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Elastic sheet method for identifying atoms in molecules
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We have developed a new method for finding and representing dividing surfaces which can, for
example, be used to identify “atoms” in molecules or condensed phases based on Bader's
definition. Given the total electron density of the system, the dividing surface is taken to be the
zero-flux surface, i.e., the surface on which the normal component of the gradient vanishes. Our
method for finding this surface involves creating an “elastic sheet” represented by a swarm of
fictitious particles which interact with each other so as to give a nearly uniform distribution of points
on the sheet. Two kinds of forces act on the partic(és:the component of the gradient of the
density normal to the elastic sheet, d@dlan interparticle force which only acts in the local tangent
plane of the sheet. Starting with a spherical surface and applying an optimization algorithm that
minimizes the forces leads to convergence of the particles to the zero-flux surface. The elastic sheet
tends to round off regions where the zero-flux surface has sharp cusps or points, but this appears not
to be a serious problem in cases we have studied. The elastic sheet method is robust and can
converge in situations where currently used methods fail. We demonstrate the method with a study
of water clusters and a Si interstitial in a Si crystal. 199 American Institute of Physics.
[S0021-960609)70147-9

I. INTRODUCTION values for the subsystem are calculated. It can be shown, in

) particular, that each subsystem defined in this way satisfies a
Studies of molecules and condensed phases often lead {85 theorem?

discussions of charges and multipole moments of individual Finding the zero-flux surfaces of the charge density

fragmen_ts such_ as atoms or molecules. Giv_en the ContinUO%wever, is not trivial. Methods currently employed can, in
electronic density of the system, the question becomes Now,q fail for certain charge density topologies. The method of
to identify an atom in a molecule, or a molecule in a clustergietangy and CioslowsRiused in the Gaussian code, is one
or a liquid configuration, for example. Many different parti- eyample. This method involves fitting the surface with varia-
tioning schemes have been proposed. When a calculation @b, trial functions in prolate spheroidal coordinates. It can
the electronic wave function of a system is carried out ingj \when the zero-flux surface has certain topological fea-
terms of atomic basis functions, it is tempting to assign thetures, such as very strong curvat@®uring a study of mo-
electronic density associated with a given basis function tQaqyar multipole moments of water clusters, we found that
the atom at the site.But, it is important to realize that e method failed on the hexamer. For this reason, we de-

atomic basis sets are overcomplete and such a decompositigiyeq to develop an alternative method for finding zero-flux
is not unique. In principle, a calculation could be done whereitaces.

all the basis functions are located on one of the atoms in the

system, which would then lead to an assignment of all the

electrons in the system to that one atom. Il. OVERVIEW OF THE ELASTIC SHEET METHOD
One compelling way of approaching this problem in a . L

less arbitrary fashion is the decomposition of the charge den- dln f|tnd|rf1g a zero—flulx sufrfallge, .Weﬂ\:\./ant to mlrt\rl1m|zehthe

sity proposed by BadérHere each point in space is assignedgra lent ol some scaiar field—n this case, he charge

to one of the subsystengs.g., atoms The dividing surface ge?s!ty—norrpa:c ;_O t?tl' closed tst:rfaceh_ohur metr][_ocill mv_olves
is chosen to be a zero-flux surface as defined by efining a set ot Tictitious particies which essentially give a
discrete representation of the surface. Initially, the particles

Vp-n=0, (1) are distributed randomly on some closed surface, such as a
) ) ) sphere, but are then relaxed according to the force acting on
wheren is the surface normal. That is, at every point on them. and in the end they are located on the zero-flux sur-
zero-flux surface the gradient of the charge density has n@,.o The force on these particles has two components. The
component normal to the.su.rface. Bader hgs given the_o_re_ticmSt is the “real” force, the gradient of the charge density.
arguments as to why this is a good choice for a dividingrhe second component is an interaction between the par-
surface. By using the zero-flux surface, various surface 'n_teﬁcles which keeps the particles distributed evenly on the
gral terms go to zero when quantum mechanical expectatiogyface of the sheet. This force is referred to as the “distrib-

uting” force. The component of the real force tangent to the
dElectronic mail: hannes@u.washington.edu sheet surface is zeroed, as is the component of the distribut-

0021-9606/99/111(23)/10664/6/$15.00 10664 © 1999 American Institute of Physics



J. Chem. Phys., Vol. 111, No. 23, 15 December 1999 A method for identifying atoms in molecules 10665

1
flea=—=v.nn. (2
p

The charge density decays exponentially and the real force
would as well. To accelerate convergence in regions where
the density is changing slowly, we work with the logarithm
of p. For finite systems, such as clusters, where the charge
density decays to zero, the real force is set to zero at some
predefined density contour, which then defines a practical
approximation to the zero-flux surface in that direction.

The distributing force acts between the particles that
make up the sheet and its purpose is to keep the density of
particles on the surface uniform. After testing various types
of interactions, we have chosen to use a generalized
Lennard-Jones interaction, where the potential energy be-
tween particles andj is given by

m O_n O_m 0_n
FIG. 1. Forces acting on a particle in the elastic sheet. The particles move in 46( - |t 4rij E( M1 — N + K
response to the normal component of the real fdgradient of the elec- dist_ ij ri j I cut cut
tronic charge densijyand the component of the distributing forces in the ij re<r
local tangent plane. The first acts to move the particles to the zero-flux ij =" cut
surface while the second acts to keep the particle distribution nearly uni- 0 i > eut
form. (3)

Here,e is a parameter defining the strength of the interaction,
rij is the distance betweenandj, o is a parameter that
ing force normal to the sheet. This force projection ensuregsharacterizes the current spatial distribution of partidgsg,
that the distributing force does not interfere with the relax-is a cutoff radius, which we define to be some multiplerpf
ation of the particles to the zero-flux surface and guaranteesndK is a constant that maka&sgo to zero at ;. mandn
that the real force does not affect the distribution of particlesare parameters that define the shape of the interaction. We
within the surface. As a result, the final shape of the sheatisee=0.5, m=7, n=6, andr.,=2.50c.
will be determined solely by the charge density, while the  This results in the following force betweérandj:
distributing force will insure that the density of particles on
the surface remains more or less uniform. Figure 1 iIIustratesidj‘Stz
the projection of the forces.

In regions where the gradient of the electronic density is
small, one can encounter a problem which we refer to asvhich, because of the second term, goes smoothly to zero at
“kinkiness”: the sheet will form small ripples and particles ry. Here,f ﬂ-'St is the distributing force om due to neighbor
can “evaporate” away from the sheet. To counteract this, ar) and?ij is the unit vector connecting the two particlda%‘,St
additional restoring force is introduced, the nature of which=0 if r;>r,.
will be discussed below. Because the shape of the elastic sheet changes with time,

The elastic sheeeS method can be viewed as an ex- expanding and contracting, the average distance between
tension of the nudged elastic bafdEB) method for finding  particles will also change. To keep the magnitude of the
minimum energy path3.In the NEB method, a minimum distributing force comparable to that of the real force, as well
energy path is represented by a discrete set of fictitious paas to keep the distributing force from either diverging or
ticles whose position is optimized by minimizing the perpen-becoming negligibly smallg is tuned to the current distri-
dicular component of the gradient of the potential under conpution of the particles on the sheet. We definéo be the
sideration and the parallel component of a spring forceaverage distance to the closest six neighbors of each particle
between the particles. The spring force causes the particle @ivided by a parametar which determines on which side of
be equidistant along the patiwhen equal spring constants the potential well minimum the nearest neighbors lie. We use
are usefl Because only the parallel component of the springa=1 so the nearest neighbor particles lie on the repulsive
force is kept, the particles relax to the minimum energy pathside of the well. We have found that it is necessary to update
the spring force only affects the distribution of particles o every time step. Otherwise, the change in the potential

I’ij,

O_m n m 0.n
46( M1~ ”W) —46( M1 — nm)
ij ij I cut cut

along the path. betweeni andj is too sudden, and there can be problems
with stability.
As stated above, the various forces need to be projected
IIl. DETAILS OF THE ELASTIC SHEET METHOD onto the surface normal. It is very important to have a gOOd

estimate of the normal at each particle at each step during the
The evolution of the ES is governed by two forces: theoptimization. We have found that a good estimation of the
real force and the distributing force. The real force is just thesurface normal is, for example, important for keeping the
gradient of the logarithm of the charge density particles from “evaporating” from the elastic sheet. We cal-
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culate the normal by first finding three neighbgrk, andl, = wherek is a parameter that determines the strength of the
that satisfy the following criteria: Neighboysandk are cho-  smoothing force. We have used a value between 50 and 100
sen from the six closest neighbors, denoted{by, so that A2

the angle betweem;; andr; is closest to /3. | is the The final force on particlé is then, after zeroing the
neighbor remaining amonfn} such that the angle between appropriate components and adding the smoothing force,

B,e;\:i(:gbothr” andr;, is closest to 2/3. More precisely: f:flrlieal+fiii5t+fiSWitCh’ (11
where
M Fij - ik +£‘ (5) real 1
W\l 2" fiele =2V, (12
The particleg, k, andl are chosen frorjn} such that fiSl= — yv/dist. pp, (13)
j and k minimize fj, fEiSt:_VVdiSt_fﬁ“St, (14)
| minimizes f; and f. (6) fSwitth— g k x zn. (15)
The normal is then defined as _ The sheet is minimized with these_forces using a_mini-
mization method based on the velocity Verlet algorithm
_MEXTg) where the component of the velocity perpendicular to the
n= reXrl” () force is zeroed at each iteration and the entire velocity vector

_ _ o is zeroed ifv-f<0. When the forces on the particles have
This normal is then used for the force projections at eachheen minimized, their position gives a discrete representation

particle. of the zero-flux surface.
At times, one finds particles that drift away slightly from

the rest of the sheet. This then leads to inaccuracies in cal-

culating the normals, and these inaccuracies can propagate . INTEGRATING THE SUBSPACE DEFINED BY THE
nearby particles. To fix this problem, “smoothing” is intro- ZERO-FLUX SURFACE

duced. Smoothing involves adding a force along the direc-
tion of the normal to pull the drifting particle back toward a
the surface of the sheet. The smoothing force is a function Oxn
the projected distance of a particle along the normal from th?ai
six nearest neighborén},

Once the zero-flux surface is known, one would like to
Iculate various properties of the subspace so defined. Most
portantly, one would like to know the total charge con-
ned within the surface. Another property that may be of
interest is dipole moment, or higher multipole moments. It is,

1 therefore, important to be able to tell which points on the
z=¢ > (rj—rj)-n. (8)  charge density grid lie within the region enclosed by the
{n} dividing surface.

This definition assumes a convention where all normal ~ This is accomplished by starting with some reference
vectors point away from the inside. This is enforced by keepPoint, Ry, that is known to lie within the region. This can, for
ing track of the direction of the normal at each iteration, allexample, be the location of the atom around which the elastic
the way from the initial sphere. This works since the direc-sheet has expanded. At each charge density {iyin& line
tion of the normal cannot flip in one iterationless the is then drawn from the reference point through the charge
iteration step size is much too lajge density point,

The smoothing adjusts the force in the normal direction R— Ry
so as to pull particles along their normal toward the average r=———-.

: |Ri— Ryl
plane defined byn}.

The form of the smoothing function is Of the particles defining the elastic sheet, teparticles

closest to the ling¢ are found. We are currently usimg=20.

The location of these particles is projected onto a plane per-

pendicular tor. Then, using a method by D. F. Watsbwe
©) triangulate in this plane the particlééto obtain the connec-
-1 if [z2|>Bo tivity among particles. This connectivity is then used to re-
construct the surface of the ES locally as a collection of
ériangles in three-dimensional space. For each triangle, the
equation

(16)

1 |\ .
N I - <|zI<
s= 2(1 COS( ﬁtf) o<l 'BU.

sis negative if 6<z<Bc. Here,B is a parameter that deter-
mines the range of the smoothing function. The smaller th
choice forp, the faster the smoothing force is turned on. We
have been using values between 0.5 and 1.Q5far is the aVi+ a,Vyo+ asVa=Ro+ AT a7
parameter used in the definition of the distributing force.

The form of the smoothing force is is solved. Here, th&/, are the coordinates of the vertices of

the triangle being examinedy, measures the distance the
switch triangle is fromR, alongr, ande«; are the barycentric coor-
fi=sXkxzn, (10) dinates of the triangle. For a point to lie within the triangle,
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FIG. 2. Evolution of the elastic sheet around the valence electron density of
a bond in a Si crystal. Starting with a perfect sphere, the first snapshot
shown (left) is taken after 200 iterations, the second after 1000 iterations,
and the third(right) after convergence to the zero-flux surface after 10 000

iterations. The larger spheres indicate the position of the Si atoms. The
integrated charge of the enclosed volume is 1.976 electrons. The calculatior:
took 34 min on a 400 MHz Pentium computer.

FIG. 3. Zero-flux surface for the bond between two atoms in the metastable
state found along the minimum energy path of the concerted exchange Si
diffusion process proposed by Pandey. The shape is very similar for the
2ia;=1, so the constraintl: l1-ar,—aj is enforced. This bond in the perfect crystal. The total integrated charge is larger for this

gives a set of three linear equations with three unknov\msbond, with the surface enclosing 2.097 electrons. The larger spheres show
- - . A the location of the Si atoms.

Solving this system fow;, the line Rg+Ar will cross the

triangle defined by, V,, andV; if and only if

O=a;<1, Vi. (18 ration is metastable and is found along the minimum energy

path of the concerted exchange process proposed by

By solving this system of equations for each triangle InPandey". The integrated charge inside this surface is 2.097

the triangulation, it can be determined which triangle the I'n.eelectrons, showing that this bond has a slightly enhanced

crosses and at which point in space the line and the ES "Nlectronic density as compared with the perfect crystal.
tersect, A much more complicated topology of the zero-flux sur-
R/ =a;Vi+a,Vo+ azVs. (190  face is associated with the split interstitialso known as the

dumbbell interstitigl. The valence electron charge density
for this bond is composed of five local maxima: a central
IR —Ro|<|R’—Ry|. (200  maximum and four symmetric satellite maxima. Figure 4
ahows the composition of these five surfaces. The total inte-
rated charge density of the combined surfaces is 1.42 elec-

The charge density poirR; is then inside the sheet if

For each point on the density grid, this method can be use
to determine whether it is located in the region enclosed b)g
the dividing surface.

This method will not work for complex surfaces where
the liner connecting a charge density point to the reference
point can cross the elastic sheet more than once. More elab¢
rate methods need to be used in such cases.

V. RESULTS

We have applied the above algorithm to partitioning of
the valence electron densities obtained in DFT/PW91
pseudopotentiflicalculations of Si crystal, bulk ice, and wa-
ter clusters containing from 2 to 6 water molecules. The Si
structures studied include the bulk boffeig. 2), the bond
between a pair of atoms which have been rotated in the S
crystal(Fig. 3), and the bond between the two atoms forming
a dumbbell interstitialFig. 4). This last structure is espe-
cially complex, being composed of a total of five local
maxima, leading to five different zero-flux surfaces to de-
scribe the valence charge density in the bonding region.

The bond in a perfect Si crystéFig. 2) should have an
integrated charge density of 2 electrons. From the regior,
enclosed by the converged elastic sheet using 2000 partideﬁG. 4. Zero-flux surface for the bond between the two Si atoms forming a
which is shown in Fig. 2, the integrated charge densitysplit interstitial configuration in a Si crystal. The valence charge density is

amounts to 1.977 electrons, within 1.1% of the expectediecomposed into regions by zero-flux surfaces. The figure shows all five
regions from the[100] Si crystal direction. The integrated charge of the
value. o . ; 4 i
. central region is 0.86 electrons, while each of the satellite regions contains
Figure 3 shows the zero-flux surface of the bond beq 14 electrons, giving a total of 1.42 electrons in the bond. The larger

tween two atoms that are rotated in the bulk. This configuspheres indicate the location of the two Si atoms.
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obtained from the full electron density at the hexadecapole.
We also compared calculations using the elastic sheet
method with calculations based on the method of Stefanov
and CioslowsKl using theaussiang4 code. While the cal-
culation of the zero-flux surfaces for the hexamer did not
converge, some of the other water clusters did converge, and
the calculated molecular dipole moments then agreed to
within 1% with our results from the elastic sheet method.

RO P00V’ FULTRSLY T VI. DISCUSSION

) 5 ST, During the development of the elastic sheet method, we

v T have encountered several problems that had to be overcome.
The biggest of these was the form of distributing force. As
was mentioned before, we tuaesuch that the nearest neigh-
bors of a particle always lie on the repulsive side of the
potential well. This repulsive pressure can in some cases
force particles out of the sheet at sharp features such as
points and cusps and into the neighboring zero-flux surfaces,
forming winglike structures. One might think that a simple
solution to this would be to choose an interaction resulting in
attraction between nearest neighbors. When we tried this,
FIG. 5. Zero-flux surfaces for the six molecules in the water hexamer cathowever, holes formed in the sheet and the particles tended
culated from the valence charge density. Each of the surfaces was calculated clump together.

separately. Of the total 48 valence electrons in the cluster, 47.96 are ac- The addition of a “smoothing” force solved this prob—
counted for by the six subregions enclosed by the elastic sheets. The decom-

position of the cluster charge density enabled calculation of the molecula‘em- By addlng a re;torlng force that tends to make the sheet
multipole moments. The molecular dipole moment was found to be 2.47 DJocally flat, the particles are not allowed to escape from the

up by 33% from the gas phase value. The outer boundary was chosen to fividing surface. Not only does this lead to smoother shape,
the p=0.001 electrons/A contour. The water molecules are also shown. but it also helps the long-term convergence. Without the
Note the bending of the zero-flux surfaces near the hydrogen atoms. . . S
smoothing force, the best estimate for the integrated charge
of the bond in the Si crystal was 1.88 electrons. By adding
) ) ) the smoothing force, the integrated charge is 1.97 electrons,
trons, with 0.86 electrons in the central maximum and 0.14,ery close to the exact value of 2.00.
electrons in each of the satellite maxima. These zero-flux “\wnhen the calculation is started. the particles are placed
surfaces are especially complex, with the central maximumy; random on a sphere centered on the atom of interest. The
exhibiting a very sharp cusp in t§&00] direction and each  ranqom placement of the particles will often cause very large
of the satellite maxima containing two sharp points. As 10nGorces between them, so the interaction force is scaled down
as the smoothing force is included, the elastic sheet methog e first few steps of the minimization, until the particles

describes these surfaces very well. . have reached a reasonable distribution within the sphere.
In a study of molecular multipole moments in water

Slusters, W(i _used the elastic sheet r_n_ethod to identify Badt;;”_ CONCLUSIONS
molecules” in the clusters. The partitioning of the hexamer
cluster is shown in Fig. 5. This figure illustrates how well the ~ We have developed an elastic sheet method for finding
calculated subregions fill space. The six sheets were calctihe zero-flux dividing surfaces of the charge density. The
lated separately. The final partitioning is cut so the inside isnethod has been applied to a study of the electron density
visible. There is some space in the very center of the partiaround interstitials in Si and in analysis of multipole mo-
tioning that is not accounted for by the methgbe size of ments of water molecules in water clusters. The discrete rep-
the spheres hides that facHowever, most of the space of resentation of the zero-flux surfaces obtained with the elastic
the system is accounted for by the subspaces. The total inteheet method can be used to calculate the integrated charge
grated valence density of the six,® molecules inside the enclosed by the surface. The method should have more gen-
calculated surfaces is 47.96 electrons, so the error is onlgral applicability. The elastic sheet algorithm can be applied
0.04 electrons out of 48. to any system where zero-flux surfaces of some scalar field
The molecular multipole moments of the variousCH are needed. It is possible to extend the method to higher
molecules were calculated. Due to the effect of the electridimensional systems, where it might, for example, be used to
field from neighboring molecules, the dipole moment in-find the transition state dividing surface of a potential energy
creases from 1.86 B in the gas phase to 2.47 D in the surface or even a free energy surface.
hexamer and 2.74 D in icé.When the electric field was The computer program for carrying out elastic sheet cal-
evaluated at a typical intermolecular distance from the cluseulations is available on request. The input for the calcula-
ter molecules, the multipole expansion using multipoles obtion is simply the charge density evaluated on a uniform grid
tained from the Bader partitioning converged to the fieldin three-dimensional space. An interpolation formula is then




J. Chem. Phys., Vol. 111, No. 23, 15 December 1999 A method for identifying atoms in molecules 10669

used to evaluate the charge density at any point in space, &s. Mills, H. Jmsson, and G. Schenter, Surf. S824, 305 (1999; H.

well as the gradient of the charge density. Jonsson, G. Mills, and K. W. Jacobsen, @lassical and Quantum Dy-
namics in Condensed Phase Simulatioedited by B. J. Berne, G. Cic-
ACKNOWLEDGMENTS cotti, and D. F. CokefWorld Scientific, Singapore, 1998

5H. C. Andersen, J. Chem. Phyz2, 2384(1980.
This work was supported by NSF Grant No. CHE- "D. F. Watson, Comput. Geos@, 97 (1982.
9710995. We gratefully acknowledge helpful discussions®W. Kohnand L. J. Sham, Phys. Ret40, A1133(1965; M. C. Payne, M.
with Graeme Henkelman. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Rev. Mod.
Phys.64, 1045(1992; L. P. PerdewElectronic Structure of Solids '91

. . (Akademie Verlag, Berlin, 1991
R. S. Mulliken, J. Chem. Phy23, 1833(1955.

9K. C. Pandey, Phys. Rev. Lef7, 2287(1986.
2R. F. W. BaderAtoms in Molecules—A Quantum Thedg@xford Uni- 10 ! '
versity Press, Oxford, 1990 T. Dyke and J. Muenter, J. Chem. Ph$§, 3125(1973.

11 7
3B. B. Stefanov and J. Cioslowski, J. Comput. CheiB. 1394(1995. E. Batista, S. S. Xantheas, and Hndson, J. Chem. Phy411, 6011
4GAussian 98 User’s Reference, p. 43, 2nd daussian Inc., 1999 (1999.



