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A method is presented for finding the ridge between first order saddle points on a

multidimensional surface. For atomic scale systems, such saddle points on the energy surface

correspond to atomic rearrangement mechanisms. Information about the ridge can be used to test

the validity of the harmonic approximation to transition state theory, in particular to verify that

second order saddle points—maxima along the ridge—are high enough compared to the first

order saddle points. New minima along the ridge can also be identified during the path

optimisation, thereby revealing additional transition mechanisms. The method is based on a string

of discretisation points along a path between the first order saddle points and using an iterative

optimisation which requires only the force acting on the atoms. At each iteration during the

optimisation, the force is inverted along an unstable eigenmode perpendicular to the path.

The method is applied to Al adatom diffusion on the Al(100) surface to find the ridge between

2-, 3- and 4-atom concerted displacements and hop mechanisms. A correction to the harmonic

approximation of transition state theory was estimated by direct evaluation of the configuration

integral along the ridge.

1. Introduction

The rate of rare events in a system coupled to a heat bath can
be estimated by evaluating the free energy barriers for the
transitions. Transition state theory (TST)1–5 is the foundation
for this approach. In atomic scale systems, for example, the
rate of thermally activated rearrangements of the atoms,
which, typically, are several orders of magnitude slower than
atomic vibrations, can be estimated from the free energy of a
dividing surface separating atomic configurations corres-
ponding to the initial state from the atomic configurations
corresponding to all final states. Due to the large difference in
time scale between atomic vibrations and typical thermally
induced processes such as chemical reactions or diffusion, it
would require immense computational power to directly
simulate dynamical trajectories sufficiently long to include
these rare events. TST makes it possible to focus on the rare
events and neglect the details of the fast vibrational motion. It
provides an approximation which eliminates the time scale
problem, while dynamical information and an exact rate
constant can be obtained by applying dynamical corrections

based on trajectories started at the dividing surface.6 The
greatest challenge in the implementation of TST is to deter-
mine and represent a good dividing surface. The better the
choice of the dividing surface, the better the estimate of the
rate will be (TST gives a variational upper bound) and easier
to subsequently evaluate the dynamical corrections.
Given a dividing surface (transition state), z, the reaction

rate, kTST, out of the initial state, I, can be calculated as the
thermally averaged probability of being at the transition state
times the average velocity, v>, perpendicular to the dividing
surface in the direction away from the initial state

kTST = 1
2h|v>|d(R ! Rz)i. (1)

A hyperplane is a commonly used choice for a dividing
surface. The expression for the rate constant then becomes

kTST ¼

ffiffiffiffiffiffiffiffiffi
kBT

2pm

s
Zz
ZI

; ð2Þ

ZS ¼
Z

S
e!EðRÞ=kBT dR: ð3Þ

where ZS denotes a configuration integral over a subspace S in
configuration space. Here, E(R) is the energy of configuration
R, kB is the Boltzmann constant, T the temperature and m the
effective mass for motion along the hyperplane normal.
The task of finding and representing a transition state is simpli-

fied greatly in the harmonic approximation to TST7,8 (HTST),
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where the transition state is represented as a collection of
hyperplanar segments placed at first order saddle points (SP1s)
on the potential energy rim surrounding the initial state and
having a normal pointing along the unstable vibrational mode
(see, for example ref. 9). The potential energy function is then
approximated by a second order Taylor expansion around the
SP1s for the transition state and around the potential energy
minimum at the initial state. Each saddle point represents a
particular transition mechanism and the energy of the saddle
point minus the energy of the initial state minimum gives the
corresponding energy barrier, Eb = Ez ! EI. The expression for
the reaction rate constant at this level of approximation becomes

kHTST ¼

Q3N

i
nIi

Q3N!1

i
nzi

e!Eb=kBT ; ð4Þ

where N is the number of atoms in the system, nz denotes
frequency of vibrational normal modes at the saddle point and
nI at the initial state minimum. HTST is much less computa-
tionally demanding than full TST, typically by several orders of
magnitude and is therefore frequently used, especially for
transitions in solids. It, however, does not apply to soft matter
systems where a multitude of saddle points with low energy tend
to be present. It is important to identify under what conditions
HTST is accurate enough and when full TST is needed.

Finding a SP1 is challenging especially if the transition
mechanism is not known a priori. Several methods have been
developed for this task, which can be divided into two
categories: those where knowledge about only the initial state
is input and those where knowledge about both the initial and
a final state is input. An example of the first category are
minimum mode following methods10,11 which involves invert-
ing the force component along the eigenmode corresponding
to the lowest eigenvalue of the Hessian matrix to locally
transform SP1s into minima. The latter involves finding a
minimum energy path (MEP) between the two states, a path
for which the component of the gradient in directions
perpendicular to the path is zero and corresponding eigen-
values are positive. Any maximum along a MEP is a SP1 and
the highest one gives the best estimate of the energy barrier
that needs to be overcome. The nudged elastic band (NEB)
method12–14 is frequently used in this context, where an initial
path is discretised by images of the system which are then
optimised until each image has converged onto a path with
zero perpendicular gradient. Frequently, a NEB calculation
finds additional minima along the MEP, thereby revealing
possible states of the system that may not have been known
beforehand, see for example ref. 15. A review of several SP1

finding algorithms is presented in ref. 16.
Both methods mentioned above only require the evaluation

of the first derivative of the energy surface, even though they
are used to find points that are identified by the curvature, i.e.
properties related to the second derivatives. It is desirable to
avoid having to evaluate second derivatives because they
usually require a large computational effort. In plane wave
based density functional theory calculations, for example, the
first derivative of the energy can be obtained without much

extra computational effort beyond the potential energy, while
the evaluation of the second derivatives, and thus the Hessian
matrix, is much more difficult and costly.
As mentioned above, the harmonic approximation only

applies to certain types of systems. The multi-dimensional
parabolas need to be accurate enough approximations to the
energy surface in the statistically relevant regions near the
minimum and near the SP1 at the temperature of interest. In
particular, HTST only applies if the SP1 is sufficiently higher in
energy than the initial state (a commonly used rule of thumb is
Eb > 5kBT),

5 and sufficiently lower than surrounding second
order saddle points, SP2s (at an Nth order saddle point the
Hessian matrix has N negative eigenvalues). Checking these
criteria is non-trivial but important. If they are not met, the
HTST estimate of the rate may not be satisfactory.
The presence of low energy SP2s or irregularities in the

potential energy ridge near SP1s can be seen as warning signs
that the harmonic approach is inadequate. Furthermore, a
rough correction factor for the reaction rate can be evaluated
by comparing the configuration integral, Zz, with and without
the harmonic approximation.
Characterizing potential energy ridges can also be useful

when ensuring that all relevant SP1s have been found, as the
ridge between two SP1s that are not adjacent on the ridge will
go through any intermediate SP1. This can be helpful when
analysing complex systems where it is hard to predict the most
efficient transition mechanism.
Finding SP2s and energy ridges is inherently more difficult

than finding SP1s as maxima along a MEPs. As more con-
straints need to be applied during the optimisation, several
new challenges emerge, as discussed below.
Most rigorously, the energy ridge can be identified by running

steepest descent trajectories and finding the boundary between
starting points in configuration space that converge to different
local minima.17 Such a procedure is, however, far too computa-
tionally tedious for all but the simplest, low dimensional systems.
In the vicinity of a SP1, the Hessian matrix has one negative

eigenvalue, l, and at any point on the ridge, the gradient of the
energy has no component in the direction of the corresponding
eigenvector, ê,18

ê%rE = 0 and l o 0. (5)

As discussed below, this condition does not hold near a SP2,
where the Hessian matrix has two negative eigenvalues.
In this article, we present a method for estimating the

location of an energy ridge between two SP1s, going through
one or more SP2s. It combines elements from the two categories
of algorithms for finding SP1 mentioned above. After present-
ing the method in the next section, we describe an application to
a study of the diffusion of an Al adatom on an Al(100) surface.
The results show that some of the low energy processes are not
well described by the harmonic approximation even at rather
low temperatures and a correction factor for HTST is estimated
by evaluating the configuration integral along the ridge.

2. Methodology: finding the ridge

Given an energy surface, E(R), its gradient, rE(R), and two
SP1s, the goal is to identify a path that lies close to the energy
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ridge between the two SP1s. The path should, in particular, lie
through any intermediate SP2 so that a comparison of the
height of SP2s with respect to the SP1s can be made. The
method should, furthermore, lead to the identification of
previously unknown SP1(s) on the ridge in between the given
end points, should they exist.

The path is at each point characterised by its tangent, ŝ.
When the path lies along the ridge, the component of the
gradient or, equivalently, the force, F & !rE(R), that is
perpendicular to the tangent,

F> & F ! (F%ŝ)ŝ, (6)

must vanish at each point along the path,

F>
ridge = 0. (7)

For a given estimate of the path, the optimisation task
involves iteratively adjusting its shape and location until F>

vanishes, but in order for the path to lie along a ridge rather
than a MEP, it is necessary that the energy has a maximum at
the path along a perpendicular direction. Close to a SP1, this
direction is given by the eigenmode corresponding to the
smallest eigenvalue of the Hessian matrix as illustrated in
Fig. 1. Close to a SP2, however, the Hessian matrix has two
negative eigenvalues and the eigenmode corresponding to the
lower one may be parallel to the tangent of the ridge and the
direction at which a point on the ridge is a maximum
corresponding to the second lowest eigenvalue. This is also
illustrated in Fig. 1. There can, furthermore, be regions where
neither of the two eigenmodes corresponding to negative
eigenvalues are perpendicular to the tangent of the ridge as
seen in Fig. 1. The latter regions can pose significant stability
issues during the optimisation if not properly constrained.

The reduced Hessian matrix for the subspace excluding the
tangent vector has at each point on the ridge one and only one

negative eigenvalue whose corresponding eigenmode, ê, is
necessarily orthogonal to the ridge. The ridge can be located
by maximizing the energy along this direction while minimizing
in all other directions perpendicular to the ridge. By trans-
forming the force, F>, in such a way that it locally, near the
ridge, corresponds to that of a MEP

Ft = F> ! 2(F>%ê)ê, (8)

an iterative displacement of the path in the direction of Ft, i.e.
a minimisation, can be used to locate the ridge. This mapping
of the force makes it possible to employ a method that is
similar to a NEB search for a MEP, but by using the
transformed force, Ft, the path converges on a ridge instead.
A numerical implementation of the path optimisation

requires the introduction of discretisation. The path is repre-
sented by a discrete set of configurations, a set of images of the
system, with coordinates [R0, R1, . . ., RN!1, RN]. The energy of
each image, i, is Ei & E(Ri). Since a discrete representation of
the path is used, the path’s tangent needs to be approximated
at each image. In NEB calculations, it has been found to be
important, for numerical stability, to use the vector displace-
ment to the higher energy neighbouring image, so as to
minimise the formation of kinks in the path.14 This same
tangent estimation was used in the calculations presented here.
In order to perform the force transformation described in

eqn (8), it is necessary to be able to find the eigenmode
associated with the lowest eigenvalue (hereafter referred to
as the minimummode) of the reduced Hessian matrix. For this
purpose we use the dimer method10,11 since it gives the
minimummode using only the force as input. It is also possible
to use the Lanczos method for this purpose.11 For clarity, we
rewrite eqn (8) for each image, i

Ft
i = F>

i ! 2(F>
i %êi)êi, (9)

which is applied after the dimer has been rotated subject to a
constraint êi%ŝi = 0, to find the minimum mode of the reduced
Hessian matrix.
In order to ensure an even distribution of the images along

the path, a spring force, FS
i , between adjacent images is

introduced. The force exerted on image i by the springs is

FS
i = k[(Ri+1 ! Ri) ! (Ri ! Ri!1)], (10)

where k is the spring constant which can be chosen to fit the
energy landscape. For numerical convergence, it is best to
choose k in such a way that the spring force is of roughly the
same magnitude as the force derived from the energy surface,
but a wide range of values can be used. Here, the same value of
k is used for all pairs of adjacent images, but unequal values
can be chosen if an unequal distribution of the images along
the ridge is desired, analogous to NEB calculations.13

The effective force, Feff
i , acting on each image can now be

written as

Feff
i = Ft

i + FS
i , (11)

where the first term is the transformed force from eqn (9) and
the second term is the spring force from eqn (10) that controls
the distribution of the images along the path and increases

Fig. 1 A schematic, two-dimensional, energy surface illustrating an

energy ridge between two SP1s through a SP2. The ridge is shown with

a black line, which is the dividing surface between starting points of

steepest descent paths that lead to different minima (only one of the

minima is shown). The directions of eigenmodes corresponding to

negative eigenvalues of the Hessian matrix are shown with short line

segments, white indicating the one corresponding to the lower eigen-

value and the black corresponding to the higher one.
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numerical stability. The construction of the effective force is
illustrated in Fig. 2.

If the ridge is curved, the spring force tends to shorten the
path by allowing the component perpendicular to the path to
pull it off the ridge. The position of the images, then, converges
to an equilibrium between the components of the spring force
and the transformed force, that are perpendicular to the
tangent,

Ft
i ! (Ft

i%ŝi)ŝi = !(FS
i ! (FS

i %ŝi)ŝi). (12)

This equilibrium position will systematically be slightly of
the ridge. Equivalently, this is referred to as corner-cutting
(see, for example ref. 12). The perpendicular component of the
spring force can be projected out, as is often done in the NEB
method, but here it is retained in order to improve the stability
of the iterative optimisation.

The climbing image algorithm13 can be used on the highest
energy image of the path to ensure exact convergence to the
highest energy SP2 along the ridge. This is accomplished by
decoupling the highest energy image from the springs and
inverting the force along the tangent and the minimum mode
in a manner similar to eqn (9),

Feff
imax

¼ Fimax ! 2ðFimax % ŝimaxÞŝimax ! 2ðFimax % êimax Þêimax ; ð13Þ

where imax refers to the image with the highest energy. This
decoupling achieves two things. It allows the highest energy
image to converge onto the SP2 exactly without significant
increase in computational power and it allows the highest
energy image to be decoupled from the spring force which, in
turn, will allow it to overcome any tendency for corner-cutting.

The ridge calculations are different from MEP calculations
in that the energy may not have a maximum along the path
during the optimisation. The variation of the energy along the
path can be monotonic or even an inverted barrier, e.g. when
the initial path lies close to a minimum. This can lead to
instability in the iterative optimisation and in order to increase
the stability, the full spring force is used. Furthermore,
complications can arise when turning on the climbing image
algorithm as either of the immobile end points might, in fact,
have the highest energy. In such cases it may prove beneficial
for convergence to assign an image that is not the highest
energy one as the climbing image. The images closest to the
end images are partially constrained by the immobility of the
end images, thus an image even further in, R2 or RN!2, is a
better choice for the climbing image. When the path is near the
ridge, the energy will have a maximum along the path and the
highest energy image can be used as the climbing image. The
lack of an intrinsic barrier makes climbing image ridge calcu-
lations risky to run from the initial interpolation. It is, there-
fore, better to, first, carry out enough iterations without the
climbing image for an energy maximum to appear along the
path and then turn on the climbing image (Fig. 3).
The method described here has been implemented and

tested using the Atomic Simulation Environment (ASE)19,20

using both analytical potential energy functions and density
functional theory (DFT) to evaluate the atomic force.

3. Application: Al adatom diffusion on an Al(100)
surface

An Al adatom on the Al(100) surface provides an interesting
system to study because several different diffusion mechanisms
have been found, including various concerted displacements of

Fig. 2 The construction of the effective force, Feff, which acts on

image i of the path and is used in the iterative optimisation. The solid

grey line indicates the ridge, the black filled circles represent the

current location of three adjacent images, the black solid line shows

the tangent estimate, ŝ and the black dashed line shows the minimum

mode estimate, ê, at image i. The orange arrow shows the original

force, F = !rE. The red arrow shows the transformed force, Ft,

obtained by inverting F in the direction of the minimum mode, ê

(see eqn (9)). The purple arrow shows F>, the component of the

transformed force that is perpendicular to the tangent. The green

arrow shows FS, the spring force given by eqn (10). The blue arrow

shows Feff, as given by eqn (11).

Fig. 3 Snapshots from an optimisation of a path between two

neighbouring adatom hop SP1s on a 2 ' 2 ' 1 Al(100) slab. An

animation is included in the ESI.w For simplicity, the Al atoms in the

slab are kept fixed in this illustrative test problem. The energy surface

is generated by minimizing the energy of the adatom along the normal

to the surface plane but keeping the in-plane coordinates fixed. The

circles represent images of the path. The cyan circle is the climbing

image. For clarity, less information is shown for the dotted circles. The

arrows represent the in-plane force acting on each image. (white) The

force derived from the energy surface, !rE. (black) The effective

force, given by eqn (11) or (13), which is used in the iterative

optimisation. The red lines represent the tangent and the blue lines

represent the minimum mode estimate. The red areas of the surface

represent high potential energy and the blue areas low potential

energy. The immobile substrate atoms are located at the centre of

the high potential areas. (a) Initial, straight line interpolation between

the SP1s, (b) after 19 optimisation steps, converged to 0.05 eV Å!1,

without climbing image, (c) after 70 steps, converged to 0.001 eV Å!1

with the climbing image algorithm.
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two or more atoms, in addition to the, more intuitive, hop
mechanism.10,21,22 An embedded atom method potential
(EAM)23 is used here since it has been shown to accurately
describe the system and requires much less computational
effort than DFT calculations. The simulated cell was a slab
of 6 layers, each of which was 8 ' 8 atoms, with one adatom,
totalling 385 atoms. The two bottom layers were kept fixed at
bulk positions with a lattice parameter of 4.038 Å. Initially,
traditional NEB calculations were carried out to find the
relevant SP1s which were then used as end points in the ridge
calculations. The spring constant was set at k = 5.0 eV Å!1.
The two images in the dimer had a fixed separation of
0.0001 Å and were allowed to rotate only once for each
iteration in the path optimisation. The initial minimum mode
guesses were taken from a Gaussian distribution. The con-
vergence criteria for the maximum effective force component
were set at 0.01 eV Å!1 and 0.001 eV Å!1 for the regular and
climbing image calculations respectively. The FIRE algorithm24

was used for the path optimisation.
Several low energy transition mechanisms for adatom diffu-

sion on this surface have been found previously using the
dimer method.10 The mechanism with the lowest energy barrier
is a two atoms concerted displacement, Eb = 0.227 eV. The
second lowest is the simple hop of the adatom from one site to
an adjacent site, Eb = 0.372 eV, but then three and four atoms
concerted displacements are only slightly higher in energy
Eb = 0.426 eV and Eb = 0.413 eV.

The potential energy ridges and SP2s were calculated
between each pair of SP1s and the results are shown in
Fig. 4 for the three concerted displacement mechanisms.
Low energy SP2s were found near the concerted 3- and 4-atom
displacement SP1s, with energies B0.005 eV and B0.012 eV.
The energy of these SP2s is less than thermal energy at room
temperature, kBT = 0.025 eV, over the adjacent SP1s, which
means that HTST is likely not a good approximation for these
mechanisms.

In principle, knowledge of the ridge and the SP2s can be
used to improve on the HTST approximation. Here, a rough
estimate of a correction factor, G, will be evaluated by
calculating the ratio of the configuration integrals of the
harmonic approximation to that calculated from the potential
energy along the ridge,

G ¼
Zridge

z
Zharm:
z

¼
R
ridge exp½!EðxÞ=kBT ) dx
R1
!1 exp½!ax2=kBT ) dx

; ð14Þ

where x is the displacement along the ridge and a is the
curvature of the one-dimensional parabola obtained by per-
forming least squares analysis of the 4 images closest to the
SP1s. The ratios obtained with eqn (14) are shown as a
function of temperature in Fig. 5. As expected, the harmonic
approximation works well for the concerted 2-atom process as
the SP1 is much lower in energy than the adjacent SP2s in that
case. On the other hand the concerted 3- and 4-atom displace-
ments have a significant correction factor (B0.5 for the
concerted 4-atom process at 350 K) as can be seen from the
figure. It should be noted that the ratio increases with temp-
erature due to the limited range of the ridge integral as compared
with the infinite limits of the harmonic one. This is particularly

Fig. 4 The energy ridge going through the SP1s of 2-atom, 3-atom,

4-atom and, then the same, 2-atom concerted displacement for an Al

adatom on an Al(100) surface. The circles represent the position of

images in the optimised paths, the SP1s and the SP2s being coloured

differently but the rest coloured grey. The green curves represent

harmonic approximations to the energy surface at each SP1. The

insets show an overlay of three configurations, two adjacent SP1s

and the intermediate SP2. The atom colours correspond to the

coloured circles of the energy ridge. The SP2s adjacent to the 3-atom

and 4-atom concerted displacements are low and the harmonic

approximation to TST is less accurate for these mechanisms than

the 2-atom concerted displacement.

Fig. 5 The ratio, G, defined in eqn (14), between the configuration

integrals of the potential energy ridge shown in Fig. 4 and the

corresponding harmonic approximations. The black, solid, line is the

ratio for the full integral, including all three concerted displacement

processes. The blue, dotted, line is the ratio when only considering the

2-atom concerted displacement. The green, dashed, line is the ratio

when only considering the 3-atom concerted displacement. The red,

dash-dotted, line is the ratio when only considering the 4-atom

concerted displacement. For the individual processes, the end points

of the ridge integral are the adjacent SP2s, while the full integral is

done for the whole ridge. While the harmonic approximation gives a

good approximation for the total configuration integral over the whole

temperature range shown, because it is dominated by the 2-atom

displacement, the estimate for each of the 3-atom and 4-atom

displacements is poor unless the temperature is very low.
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prominent for the 2-atom concerted displacement where the
ratio even goes above 1.0. In high dimensional systems, SP1s
lie on multiple ridges, as can be seen in Fig. 6, where 3 of the
different ridges in which the concerted 2-atom displacement
SP1 lies on, are shown. Thus it may be necessary to perform
corrections such as those above for more than one ridge for
any given SP1.

In the insets of Fig. 4, a comparison of the atom coordinates
at two adjacent SP1 and the intermediate SP2 can be seen. In
particular, the difference between the concerted 3- and 4-atom
SP1s is shown. The coordinates of the two left-most atoms
only change slightly while the two right-most coordinates
change more, as is to be expected as the atom furthest to the
right is not directly involved in the concerted 3-atom process.
The similarities in coordinates and the small SP2s separating
the 3- and 4-atom displacement processes indicate that a
trajectory passing through the vicinity of either SP1 could
easily end up in the product state corresponding to the other.
Dynamical trajectories started at the ridge would be needed to
determine the probability of each of the product states.

When finding the ridge between the concerted 4-atom
displacement and the hop SP1s, shown in Fig. 7, it became
apparent that a ridge does not directly connect the two.
Instead, the ridge passes through the concerted 2-atom dis-
placement SP1. The path passes exactly through the highest
SP2, as can be verified from the calculated force, given that the
climbing image algorithm is employed. However, due to the
possible corner cutting, there is no guarantee that other, lower
energy, SP2s along the ridge will be found exactly. Never-
theless, if a sufficient number of images is used, the path will
give good approximation for any SP1 and SP2 along the ridge.
Here, the image closest to the concerted 2-atom displacement
SP1 is found to be at a distance of 0.004 Å per atom from the
exact SP1. Using these coordinates in a SP1 searching algo-
rithm quickly yields the exact SP1. As for the lower SP2, a

second ridge calculation can be performed with the adjacent
SP1s as endpoints to focus on a shorter segment of the ridge
with only one intermediate SP2, thereby enabling the climbing
image to converge exactly on the lower SP2. This is shown in
Fig. 7, where the discovered SP1 is used as an endpoint in a
subsequent optimisation of a shorter path and, thus, the lower
SP2 is found accurately.

3.1. Performance

Convergence depends on a number of factors; the accuracy of
the forces, the number of atoms in the system, the number of
images in the calculation and the algorithm used for optimisa-
tion. Furthermore, the specific parameters of the minimum
mode algorithm, the stiffness of the springs and the criterion
for non-climbing image convergence influence the ridge con-
vergence. Although no comprehensive convergence study for
the plethora of parameters was performed, Table 1 shows
convergence data for the processes presented here. In order to
avoid any spurious complication during the path optimisation,
the simple, but robust, FIRE algorithm24 was used to converge
each 29 image path until the maximum effective force compo-
nent was smaller than 0.01 eV Å!1 and 0.001 eV Å!1 for the
regular and climbing image calculations respectively. The
spring constant was set at 5.0 eV Å!1 and the dimer was
allowed to rotate only once per optimisation step.

Fig. 6 A schematic view (due to the high dimensionality of the

system) of some of the ridges lying through the SP1 for 2-atom

concerted displacement (the MEP is shown with blue dotted line).

The three ridges shown connect to the SP1s of the hop and the 2-atom

and 3-atom displacement mechanisms. The vertical bars represent the

height of each of the SP1s. The figure illustrates that a SP1 typically lies

on several energy ridges for a complex system.

Fig. 7 Calculated path at the ridge between the SP1s for a hop and

concerted 4-atom displacement. The circles show the position of

converged images (coloured circles for SP1s and SP2s, but gray for

the rest). These SP1s turned out not to be adjacent on a ridge and the

path optimisation reveals an intermediate SP1, the one for the con-

certed 2-atom displacement. This illustrates how a ridge calculation

could reveal new and possibly unknown transition mechanisms. The

long path is not able to accurately locate the intermediate SP1 and the

lower energy SP2 due to finite resolution in the discretisation and

corner-cutting. The exact configuration of the SP1 can be found using

a SP1 finding algorithm starting with the approximation obtained from

the optimised path. Then, a calculation of a shorter path, between the

SP1s of the 2-atom and 4-atom displacements, locates the intermediate

SP2 accurately (cyan circle). The insets show an overlay of three

configurations, two adjacent SP1s and the intermediate SP2. The atom

colours correspond to the coloured circles of the energy ridge.
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The concerted 3 and 4 atom mechanisms are rather hard for
the NEB to find as they correspond to shallow minima along
the energy ridge. As a result, the ridge calculations can take
fewer optimisation steps than the corresponding NEB calcula-
tions. On the other hand, ridge calculations have difficulty in
converging the paths which have a SP2 close to one SP1 but far
from the other, such as the ridges between the concerted 2 and
3 and concerted 2 and 4 atom mechanisms. Near these SP2s,
the dimer will sometimes find a soft eigenmode, e.g. rearrange-
ments of the full system, which can result in failed optimisa-
tions or ones that are not useful.

A general comparison of the efficiency of NEB and ridge
calculations is not feasible as the methods are used for
different types of paths. The data in Table 1, nevertheless,
give some indication of the resources required to perform a
ridge calculation.

4. Summary

A method for finding an energy ridge and second order saddle
points between first order saddle points is presented and used
to assess the applicability of the harmonic approximation to
transition state theory in a test system involving the diffusion
of an Al adatom on an Al(100) surface. The method is based
on locally transforming the gradient near an energy ridge to
that of a MEP using an inversion of the gradient along the
direction of the minimummode perpendicular to the path. The
method can be regarded as an extension of the nudged elastic
band method to find an energy ridge instead of a MEP.

The application of the method to an Al adatom diffusion on
an Al(100) surface shows that the harmonic approximation
can be expected to perform well over a wide range of tem-
perature for the lowest energy process, the concerted 2-atom
displacement. On the other hand, for the 3-atom and 4-atom
concerted displacement mechanisms, the harmonic approxi-
mation is not accurate because the SP2s adjacent to the SP1s
for these processes are comparatively low in energy. After the
energy ridge has been located, it is possible to estimate a
correction factor for the reaction rate given by HTST by
comparing the configuration integrals of the ridge and the
harmonic approximations. Finally, calculation of the ridge
between SP1s that are not adjacent can reveal additional,
intermediate, SP1s on the ridge. This can be useful when
dealing with complicated energy landscapes.

In the implementation described here, we have included the
full spring force that distributes images along the path in order

to improve stability of the optimisation. This can lead to
corner-cutting in the path where it does not follow the ridge
exactly. However, by using the climbing image algorithm, an
exact convergence to the highest SP2 can be ensured.
The ability to identify energy ridges and second order saddle

points could become a valuable tool in computational materials
design. One example is the study of catalytic selectivity in hetero-
geneous or electro-catalytic processes such as methane vs. higher
alcohol formation in electrochemical CO2 fixation

25 or ammonia
vs. hydrogen formation in electrochemical N2 fixation.26 The
method could, thereby, help estimate Faradaic losses in electro-
chemical processes.
While the discussion here has focused on a classical, over-

the-barrier description of the transition mechanism, similar
considerations can apply to transitions where quantum
mechanical tunnelling takes place. A harmonic quantum
transition state theory can be applied in such cases (see for
example ref. 27–29) and similar considerations about the
height of SP2s over SP1s on an extended, quantum mechanical
energy surface, describing the energy of closed Feynman
paths, may apply. The energy ridge of the extended energy
surface could in principle be found by an extension of the
method presented here.
Even though the main focus here is on the application to rate

theory and atomic simulations, the method can be used to find
ridges and SP2s for any function of multiple variables where the
first derivative is readily available. In fact, the method can easily
be extended to find saddle points of order N, SPNs, by ensuring
that there are N ! 1 negative eigenvalues for the reduced
Hessian. This can be accomplished by having N ! 1 constrained
eigenmode searchers perpendicular to each other and the tangent
of the path and applying eqn (8) to each one.
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J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson and
J. K. Nørskov, Phys. Chem. Chem. Phys., 2012, 14, 1235–1245.

27 S. Andersson, G. Nyman, A. Arnaldsson, U. Manthe and
H. Jónsson, J. Phys. Chem. A, 2009, 113, 4468.

28 G. Mills, G. K. Schenter, D. Makarov and H. Jónsson, Chem.
Phys. Lett., 1997, 278, 91.

29 G. Mills, G. K. Schenter, D. Makarov and H. Jónsson, RAW
Quantum Transition State Theory, in Classical and Quantum
Dynamics in Condensed Phase Simulations, ed. B. J. Berne,
G. Ciccotti and D. F. Coker, World Scientific, 1998, p. 405.

D
ow

nl
oa

de
d 

by
 B

ro
w

n 
U

ni
ve

rs
ity

 o
n 

05
 F

eb
ru

ar
y 

20
12

Pu
bl

ish
ed

 o
n 

22
 D

ec
em

be
r 2

01
1 

on
 h

ttp
://

pu
bs

.rs
c.

or
g 

| d
oi

:1
0.

10
39

/C
2C

P2
34

21
A

View Online


