition. Given the total electron density of the system, the dividing surface is taken to be the
zero-flux surface, i.e., the surface on which the normal component of the gradient vanishes. Our
method for finding this surface involves creating an ‘‘elastic sheet’’ represented by a swarm of
fictitious particles which interact with each other so as to give a nearly uniform distribution of points
on the sheet. Two kinds of forces act on the particles:~1! the component of the gradient of the
density normal to the elastic sheet, and~2! an interparticle force which only acts in the local tangent
plane of the sheet. Starting with a spherical surface and applying an optimization algorithm that
minimizes the forces leads to convergence of the particles to the zero-flux surface. The elastic sheet
tends to round off regions where the zero-flux surface has sharp cusps or points, but this appears not
to be a serious problem in cases we have studied. The elastic sheet method is robust and can
converge in situations where currently used methods fail. We demonstrate the method with a study
of water clusters and a Si interstitial in a Si crystal. ©1999 American Institute of Physics.
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I. INTRODUCTION

Studies of molecules and condensed phases often le
discussions of charges and multipole moments of individ
fragments such as atoms or molecules. Given the continu
electronic density of the system, the question becomes
to identify an atom in a molecule, or a molecule in a clus
or a liquid configuration, for example. Many different par
tioning schemes have been proposed. When a calculatio
the electronic wave function of a system is carried out
terms of atomic basis functions, it is tempting to assign
electronic density associated with a given basis function
the atom at the site.1 But, it is important to realize tha
atomic basis sets are overcomplete and such a decompo
is not unique. In principle, a calculation could be done wh
all the basis functions are located on one of the atoms in
system, which would then lead to an assignment of all
electrons in the system to that one atom.

One compelling way of approaching this problem in
less arbitrary fashion is the decomposition of the charge d
sity proposed by Bader.2 Here each point in space is assign
to one of the subsystems~e.g., atoms!. The dividing surface
is chosen to be a zero-flux surface as defined by

¹r•n50, ~1!

wheren is the surface normal. That is, at every point on
zero-flux surface the gradient of the charge density has
component normal to the surface. Bader has given theore
arguments as to why this is a good choice for a divid
surface. By using the zero-flux surface, various surface i
gral terms go to zero when quantum mechanical expecta

a!Electronic mail: hannes@u.washington.edu
10660021-9606/99/111(23)/10664/6/$15.00
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values for the subsystem are calculated. It can be shown
particular, that each subsystem defined in this way satisfi
virial theorem.2

Finding the zero-flux surfaces of the charge dens
however, is not trivial. Methods currently employed can,
fact, fail for certain charge density topologies. The method
Stefanov and Cioslowski,3 used in the Gaussian code, is on
example. This method involves fitting the surface with var
tional trial functions in prolate spheroidal coordinates. It c
fail when the zero-flux surface has certain topological fe
tures, such as very strong curvature.4 During a study of mo-
lecular multipole moments of water clusters, we found th
the method failed on the hexamer. For this reason, we
cided to develop an alternative method for finding zero-fl
surfaces.

II. OVERVIEW OF THE ELASTIC SHEET METHOD

In finding a zero-flux surface, we want to minimize th
gradient of some scalar field—in this case, the cha
density—normal to a closed surface. Our method involv
defining a set of fictitious particles which essentially give
discrete representation of the surface. Initially, the partic
are distributed randomly on some closed surface, such
sphere, but are then relaxed according to the force acting
them, and in the end they are located on the zero-flux s
face. The force on these particles has two components.
first is the ‘‘real’’ force, the gradient of the charge densit
The second component is an interaction between the
ticles which keeps the particles distributed evenly on
surface of the sheet. This force is referred to as the ‘‘distr
uting’’ force. The component of the real force tangent to t
sheet surface is zeroed, as is the component of the distr
4 © 1999 American Institute of Physics
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ing force normal to the sheet. This force projection ensu
that the distributing force does not interfere with the rela
ation of the particles to the zero-flux surface and guaran
that the real force does not affect the distribution of partic
within the surface. As a result, the final shape of the sh
will be determined solely by the charge density, while t
distributing force will insure that the density of particles o
the surface remains more or less uniform. Figure 1 illustra
the projection of the forces.

In regions where the gradient of the electronic density
small, one can encounter a problem which we refer to
‘‘kinkiness’’: the sheet will form small ripples and particle
can ‘‘evaporate’’ away from the sheet. To counteract this,
additional restoring force is introduced, the nature of wh
will be discussed below.

The elastic sheet~ES! method can be viewed as an e
tension of the nudged elastic band~NEB! method for finding
minimum energy paths.5 In the NEB method, a minimum
energy path is represented by a discrete set of fictitious
ticles whose position is optimized by minimizing the perpe
dicular component of the gradient of the potential under c
sideration and the parallel component of a spring fo
between the particles. The spring force causes the partic
be equidistant along the path~when equal spring constan
are used!. Because only the parallel component of the spr
force is kept, the particles relax to the minimum energy pa
the spring force only affects the distribution of particl
along the path.

III. DETAILS OF THE ELASTIC SHEET METHOD

The evolution of the ES is governed by two forces: t
real force and the distributing force. The real force is just
gradient of the logarithm of the charge density

FIG. 1. Forces acting on a particle in the elastic sheet. The particles mo
response to the normal component of the real force~gradient of the elec-
tronic charge density! and the component of the distributing forces in t
local tangent plane. The first acts to move the particles to the zero
surface while the second acts to keep the particle distribution nearly
form.
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¹•nn. ~2!

The charge density decays exponentially and the real fo
would as well. To accelerate convergence in regions wh
the density is changing slowly, we work with the logarith
of r. For finite systems, such as clusters, where the cha
density decays to zero, the real force is set to zero at s
predefined density contour, which then defines a pract
approximation to the zero-flux surface in that direction.

The distributing force acts between the particles t
make up the sheet and its purpose is to keep the densit
particles on the surface uniform. After testing various typ
of interactions, we have chosen to use a generali
Lennard-Jones interaction, where the potential energy
tween particlesi and j is given by

Vi j
dist55 4eS sm

r i j
m2

sn

r i j
n D 14r i j eS m

sm

r cut
m11 2n

sn

r cut
n11D 1K

r i j ,r cut

0 r i j .r cut

.

~3!

Here,e is a parameter defining the strength of the interacti
r i j is the distance betweeni and j, s is a parameter tha
characterizes the current spatial distribution of particles,r cut

is a cutoff radius, which we define to be some multiple ofs,
andK is a constant that makesV go to zero atr cut. m andn
are parameters that define the shape of the interaction.
usee50.5, m57, n56, andr cut52.5s.

This results in the following force betweeni and j:

f i j
dist5F4eS m

sm

r i j
m11 2n

sn

r i j
n11D 24eS m

sm

r cut
m11 2n

sn

r cut
n11D G r̂ i j ,

~4!

which, because of the second term, goes smoothly to zer
r cut. Here,f i j

dist is the distributing force oni due to neighbor
j and r̂ i j is the unit vector connecting the two particles,f i j

dist

50 if r i j .r cut.
Because the shape of the elastic sheet changes with t

expanding and contracting, the average distance betw
particles will also change. To keep the magnitude of
distributing force comparable to that of the real force, as w
as to keep the distributing force from either diverging
becoming negligibly small,s is tuned to the current distri
bution of the particles on the sheet. We defines to be the
average distance to the closest six neighbors of each par
divided by a parametera which determines on which side o
the potential well minimum the nearest neighbors lie. We u
a51 so the nearest neighbor particles lie on the repuls
side of the well. We have found that it is necessary to upd
s every time step. Otherwise, the change in the poten
betweeni and j is too sudden, and there can be proble
with stability.

As stated above, the various forces need to be proje
onto the surface normal. It is very important to have a go
estimate of the normal at each particle at each step during
optimization. We have found that a good estimation of t
surface normal is, for example, important for keeping t
particles from ‘‘evaporating’’ from the elastic sheet. We ca
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culate the normal by first finding three neighbors,j, k, and l,
that satisfy the following criteria: Neighborsj andk are cho-
sen from the six closest neighbors, denoted by$n%, so that
the angle betweenr i j and r ik is closest to 2p/3. l is the
neighbor remaining among$n% such that the angle betwee
r il and bothr i j and r ik is closest to 2p/3. More precisely:
Defining

f jk5U r i j •r ik

ur i j u ur iku
1

1

2U, ~5!

The particlesj, k, and l are chosen from$n% such that

j and k minimize f jk

l minimizes f j l and f kl. ~6!

The normal is then defined as

n5
r jk3r j l

ur jk3r j l u
. ~7!

This normal is then used for the force projections at e
particle.

At times, one finds particles that drift away slightly fro
the rest of the sheet. This then leads to inaccuracies in
culating the normals, and these inaccuracies can propaga
nearby particles. To fix this problem, ‘‘smoothing’’ is intro
duced. Smoothing involves adding a force along the dir
tion of the normal to pull the drifting particle back towar
the surface of the sheet. The smoothing force is a functio
the projected distance of a particle along the normal from
six nearest neighbors,$n%,

z5
1

6 (
$n%

~r j2r i !•n. ~8!

This definition assumes a convention where all norm
vectors point away from the inside. This is enforced by ke
ing track of the direction of the normal at each iteration,
the way from the initial sphere. This works since the dire
tion of the normal cannot flip in one iteration~unless the
iteration step size is much too large!.

The smoothing adjusts the force in the normal direct
so as to pull particles along their normal toward the aver
plane defined by$n%.

The form of the smoothing function is

s5H 2
1

2 S 12cosS puzu
bs D if 0 ,uzu,bs

21 if uzu.bs

. ~9!

s is negative if 0,z,bs. Here,b is a parameter that dete
mines the range of the smoothing function. The smaller
choice forb, the faster the smoothing force is turned on. W
have been using values between 0.5 and 1.0 forb. s is the
parameter used in the definition of the distributing force.

The form of the smoothing force is

f i
switch5s3k3zn, ~10!
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where k is a parameter that determines the strength of
smoothing force. We have used a value between 50 and
Å22.

The final force on particlei is then, after zeroing the
appropriate components and adding the smoothing force

f5fi i
real1f' i

dist1f i
switch, ~11!

where

fi
real52

1

r
¹r•nn, ~12!

fi
dist52¹Vdist

•nn, ~13!

f'
dist52¹Vdist2fi

dist, ~14!

fswitch5s3k3zn. ~15!

The sheet is minimized with these forces using a mi
mization method based on the velocity Verlet algorithm6

where the component of the velocity perpendicular to
force is zeroed at each iteration and the entire velocity ve
is zeroed ifv–f,0. When the forces on the particles ha
been minimized, their position gives a discrete representa
of the zero-flux surface.

IV. INTEGRATING THE SUBSPACE DEFINED BY THE
ZERO-FLUX SURFACE

Once the zero-flux surface is known, one would like
calculate various properties of the subspace so defined. M
importantly, one would like to know the total charge co
tained within the surface. Another property that may be
interest is dipole moment, or higher multipole moments. It
therefore, important to be able to tell which points on t
charge density grid lie within the region enclosed by t
dividing surface.

This is accomplished by starting with some referen
point,R0, that is known to lie within the region. This can, fo
example, be the location of the atom around which the ela
sheet has expanded. At each charge density pointRi , a line
is then drawn from the reference point through the cha
density point,

r̂5
Ri2R0

uRi2R0u
. ~16!

Of the particles defining the elastic sheet, theM particles
closest to the liner̂ are found. We are currently usingM520.
The location of these particles is projected onto a plane p
pendicular tor̂ . Then, using a method by D. F. Watson,7 we
triangulate in this plane the particlesM to obtain the connec-
tivity among particles. This connectivity is then used to r
construct the surface of the ES locally as a collection
triangles in three-dimensional space. For each triangle,
equation

a1V11a2V21a3V35R01l r̂ ~17!

is solved. Here, theV i are the coordinates of the vertices
the triangle being examined,l measures the distance th
triangle is fromR0 along r̂ , anda i are the barycentric coor
dinates of the triangle. For a point to lie within the triang
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( ia i51, so the constrainta1512a22a3 is enforced. This
gives a set of three linear equations with three unknow
Solving this system fora i , the line R01l r̂ will cross the
triangle defined byV1 , V2 , andV3 if and only if

0<a i<1, ; i . ~18!

By solving this system of equations for each triangle
the triangulation, it can be determined which triangle the l
crosses and at which point in space the line and the ES
tersect,

Ri85a1V11a2V21a3V3 . ~19!

The charge density pointRi is then inside the sheet if

uRi2R0u,uR82R0u. ~20!

For each point on the density grid, this method can be u
to determine whether it is located in the region enclosed
the dividing surface.

This method will not work for complex surfaces whe
the line r̂ connecting a charge density point to the referen
point can cross the elastic sheet more than once. More el
rate methods need to be used in such cases.

V. RESULTS

We have applied the above algorithm to partitioning
the valence electron densities obtained in DFT/PW
pseudopotential8 calculations of Si crystal, bulk ice, and wa
ter clusters containing from 2 to 6 water molecules. The
structures studied include the bulk bond~Fig. 2!, the bond
between a pair of atoms which have been rotated in the
crystal~Fig. 3!, and the bond between the two atoms formi
a dumbbell interstitial~Fig. 4!. This last structure is espe
cially complex, being composed of a total of five loc
maxima, leading to five different zero-flux surfaces to d
scribe the valence charge density in the bonding region.

The bond in a perfect Si crystal~Fig. 2! should have an
integrated charge density of 2 electrons. From the reg
enclosed by the converged elastic sheet using 2000 parti
which is shown in Fig. 2, the integrated charge dens
amounts to 1.977 electrons, within 1.1% of the expec
value.

Figure 3 shows the zero-flux surface of the bond
tween two atoms that are rotated in the bulk. This confi

FIG. 2. Evolution of the elastic sheet around the valence electron densi
a bond in a Si crystal. Starting with a perfect sphere, the first snap
shown ~left! is taken after 200 iterations, the second after 1000 iteratio
and the third~right! after convergence to the zero-flux surface after 10 0
iterations. The larger spheres indicate the position of the Si atoms.
integrated charge of the enclosed volume is 1.976 electrons. The calcu
took 34 min on a 400 MHz Pentium computer.
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ration is metastable and is found along the minimum ene
path of the concerted exchange process proposed
Pandey.9 The integrated charge inside this surface is 2.0
electrons, showing that this bond has a slightly enhan
electronic density as compared with the perfect crystal.

A much more complicated topology of the zero-flux su
face is associated with the split interstitial~also known as the
dumbbell interstitial!. The valence electron charge dens
for this bond is composed of five local maxima: a cent
maximum and four symmetric satellite maxima. Figure
shows the composition of these five surfaces. The total in
grated charge density of the combined surfaces is 1.42 e
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FIG. 3. Zero-flux surface for the bond between two atoms in the metast
state found along the minimum energy path of the concerted exchang
diffusion process proposed by Pandey. The shape is very similar for
bond in the perfect crystal. The total integrated charge is larger for
bond, with the surface enclosing 2.097 electrons. The larger spheres
the location of the Si atoms.

FIG. 4. Zero-flux surface for the bond between the two Si atoms formin
split interstitial configuration in a Si crystal. The valence charge densit
decomposed into regions by zero-flux surfaces. The figure shows all
regions from the@100# Si crystal direction. The integrated charge of th
central region is 0.86 electrons, while each of the satellite regions cont
0.14 electrons, giving a total of 1.42 electrons in the bond. The lar
spheres indicate the location of the two Si atoms.
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trons, with 0.86 electrons in the central maximum and 0
electrons in each of the satellite maxima. These zero-
surfaces are especially complex, with the central maxim
exhibiting a very sharp cusp in the@100# direction and each
of the satellite maxima containing two sharp points. As lo
as the smoothing force is included, the elastic sheet me
describes these surfaces very well.

In a study of molecular multipole moments in wat
clusters, we used the elastic sheet method to identify Ba
‘‘molecules’’ in the clusters. The partitioning of the hexam
cluster is shown in Fig. 5. This figure illustrates how well t
calculated subregions fill space. The six sheets were ca
lated separately. The final partitioning is cut so the inside
visible. There is some space in the very center of the pa
tioning that is not accounted for by the method~the size of
the spheres hides that fact!. However, most of the space o
the system is accounted for by the subspaces. The total
grated valence density of the six H2O molecules inside the
calculated surfaces is 47.96 electrons, so the error is
0.04 electrons out of 48.

The molecular multipole moments of the various H2O
molecules were calculated. Due to the effect of the elec
field from neighboring molecules, the dipole moment
creases from 1.86 D10 in the gas phase to 2.47 D in th
hexamer and 2.74 D in ice.11 When the electric field was
evaluated at a typical intermolecular distance from the c
ter molecules, the multipole expansion using multipoles
tained from the Bader partitioning converged to the fie

FIG. 5. Zero-flux surfaces for the six molecules in the water hexamer
culated from the valence charge density. Each of the surfaces was calcu
separately. Of the total 48 valence electrons in the cluster, 47.96 are
counted for by the six subregions enclosed by the elastic sheets. The de
position of the cluster charge density enabled calculation of the molec
multipole moments. The molecular dipole moment was found to be 2.4
up by 33% from the gas phase value. The outer boundary was chosen
the r50.001 electrons/Å3 contour. The water molecules are also show
Note the bending of the zero-flux surfaces near the hydrogen atoms.
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obtained from the full electron density at the hexadecap
We also compared calculations using the elastic sh
method with calculations based on the method of Stefa
and Cioslowski3 using theGAUSSIAN94 code. While the cal-
culation of the zero-flux surfaces for the hexamer did n
converge, some of the other water clusters did converge,
the calculated molecular dipole moments then agreed
within 1% with our results from the elastic sheet method

VI. DISCUSSION

During the development of the elastic sheet method,
have encountered several problems that had to be overc
The biggest of these was the form of distributing force.
was mentioned before, we tunes such that the nearest neigh
bors of a particle always lie on the repulsive side of t
potential well. This repulsive pressure can in some ca
force particles out of the sheet at sharp features such
points and cusps and into the neighboring zero-flux surfa
forming winglike structures. One might think that a simp
solution to this would be to choose an interaction resulting
attraction between nearest neighbors. When we tried t
however, holes formed in the sheet and the particles ten
to clump together.

The addition of a ‘‘smoothing’’ force solved this prob
lem. By adding a restoring force that tends to make the sh
locally flat, the particles are not allowed to escape from
dividing surface. Not only does this lead to smoother sha
but it also helps the long-term convergence. Without
smoothing force, the best estimate for the integrated cha
of the bond in the Si crystal was 1.88 electrons. By add
the smoothing force, the integrated charge is 1.97 electr
very close to the exact value of 2.00.

When the calculation is started, the particles are pla
at random on a sphere centered on the atom of interest.
random placement of the particles will often cause very la
forces between them, so the interaction force is scaled d
in the first few steps of the minimization, until the particle
have reached a reasonable distribution within the sphere

VII. CONCLUSIONS

We have developed an elastic sheet method for find
the zero-flux dividing surfaces of the charge density. T
method has been applied to a study of the electron den
around interstitials in Si and in analysis of multipole m
ments of water molecules in water clusters. The discrete
resentation of the zero-flux surfaces obtained with the ela
sheet method can be used to calculate the integrated ch
enclosed by the surface. The method should have more
eral applicability. The elastic sheet algorithm can be appl
to any system where zero-flux surfaces of some scalar fi
are needed. It is possible to extend the method to hig
dimensional systems, where it might, for example, be use
find the transition state dividing surface of a potential ene
surface or even a free energy surface.

The computer program for carrying out elastic sheet c
culations is available on request. The input for the calcu
tion is simply the charge density evaluated on a uniform g
in three-dimensional space. An interpolation formula is th
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used to evaluate the charge density at any point in spac
well as the gradient of the charge density.
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