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Abstract

We have developed a flexible hybrid decomposition parallel implementation of the first-principles molecular dynamics
algorithm of Car and Parrinello. The code allows the problem to be decomposed either spatially, over the electronic orbitals,
or any combination of the two. Performance statistics for 32, 64, 128 and 512 Si atom runs on the Touchstone Deita
and Intel Paragon parallel supercomputers and comparison with the performance of an optimized code running the smaller
systems on the Cray Y-MP and C90 are presented.

1. Introduction

The ab initio molecular dynamics technique of Car and Parrinello [1,2] has become a valuable method for
studying condensed matter structure and dynamics, in particular liquids [3-6], surfaces [7-9], and clusters
[10-12]. In a Car-Parrinello (CP) simulation the electron density of the ground electronic state is calculated
within the local density approximation (LDA) of density functional theory (DFT), and is used to calculate the
forces acting on the ions. The electronic orbitals are expanded in a plane-wave basis set; a classical Lagrangian
linking the ionic coordinates with the expansion coefficients is then used to generate a coupled set of equations
of motion describing the extended electron—ion system. The motion of the electrons can be often adjusted so
that they follow the motion of the ions adiabatically, remaining close to the Born-Oppenheimer ground state as
the system evolves. Thus the ions move according to ab initio forces determined directly from the electronic
ground state at each time step, rather than from an empirical potential. As such, the CP algorithm overcomes
many of the limitations of standard empirical-potential approaches, such as transferability of potentials and,
furthermore, provides direct information about the electronic structure. However, CP simulations are computa-
tionally demanding and systems larger than ~ 100 atoms can not be simulated in a reasonable amount of time
on traditional vector supercomputers. Furthermore, the memory requirements for simulations of large systems
easily exceed the available memory on shared-memory supercomputers.

Many systems of interest require simulations of 10° atoms as is commonly done in molecular dynamics
simulations with empirical potentials. In order to study larger systems with the CP approach it is necessary
to take advantage of the computing power and memory available on parallel supercomputers. A parallel
supercomputer can offer a considerable increase in performance over traditional vector supercomputers by
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replacing the small number of processors sharing a single memory space (e.g. the Cray C-90) with a large
number of computing nodes, each consisting of a slower - but much less expensive — processor with its own
memory. The nodes have some means of communicating data with one another to work cooperatively when
solving the problem. An efficient use of parallel computers requires that a significant fraction of the computation
can be done in an arbitrary order, such that tasks can be done simultaneously on the individual nodes without
excessive data communication between the nodes.

Several groups have implemented the CP algorithm [13-16] or similar plane-wave electronic-structure calcu-
lations [17] on parallel supercomputers. A large fraction of the computation in such calculations involves fast
Fourier transforms (FFT). Most groups [13-15,17] have used a spatial decomposition of the problem where
each node was made responsible for calculations on a subset of the plane-wave coefficients used to describe
each orbital, basically implementing a parallel FFT. This allows efficient implementation of calculations involv-
ing several different orbitals, most importantly the orthonormalization of the orbitals and the non-local portion
of the Hamiltonian. However, it is quite difficult to implement domain-decomposition multi-dimensional FFTs
efficiently, particularly on parallel computers with low degrees of connectivity such as the mesh-connection
[ 18-20] due to the communication requirements. This seriously reduces the efficiency when calculating the
electronic density and the action of the local part of the Hamiltonian. Alternatively, we chose an orbital decom-
position where each node was made responsible for all the expansion coefficients for a subset of the orbitals
[16]. This approach has advantages and disadvantages when compared with the spatial decomposition. Much of
the computation involves independent operations on the orbitals such as the FFT, and the orbital decomposition
makes it possible to do them fully in parallel without any communication between nodes. One disadvantage
of the orbital decomposition is that the orthonormalization requires extensive communication between nodes;
another disadvantage of the orbital decomposition when applied to large problems is the requirement that each
node set aside memory for the entire three-dimensional FFT lattice, rather than storing only a small portion of
it

As more and more nodes are applied to the calculation, a point of diminishing returns is reached in both
cases. There are irreducible minimum amounts of communication, redundant computation done on each node
to avoid communication, synchronization, and load-balancing problems which all act together to limit the
efficiency of any parallel implementation. In order to apply the CP algorithm to large problems, and to make
optimal use of parallel computers, we have developed a code which can use a combination of the orbital and
spatial decomposition. This relieves the memory limitations of the orbital decomposition, and makes it possible
to balance out the losses in efficiency for different parts of the computation so as to get optimal speedup for a
given number of nodes. We present here results of tests on this code on different sized problems. We find that
the optimal decomposition in every case we studied was neither purely spatial nor purely orbital, but rather a
combination of the two.

2. The CP algorithm

The CP algorithm describes a system of interacting ions and electronic orbitals with the classical Lagrangian
[1-3]

N
L=ann/dr|¢n(r)|2+%§’: M,Rf—E[{RI},{wn}]+ZAm(/dr:p;,*(r)«pm(r)—snm), 21)
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where the {R;} are the ionic coordinates and the M, their masses, dots indicate time derivatives, {2 is the volume
of the simulation cell, f 0 indicates integration over the simulation cell, w is a fictitious mass associated with
the time-dependent electronic orbitals to control the time scale of the electronic motion (typically u << M)



J. Wiggs, H. Iénsson / Computer Physics Communications 87 (1995) 319-340 321

and E is energy functional of the system within the DFT. The A, are Lagrange multipliers which impose
orthonormality constraints on the electronic orbitals ¢,:

(‘//n“//m) = /dl‘ lﬁ;(")!ﬁm(-") = Opm » (2.2)

where the 8,, is the standard Kronecker delta function, equal to one when n = m and zero otherwise. The
classical equations of motion are derived from the Lagrangian in the usual way:
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The DFT energy functional [21,22] has the form
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where p(r) is the electron density at r, E**[p] is the LDA of the exchange-correlation energy for electronic
density p, f, is the occupation number of orbital ,, Z; is the valence charge of atom I, and V*'(r) is a
sum of ionic pseudopotentials. We use the angular-momentum dependent, norm-conserving pseudopotentials of
Bachelet, Hamann, and Schliiter (BHS) [23] in the factorized form of Kleinman and Bylander [24] for the
nonlocal parts. The electron density p(r) is expressed in terms of the N orbitals ¢,

N
p(r) = fulgm(n (2.6)

If the functional E[{R;}, {,}] is minimized with respect to the electronic orbitals for fixed ionic positions,
the BO potential surface for the ions, @[{R,}], is obtained. The equations of motion derived from Eq. (2.1)
make it possible to optimize simultaneously the electronic and ionic degrees of freedom using, for example,
steepest descent (SD) minimization. Furthermore, they allow one to perform finite-temperature molecular
dynamics on the BO potential surface once the electronic degrees of freedom have been minimized. Under
favorable conditions the value of u can be chosen such that the electronic orbitals can remain close to the BO
surface as the ionic coordinates evolve according to Eq. (2.4). When doing finite-temperature simulations of
metallic systems, it is often necessary to periodically re-quench the electronic orbitals to the BO surface by
holding the ions fixed and performing SD or conjugate gradient (CG) minimization on the electrons according
to Eq. (2.3). The temperature of the ions can be controlled by any convenient thermostat, such as velocity
scaling, stochastic collisions[25], or the Nosé-Hoover thermostat [26,27].

3. Numerical implementation

The CP algorithm is most easily applied by expanding the electronic orbitals in sums of plane waves:

Yni(r) =exp(ik-r) Y chexp(ig-r), (3.1)
4
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where the g’s are reciprocal lattice vectors of the simulation cell:

o 2m 2, 27
g—"xa—xx'i'"ya—vy%-nzzz—z, (3.2)
where a,, ay, and a, are the dimensions of the simulation cell, n,, ny, and n, can have any integer value and
X, 9, and Z are the unit vectors in the x, y, and z directions. The expression is simple in this case due to the
fact that our simulation cell has all internal angles equal to 90 degrees. Other simulation cell symmetries can be
used, but result in a more complex expression for the reciprocal lattice vector’s basis set. The set of g is limited
to those whose kinetic energy Ey;, = %|g|2 is less than some energy cutoff E.,; a larger value of E, increases
the accuracy of the expansion. The number of such g is hereafter referred to as M. A typical value of E., for
a simulation of silicon is about 12.0 Rydbergs (~ 163 eV). In principle, several k vectors need to be included
to sample the first Brillouin zone; however, this becomes less and less important as the size of the simulation
cell is increased. Since we were primarily interested in simulating large systems with our parallel code the
only k-point included is (0,0,0), the I" point. This choice of basis set forces the orbitals to have the same
periodicity as the simulation cell when periodic boundary conditions are applied. It has the additional benefit
of making the phase of the wavefunction arbitrary; we can therefore choose it to be real, which is equivalent
to stating that ¢ = cg, which reduces the required storage for the expansion coefficients by a factor of two.
The plane wave expansion has the added benefit that certain parts of the Hamiltonian are very easily calculated
in terms of the g’s, i.e. in reciprocal space. While other parts of the calculation are more efficiently carried
out in real space, the plane wave basis makes it possible to switch quickly from reciprocal space to real
space and back using FFTs. This reduces the work required to calculate the functional derivatives in Eq. (2.3)
from O(NM?) to O(NMlog M), making the most computationally expensive portion of the calculation the
imposition of orthonormality and the Kleinman-Bylander nonlocal pseudopotentials, which require O(N*M)
computation. Any parallel implementation of the algorithm will have to perform these parts of the calculation
efficiently to achieve good speedup.

3.1. The pseudopotential calculation

Introduction of pseudopotentials not only reduces the number of electrons included in the calculation by
allowing us to treat only the valence electrons, it also greatly reduces the size of the basis set required
to accurately describe the wavefunctions and the electron density and potential since it is not necessary to
reproduce the fine structure in the regions of space near the nuclei. The Kleinman-Bylander factorized form
of the pseudopotentials first describes the interaction of the valence electrons with the ionic cores as a sum of
ionic pseudopotentials

V(r) =) vu(r=R), (33)
1
then breaks these pseudopotentials down further into sums of angular-momentum dependent potentials
oo
vps(r) =Y _vi(r) B, (3.4)
1=0

where P; projects out the Ith angular momentum. The assumption is made that for some ! > Imax, vi(r) =
U1 (7). For most elements, this approximation is good for /max = 1 or 2. Since P, is a complete set, Eq. (3.4)
can be written as

Imax—1

Ups(r) = ioc(r) + D Suy(r) B, (3.5)
=0
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with
du(r) = vi(r) — vy, (7). (3.6)
The Kleinman-Bylander formalism then replaces the sum in Eq. (3.5) with a fully nonlocal potential:
|5Ul¢?m> (¢?m501|
- - \ , , 37
Bu(r) =Y CAREE (3.7)
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where 45?,,, = ¢ Y, with ¥, being the spherical harmonic and ¢; the /th atomic pseudowavefunction from
which the v; were originally generated. In the plane-wave implementation, if we make the following definitions:

ui(g) = / dr rji(gr)8ui(r)du(r), (3.8)
W = /dr rji(r)8ui(r)éi(r)?, (3.9)
then it can be shown that the matrix element of the nonlocal part of the Hamiltonian in reciprocal space is
. 47 214 1) Pi(cos(Bg g
(glinlg) = 2 3 ¢ e (). (3.10)

!
The forces on the electronic coefficients due to their interaction with the ions is

904(8) _ o3 exp(—ig- R)m(Q)F"

s 3.11
acl W, (3.11)

where
M
F,'":Zu,(g) exp(ig - R;)cy. (3.12)
g

Calculating the F,‘“ is the most computationally demanding part of the pseudopotential calculation, requiring
O(NZM ) work. It should be noted that implementations of the non-local pseudopotentials calculated in real
space have been suggested [29,30] which would reduce the scaling of this calculation to O(N?), but with a
large prefactor. Such techniques could be efficiently implemented within our hybrid parallel code, reducing the
scaling of this portion of the calculation to O(N) when the number of processors is increased with the number
of atoms, but we have not yet done so.

3.2. The orthonormalization

The orthonormality of the electronic orbitals may be maintained in two ways: either by a straightforward
technique like Gram-Schmidt (GS) orthonormalization or by an iterative technique as given by Car and
Parrinello [2] based upon the more general method for imposing holonomic constraints described by Ryckaert
et al. [28]. Both techniques have been implemented in our code, but the iterative technique is preferred when
doing ionic dynamics.

Applying the functional derivatives in Eq. (2.3) to the {i,}, produces a new, non-orthonormal set {¢,}. This
set can be brought to orthonormality using the real symmetric matrix X = ((8¢)%/u1) A. X can be recovered by
first defining the matrices A and B as

Anm = <‘/;nl‘/;m>’ (313)
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Bum = (‘ﬁnll/;m)s (3.14)

then making a first order approximation to X with

X®=1(a-A) (3.15)
and iterating

X® = HI-A+X* (1= B) + (I-B)X* — x¢*=D7), (3.16)
until

Max|X5) — X5V < e. (3.17)

The value of € determines how close to orthonormal the orbitals remain and how many iterations of Eq. (3.16)
are required to achieve orthonormality. A typical value of 107 generally requires less than four iterations.
In a plane wave basis set, with I" point symmetry, it can be shown that the overlap of two wavefunctions is

| M
(g |thm) = 0 /drt//:(r)a,[/m(r) =Re[cy]-Re[cg1+2 Z(Re[c‘g] -Re[cg‘] +Im[cg] —Im[c;',’]) (3.18)

0 g+0

so that calculating each element A and B reduces to doing slightly modified dot product, and thus calculating
A and B requires multiplying one M x N matrix of expansion coefficients by another matrix with dimension
N x M. An operation requiring O(N>M) computation. It is possible to exploit certain matrix properties, store
intermediate values of some matrices, and define the iteration matrix somewhat differently, so that the number
of multiplications in the iteration loop is reduced to one. Since these are multiplications of N x N matrices,
requiring O( N?) computation, and M >> N, the overall time is reduced, but only marginally. The calculations
required, in a plane wave basis set, reduce to

2X0 =8,y + Re[Ca(t +6t)] - Re[&)(t +81)]
- EM: (Re[&4(t +81)] - Re[& (1 + 81)] + Im[&5(s + 8t)] - Im[&; (1 +61)]), (3.19)
g
bum = 8um + Relcg(1)] - Re[E5'(1)]
- i (Re[c;(t)] -Re[&g (1 +81)] + Im[cg(1)] - Im[ &5 (¢ +61), (3.20)
g
X = xO 4 x,=p 4 T gkl _ xGk-D?, (3.21)
ch(t+8t) =23(t+ 6t) +ZN:X,§,’;3cg'(z), (3.22)

m=1
3.3. Summary of the computational modules

A schematic summary of the evaluation of the force on the electronic coefficients is given in Table 1. Over
90 % of the numerical computation is spent in dealing with the electronic degrees of freedom; it breaks down
into six major tasks. Below is a description of the work involved in each task.

rhoofr involves calculation of the total electronic density p(r) in the simulation cell (Eq. (2.6)).
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Table |
Operations in the Car-Parrinello algorithm for N orbitals (indexed with n) and M plane waves (indexed with g)

Task Operations
thoofr & T w(r)
N
p(ry = 30 2|¥a(n)|?
vofrho p(r) 55 p(g)

i(g) = (47/1g) p(®) + vie(@)
_, . FET _
i(g) — 0(r)
v(r) = 8(r) + pxe(p(r))
nonlocal F,I“ = Zr u;(g) exp(ig - Ry) cg
ot (8) [ocy = 2(W/>—'Z;,exp(—ig “Rp)u(g)F"
dEfacy = AE[acy + " a0 (8)/ach

local cg LA

2Wa(r) o(r) =5 3E/ac
loop TU(t+ 81) = —cp(t — 81) + 2ch(1) — | (81)/ ] AE/dcl,
ortho 2X50) = Bum = Yy ST+ A1) T+ A1)

bun = 8um — Y 7 (1) Ep(e+ Ar)

X = x(0) 4 xtk=1)p 4 pTytk=1) _ x(k=1)

~ N
A +AD =T+ A + 3 X ()

m=1

vofrho uses the total electronic density generated by rhoofr to determine the total local electronic potential as
a function of p(r) throughout the simulation cell, including the contribution of the electron exchange-correlation
potential and Hartree interactions (Eq. (2.5)), and the local portion of the pseudopotential (Eq. (3.5)).
The pseudopotential and the Hartree interactions are determined in reciprocal space; the exchange-correlation
potential in real space.

nonlocal determines the portion of the unconstrained functional derivatives of the electronic coefficients due
to the nonlocal portion of the pseudopotential, using the Kleinman-Bylander factorized form (Eq. (3.11)). In
addition, when doing ionic dynamics, it calculates the force exerted on the ions by the electrons, interacting
through the nonlocal pseudopotential.

local determines the portion of the unconstrained functional derivatives of the electronic coefficients due to
the total local potential calculated in vofrho.

loop updates the sets of electronic coefficients according to these unconstrained functional derivatives:

(81) GE

EZ(H' 8t) = —cy(t — 1) +2c:,(t) - 2o
g

(3.23)

where &, (7 + 6¢) are the new set of expansion coefficients before application of the constraint forces.
Orthonormalization is carried out either in ortho via calculation and application of constraint forces, or in
gram via the simple Gram-Schmidt procedure.

4. Parallel implementation

Table 1 gives a schematic representation of the CP algorithm. It suggests two approaches to the parallel
implementation. It is noted that the work on each electronic orbital ¢, is largely independent of the work
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Fig. 1. CPU time for major tasks in a pure orbital decomposition parallel Car-Parrinello simulation of 32 Si atoms at a 12 Ry cutoff
energy. Efficiently parallel tasks should require approximately half the processing time when the number of nodes is doubled. Examples of
this are rhoofr and local

Fig. 2. CPU time for major tasks in a purely spatial decomposition parallel Car-Parrinello simulation of 32 Si atoms at a 12 Ry cutoff
energy. Efficiently parallel tasks should require approximately half the processing time when the number of nodes is doubled. Examples of
this are nonlocal and ortho

done on the other electronic orbitals; this implies that dividing the orbitals up among the nodes, an orbital
decomposition, may be successful, and in fact this proves to be the case [16]. This type of parallelism is often
referred to as coarse-grain or macro-tasking parallelism; the amount of work assigned to each node is quite
large, and the number of nodes which can be applied to the problem is limited. Closer examination suggests that
the work done on each expansion coefficient cy is also independent of the work done on the other coefficients.
For example loop, the second and third subtask of nonlocal, and the second subtask in vofrho. This implies
that we might divide up the coefficients among the nodes, an example of fine-grain or micro-tasking parallelism,
the approach usually favored by parallelizing compilers. The number of nodes which can be applied to the
problem in this manner is theoretically limited only by the number of coefficients, but effectively the limit is
much smailer due to load balancing and communications requirements in some parts of the code. This spatial
decomposition approach has been utilized by several groups [13-15,17].

Each approach has advantages and drawbacks. Fig. 1 shows the time spent doing various tasks in the
algorithm for a 32 atom Si calculation, using the pure orbital decomposition. It shows excellent speedup for
rhoofr and application of the local part of the potential to the wavefunctions, due to the fact that the FFTs are
done with no communication, completely in each processors local memory - inspection of the actual timing
figures shows essentially 100% efficiency. Speedup of the non-local part of the computation is not as good
due to some redundant computation carried out on each node. Unfortunately, since each node must do the
calculations for all g, most of the work in vofrho must be carried out redundantly on each node, so that
there is minimal speedup; however, since vofrho never requires more than about 10% of the CPU time, this
is not a major handicap. The greatest challenge in the orbital decomposition is the parallel implementation of
ortho. Good speedup is achieved only for small numbers of processors; the time required for ortho quickly
approaches a minimum due to communication required when doing the parallel matrix multiplications. A pure
spatial decomposition, on the other hand, shows good efficiencies for those parts of the code which involve
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computations strictly in real space or strictly in reciprocal space, but is much less efficient when transforming
back and forth between the two (Fig. 2). The inefficiencies seen in those parts of the computation carried out
purely in reciprocal space, such as the second subtask of vofrho, the second and third subtasks of nonlocal,
and the sums over g in nonlocal and ortho, are due to load balancing problems; the decomposition of the
FFT lattice results in an uneven division of the coefficients for very large numbers of processors, to the point
where one node may have more than twice as many as some others; the nodes receiving a larger number of
coefficients then become a bottleneck.

Thus both approaches begin to lose efficiency when the number of processors becomes large enough, but
for different reasons. The spatial decomposition begins to suffer from load-balancing problems, and more
importantly, it loses speed in the FFTs due to communication overhead. The orbital decomposition, on the
other hand, reaches a bottleneck due to the communications when orthonormalizing the electronic orbitals. The
orbital decomposition is somewhat faster for a given number of nodes, but it limits the number of nodes which
can be applied to the problem to no more than half the number of orbitals — and it requires more memory
due to redundant storage on different nodes. By combining the two approaches, it is possible to balance the
decomposition so as take maximum advantage of the strong points of each approach. This hybrid parallel
Car-Parrinello (HPCP) algorithm makes it possible to tune the decomposition for a given problem and a
given number of nodes to get the maximum speedup. If the number of nodes available is limited, an optimal
decomposition can be determined and used to minimize computational time. When the maximum number of
nodes under orbital decomposition has been applied, it is possible to add spatial decomposition to apply an
arbitrary number of nodes. We have found that, in fact, the optimal decomposition is usually rot purely spatial
or purely orbital, but a combination of the two.

4.1. The hybrid decomposition

The HPCP technique divides the computing nodes into groups; each group is assigned a subset of the
electronic orbitals, and the computations on these orbitals are further subdivided spatially among the nodes
within the group. The groups are chosen in such a way that the members can communicate with each other
during the computation without interfering with the communications among members of other groups; they are
compartmentalized to eliminate message contention during most of the computation. In addition, the nodes are
arranged so that equivalent nodes - that is, nodes which have been assigned equivalent subsets of the expansion
coefficients — in different groups can be mapped into a set of independent rings with as few shared communi-
cations links as possible. In this paper, we concern ourselves only with the details of implementation on the
Intel Paragon and the Touchstone Delta, two multiple instruction, multiple dataset (MIMD) architectures with
a mesh interconnect communication network. Implementation on other architectures with higher dimensional
communication networks such as the T3D, which uses a 3D toroid communication interconnect, or on the
iPSC/860 or nCUBE/2, which use the hypercube interconnect, is straightforward. For instance, the subgroups
chosen on the T3D might be “planes” of processors within the 3D lattice.

-With the mesh interconnect, the computer is viewed as a two-dimensional set of nodes, each with a connection
to 4 neighbors on the North, East, West, and South, with the exception of those nodes on the edges of the mesh.
For the purpose of mapping HPCP onto the nodes, the mesh is viewed as a 2D mesh of 2D submeshes. Fig.
3 gives a schematic picture of the three types of decomposition on a mesh computer for an example problem
involving 32 orbitals; a purely orbital decomposition on the left, with each node responsible for all computations
on two orbitals, a purely spatial decomposition on the right, where each node is responsible for approximately
one sixteenth of the work on all 32 orbitals, and in the center a hybrid decomposition where the 4 x 4 mesh is
decomposed into a 2 x 2 set of 2 x 2 submeshes, each submesh is responsible for 8 orbitals, and each subnode
is responsible for approximately one fourth of the coefficients for those 8 orbitals. The operations which were
carried out on a single node in the pure orbital decomposition are now carried out within the submesh by all
the subnodes working in parallel. Communications which originally took place between individual nodes now
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Fig. 3. Three possible data decompositions for a 16 Si atom simulation on 16 nodes. In the purely orbital, each node is responsible for 2
out of 32 orbitals. In the purely spatial, each node is responsible for part of the computation on all 32 orbitals. In the hybrid, each node is
a member of a submesh, responsible for part of the computation on 8 of the 32 orbitals

pass between equivalent nodes within the submeshes. This has the effect of reducing communication time in
the orthonormalization procedure considerably.

The next question, then, is how the coefficients will be assigned to the various subnodes within each submesh.
Since the calculations for each plane-wave are identical, with the exception of the g = 0, it is not particularly
important which node contains which coefficients. Also, it is not important which parts of the real-space
simulation cell are assigned to each node. However, there are several other considerations. First: the partition
must be chosen so that the parallel FFTs can be done in an efficient manner. Second: the number of coefficients
assigned to each subnode should be roughly equal to balance the load. Third, and most important: since we
have chosen to include only the I” point, the coefficients ¢, are actually just the complex conjugates of ¢,
reducing the amount of storage required by half; in order to maintain this advantage, the partition must be
chosen so that it is not necessary for different nodes to maintain consistent values of the coefficient for a given
positive/negative plane-wave pair; that is, the elements of the FFT array in reciprocal space corresponding to
the positive and negative plane-waves must reside in the same node’s memory.

While it is certainly possible to implement true 3D parallel FFTs, in the case of a multi-dimensional FFT
it is simpler and usually more efficient [18-20] to implement the 3D FFT as a series of 1D FFTs in the x,
y, and z directions combined with data transpositions (Fig. 4). We have chosen to partition the data so that
in reciprocal space, the entries for the z dimension are stored contiguously in local memory, and the x and y
dimensions are decomposed across the nodes; thus, each node has a set of one-dimensional columns on which
to work when doing the one-dimensional FFTs. The exact nature of this decomposition is determined by the
second and third requirements mentioned above. A straightforward partitioning on a 4 x 4 submesh might be
done as in Fig. 5a; this would make data transpositions quite simple, but would lead to major load-imbalance
problems due to the fact that most of the entries in the FFT array in reciprocal space are actually zero. Only
those plane-waves within the cutoff energy are actually used in the calculation; they fill only a relatively small
region (Fig. 6) within the actual FFT array. It is this sphere of active plane waves within the FFT array which
must be evenly divided, if the computations in reciprocal space are to be evenly divided among nodes. So the
simple partition is discarded in favor of an interleaved partition (Fig. 5b), which results in a roughly equal
division of the active plane-waves among the subnodes.

When doing a standard one-dimensional FFT of an array f with length L indexed from fo to fr—i, the
values of f, in the array in real space correspond to values of some function f for equally-spaced values of
some variable x, arranged in ascending order. When the array is transformed into reciprocal space, we are
left with a new array F whose entries F, correspond to the intensities of various frequencies nw in a Fourier
expansion of the function f. They are not, however, arranged in simple ascending order; rather, Fy = F(0),
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Do FFTs in X-direction:
Node 0:
Node 1:
Node 2:
Node 3: I
— X

Do X<->Y | transpose

Do FFTs in Y-direction:
Node 0: Node 2:
Node 1: Node 3:
Y

—_— X

Fig. 4. Data-transpose algorithm for a two-dimensional parallel FFT. First one-dimensional FFTs are applied in the x-direction, then
the matrix is transposed, then one-dimensional FFTs are applied in the y-direction. All FFTs are computed strictly in local memory.
Communication is done only in the matrix transpose
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Fig. 5. (a) Simple, inefficient partitioning of the 3D FFT array across nodes; each node gets 16 columns in the z-direction, but some nodes
will have few or no “active” plane waves assigned to them. (b) The interleaved partitioning assures that each node will get a reasonable
share of the “active” plane waves, but does not address the probiem of memory locations for positive-negative plane wave pairs. (c) The
final partitioning
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—_—» X

Fig. 6. An x-y projection of the FFT array showing the “active” elements in the array. Only those g falling within a cutoff radius determined
by Ecu have coefficients with non-zero values; they take up the 8 “corners” of the array cell

F, = F(nw) for 0 < n < L/2, and F, = F((n — L)w) for L/2 < n < L. Hence negative frequency —mw
maps to array location F;_,. We must account for the fact that this will be the case in all three dimensions
of our FFT array; positive plane wave (ny,n,,n;) will map to negative plane wave (my,m,,m;) in a rather
complicated manner depending upon the signs and values of n,, n,, and n,; for instance if we use the simple
interleaved partition suggested in Fig. 5b, plane wave (1,2,3) would be stored in the local memory of node
9, but its negative (—1,—2,—3) would map to (15,14,13) and end up in the local memory of node eleven.
Either it is necessary to double the storage for coefficients and determine a way to maintain coefficients for
positive and negative plane waves as complex conjugates, or it is necessary to choose the data decomposition
so that they are both stored in the same node’s memory. The problem is simplified considerably if one looks
at it in terms of the values of the plane waves rather than the partitioning of the FFT array itself. If node
p is at location (i,j) in an R x C submesh, then those plane waves with |n,|modC = j and |ny|modR = i
should be assigned to p. Assigning coefficients to nodes according to the absolute value of n, and n, forces
the decomposition to satisfy the third condition, since all values in the z dimension are known to be in local
memory already. A simple example of the final decomposition is shown in Fig. 5c.

4.2. The FFT calculations

Once the partition has been made, the FFT is straightforward. For simplicity, we consider only the transform
from reciprocal space to real space; the reverse is analogous. Each node in the submesh begins with a subset of
columns in the z dimension; it performs the one dimensional FFTs on these, then begins preparing to transpose
the data so that it will have a subset of columns in the y dimension. The data is packed into a set of contiguous
buffers so that the data which will remain on the node is placed in the “first” buffer, the data which needs to
be transmitted to the node immediately “beneath” it goes in the next buffer, the data for the node “beneath”
that one goes in still the next buffer, and so on; when the “bottom” of the mesh is reached, it wraps back to
the top row in a toroid-fashion. Once the data is packed, a series of messages are passed along each column
of subnodes; after the first message, each node has the data it requires from the node directly above it, as well
as the data which was already in local memory. Each node retains the buffer which was meant for it, passes
on the buffers which were meant for the nodes “below” it, and receives a new set of buffers from the node
“above” it. After all the buffers have been sent, each node will have the data necessary to reconstruct the FFT
array, with a subset of the columns in the y dimension in local memory.

This procedure is shown schematically in Fig. 7. The buffers B;; are contiguous in memory so that the
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Fig. 7. Each node packs message buffers in memory so that it may successively send and receive smaller messages, each time receiving
part of the data necessary for it to continue the next step in the algorithm, and also storing and forwarding to other nodes data they require,
without introducing a great deal of message contention

messages, once packed, may be sent without any further data movement. Buffer Bj; is the data on node i which
must be transmitted to node j. At each iteration, only the shaded buffers are transmitted to the next node. We use
this store-and-forward technique because the software “bandwidth” on the Touchstone Delta, i.e. the amount of
data which can be transferred from local memory out to the message network per unit time, is sufficiently close
to the hardware bandwidth that it is possible to swamp the message backplane and degrade communications. The
store-and-forward technique reduces all communications to near-neighbor messages, eliminating this possibility.
On the Paragon, however, the hardware bandwidth is almost an order of magnitude greater than the speed with
which any particular node can move data from its local memory out onto the network, so it is almost impossible
to swamp the backplane; it may be that direct messages will be faster under these conditions.

Once the FFT array is reassembled, each node performs the appropriate one dimensional FFTs on the subset
of the columns in the y dimension in its local memory. When these are done, the nodes again pack a set of
message buffers, but this time the messages will be passed horizontally along each row of the submesh in order
to transpose the y and x coordinates; when the messages have been passed and the buffers unpacked, each node
will have a subset of the columns in the x dimension in local memory. Appropriate FFTs are performed, and
the three dimensional parallel FFT is complete. The FFT back to reciprocal space simply performs the same
operations in reverse order, doing the x FFTs first, transposing x and y, doing the y FFTs, transposing y and
z, and finally doing the z FFTs. An overall schematic of the FFT showing the data flow during the transpose
operations is shown in Fig. 8.

4.3. Global summations

Global summation is a parallel operation whereby the sum of the values stored in some variable or variables
on different nodes is calculated.

In the HPCP code, three different global summations are needed. Referring to the hybrid decomposition
diagram in Fig. 3, those are: (1) a standard global summation, where all the nodes, zero through fifteen,
contribute to the sum; (2) a global summation over all nodes within a submesh, for instance, only summing up
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Do Y FFTs

Do X<->Y transpose

Fig. 8. The parallel 3D FFT algorithm; 1D FFTs are applied successively in each dimension, with transpositions of the data array between.
The individual rows and columns of nodes may carry out the transpositions of their local data independently, greatly increasing bandwidth
and efficiency

values of the variable stored on nodes two, three, six, and seven; and (3) a global summation over equivalent
nodes in all the submeshes, for instance over nodes five, seven, thirteen, and fifteen.

Standard library calls on most parallel computers can do the first type of summation. The other two types of
sums need to be specially coded. We have used as a basis for our global summations the technique suggested
by Littlefield and van de Geijn [31], modified for the specific circumstances. The general technique involves
independent sums along the rows (or columns) of the mesh, leaving the first node in the row (or column) with
the sum of the values along the row (or column). Then a summation is done along the first column (or row),
leaving the node in the (0,0) position with the result. The communications pattern is then reversed, as the
result is broadcast out along the first column (or row) and then independently along each row (or column). If
properly done, there is no message contention and the time required for completion scales as log, P, with P the
number of nodes. Doing this within a submesh is straightforward; there is no possibility of message contention,
since no node within the submesh ever needs to send a message outside the boundaries of the submesh.

Doing summations over equivalent nodes, however, presents a problem; there will inevitably be message
contention for large enough numbers of processors. It can be minimized, however, by taking advantage of the
fact that it is arbitrary whether the first phase of the summation is done along the rows or the columns. If all
sets of equivalent nodes do their summations with identical ordering of messages, a great deal of contention
will be introduced (Fig. 9a). If, on the other hand, every other set, selected according to a “checkerboard”
coloring, does the first stage along the rows, message contention is reduced by half (Fig. 9b).

4.4. Matrix multiplication

In order to perform the iterative orthonormalization efficiently, it is necessary to have an efficient parallel
matrix multiplication routine. The matrix multiplication used for the pure orbital decomposition can be extended
to make efficient use of the hybrid node layout, increasing the effective bandwidth by roughly the square root
of the number of nodes in each submesh. To illustrate this, it is necessary to review the way in which the
matrix multiplication was implemented in the earlier, pure orbital decomposition code [16].
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(@)

(b)

Fig. 9. (a) All sets of nodes do global sums in the same order; first along columns, then along rows. One set of equivalent nodes is
highlighted for emphasis. In each place where two parallel message indicators overlap, there is contention for a communication link. (b)
If the nodes within a submesh are colored “red-black” like the pattern of a checkerboard, and the “red” nodes do their sums first along the
rows while the “black” nodes do their sums first along the columns, the message contention is reduced by half

First, a “ring” was mapped into the underlying communication topology so that each node had a “neighbor”
on its “left” and its “right,” to which it had a direct, unshared communications link. The coefficient array was
divided up among the members of this ring so that each node had an equal number of rows. Doing the large
matrix multiplications when evaluating Eqgs. (3.19) and (3.20) required that each node use the rows of the
coefficient matrices stored in its local memory to calculate a subblock of the result matrix, pass its rows along
to the next node in the ring, and receive the next set of rows from the previous node in the ring. The algorithm
was described in more detail, with schematics, in Ref. [16].

This parallel matrix multiply was free of contention and maintained load balancing, but its efficiency was
greatly limited by the available bandwidth between nodes. Its performance dropped off rapidly as the number
of nodes increased, due to time spent waiting for the messages to get around the ring. As an example, results
of calculations on a 64 Si atom system on the Paragon and the Delta are shown in Fig. 10. The time for
each is well described by the relation ¢ = a + b/P, where P is the number of nodes and a is the time spent
in communications. This baseline is independent of the number of nodes due to the fact that as the number
of nodes increases, the number of messages also increases but the size of the messages decreases in exact
proportion; the total amount of data that each node is required to send and receive is independent of the
number of nodes. The baseline for the Paragon is less than half that of the Delta, owing to the former’s greater
node-to-node communication bandwidth.

A hybrid parallel matrix multiply greatly alleviates this communication bottleneck. Each node within a
submesh has a subset of the coefficients for some subset of the orbitals. If equivalent processors from the
submeshes are mapped into independent rings, each can do a matrix multiply with its own submatrix; the final
result matrix can be obtained by doing global sums within each submesh of the result matrices produced by
each node (Fig. 11).

4.5. Parallel algorithm for ortho

Once the parallel matrix multiplication has been implemented, the ortho routine is relatively simple. The
arrays b and X (Egs. (3.19) and (3.20)) are calculated by multiplying the coefficient matrices by their
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Fig. 10. CPU time spent in the iterative orthogonalization routine on the Delta and Paragon computers in a simulation of 64 Si atoms
using pure orbital decomposition. As the number of nodes used in the computations is increased the computational time decreases but the
communications time stays the same. The lower baseline for the Paragon curve demonstrates the higher communication bandwidth, which
reduces the time spent in communications

transposes; the data is already properly laid out for the matrix multiplication technique described above. The
array X‘® is constructed according to Eq. (3.19) by multiplying the new matrix of coefficients for time ¢ + 5t
which are not orthonormalized, by its own transpose. The array b (Eq. (3.20)) is constructed by multiplying this
matrix by the transpose of the matrix of coefficients for the current time ¢, which are already orthonormalized.
The iteration involves similar matrix multiplications of arrays X® and b, or linear combinations thereof, by
the transposes of other linear combinations; thus the same matrix multiplication technique can be applied to the
calculations within the iteration loop, without need for any matrix transpositions. These matrix multiplications
within the iteration loop are carried out redundantly on each set of equivalent nodes, since each node in the
submesh will need a copy of the result matrix X® to correct the new array of coefficients; however, since
the amount of work required for these is O(N>) rather than the O(N?M) required to calculate b and X(®
(M > N), the redundant calculation has little effect on the overall timing of ortho.

The ortho routine has a decided advantage over the GS technique when doing large problems and decompos-
ing by orbitals; the amount of data communication it requires does not grow with the number of nodes, whereas
the GS technique’s communication requirements increase as the number of orbitals per node decreases. In the
GS procedure the nodes do a sequential loop over all orbitals; the node which “owns” the orbital normalizes it,
then broadcasts it to all the other nodes, who then orthogonalize to it any of those orbitals they “own” which
have not already been so treated. As such, the algorithm requires N broadcasts, each of which requires log, P
messages to be sent if there are P nodes. For a problem with N orbitals, M coefficients, and P nodes, the
communication requirements for GS are then: O(NMlog, P). The ortho routine, on the other hand, requires
three large matrix communications like those described in Section 4.4, each of which requires P messages of
length M N/P (the time for the smaller N x N matrix multiplications is swamped by these), implying O(NM)
communications regardless of the value of P. Of course, in the hybrid implementation, P refers to the number
of submeshes, as this determines how many messages must be sent. A purely spatial decomposition would
not require any of the communication described here - only a series of global sums to determine the orbitals’
overlaps.
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Fig. 11. The hybrid parallel matrix multiplication algorithm. Each node carries out an independent matrix multiplication of the parts of the
matrices in its local memory, then passes its subblock of the second matrix to the next node in the ring of equivalent nodes in the other
submeshes; arrows indicate direction of data movement between nodes of each ring. The shaded blocks in the result matrix indicate the
part being calculated at each iteration in submesh 1; the shaded blocks in the matrices being multiplied indicate the part of these matrices
resident in memory on each subnode of submesh 1 at each iteration. Each node in the submesh keeps a copy of the indicated strip of the
result matrix; when the independent matrix multiplications are done, a global summation of the values in that strip of the result matrix is
carried out within each submesh, leaving each subnode with the final result

4.6. Parallel algorithm for rhoofr

The algorithm for rhoofr, which calculates the total electronic density within the simulation cell, is quite
simple. Each submesh loops over the orbitals assigned to it, placing the coefficients for each into the proper
locations in the FFT array and doing inverse FFTs to get the value of the electronic wavefunction in real space;
the entries are then squared, scaled by the appropriate occupation number f,, and accumulated in the array
rhoe. When this loop is completed, independent global sums of rhoe are calculated over equivalent nodes,
leaving each node with the total electronic density in that subregion of the simulation cell for which it is
responsible.
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Fig. 12. Time spent on the various subroutines of the HPCP algorithm vs. the number of nodes in each submesh, in a simulation of 64 Si
atoms. The timings are from the Delta, using 64 nodes total. One node per submesh corresponds to a pure orbital decomposition, 64 nodes
per submesh corresponds to a pure spatial decomposition

5. Some performance numbers

The HPCP code makes it possible to “tune” the decomposition for a particular problem and given number
of nodes to minimize the time required for the calculation. To demonstrate this, we describe below several test
runs done on both the Delta and Paragon computers. The calculations were done on systems of Si atoms in
the crystalline arrangement, using s and p non-locality BHS pseudopotentials with the KB factorization, and
an energy cutoff for the plane wave expansion of 12 Ry. Fig. 12 shows timings from calculations done using
64 nodes on the Touchstone Delta, starting with a purely orbital decomposition (1 node per submesh) and
increasing the number of nodes per submesh up to 64 nodes, giving a purely orbital decomposition. The major
subroutines described above were timed separately. The behavior of rhoofr, local, and ortho in particular are
of interest and are described in more detail below.

local represents the time required to apply the local part of the pseudopotential; it requires two FFTs for each
orbital. For each orbital in turn, the coefficients are placed into the FFT array, an inverse FFT is performed
to get the value of the wavefunction in real space, the real space wavefunction in multiplied by the potential
calculated in vofrho, and a forward FFT is done, yielding the values of the “local” force on the electronic
coefficients. rhoofr requires only one FFT per orbital, as described in Section 4.6. The rapid increase in time
required for these two routines is due to the loss of efficiency in the parallel FFTs. The actual amount of
computation per node does not change, but the communication time increases as more nodes are involved in
each FFT calculation. It is impossible for any parallel FFT to be more efficient than simply dividing up the
FFTs and doing them independently on separate nodes as is the case in the orbital decomposition. Clearly, for
these two tasks, the orbital decomposition is superior.

On the other hand, the timing in ortho improves rapidly as the number of nodes per submesh increases. The
reason is that the amount of communication required for the matrix multiplications decreases as the number of
submeshes decreases. For a purely spatial decomposition, no communication is required to do the multiplication
of the submatrices; the only communication required is the final global sum to get the total values in the result
matrix. For a hybrid decomposition, as the number of submesh nodes increases, the number of submeshes
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Fig. 13. Breakdown of communications requirements and effective bandwidth for ortho in a purely orbital and a hybrid decomposition.
The hybrid decomposition increases the speed of the algorithm by reducing the number of messages required by a factor of four while
only decreasing the bandwidth available to each node by a factor of two.

Table 2
Timing comparisons of various simulations of 512 Si atoms

Reference Computer Nodes Decomposition Ecut (Ry) s/step
Nelson et al. {17 nCUBE/2 1024 Spatial 8.0 11677
Brommer et al. [ 14] CM-2 64K Spatial 12.0 3000
Present work Delta 512 Hybrid 12.0 250

decreases, and the effective bandwidth increases roughly as the square root of the number of nodes in each
submesh. This behavior is illustrated in Fig. 13 for a system with N orbitals and M coefficients. This analysis is
born out by the actual timings gathered; when the number of nodes is fixed at 64 and the number of subnodes
per submesh increases from one to four, the time required for ortho drops from 5.05 seconds to 2.18 seconds
- slightly better than the factor of two which was expected. As the number of nodes per submesh is increased
further, the time spent in ortho begins to be dominated by the communications required for the final global sum
in each matrix multiplication. No improvement in timing is obtained beyond sixteen subnodes.

Another advantage of the HPCP algorithm is that it allows more nodes to be applied to the problem than
could be done with the purely orbital decomposition. For example, a system of 64 Si atoms has 128 orbitals;
the largest number of nodes which could be applied to this in the pure orbital decomposition is 64. Using the
HPCP code, the number can then be expanded; instead of 64 nodes we can, for example, use 64 submeshes,
each with as many subnodes as we wish. In this case, the effective bandwidth for the matrix multiplications will
again increase roughly as the square of the number of processors, though for a different reason. If we increase
the computational mesh from an 8 x 8 mesh to a 16 x 16 mesh divided into 2 x 2 submeshes, the communication
pattern among equivalent subnodes is identical; each subnode will see itself as a member of an 8 x 8 mesh
made up of itself and the equivalent subnodes in the other submeshes. The number of messages required when
doing the matrix multiplications remains the same, and each subnode will be sharing a communication link
with one other (cf. Fig. 13), but the messages will be roughly one-fourth the size of those in the 8 x 8 mesh,
so the overall speed will increase by roughly a factor of two. Again, the actual timings gathered bear this out;
the time for ortho on an 8 x 8 mesh is 5.05 seconds, and on a 16 x 16 mesh divided up into 2 x 2 submeshes,
it is 2.05 seconds.

From Fig. 12, it is apparent that most of the speedup obtained in ortho by increasing the number of subnodes
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Fig. 14. Total time per iteration for a system of 64 Si atoms on four different architectures. The two horizontal lines give timings for the
Cray Y-MP and the Cray C90; the curves represent timings for different numbers of nodes on the Touchstone Delta and the Intel Paragon.
Timings were done with 64, 128, and 256 nodes of the Toucshtone Delta and with 64 nodes of the Intel Paragon. The curves indicate how
the time per iteration changes with the decomposition; the x axis is the log, of the number of nodes per submesh

Fig. 15. Total time per iteration for a system of 128 Si atoms on two different architectures. The horizontal line gives the time per iteration
on the C90; the curves represent timings for 128 and 256 nodes of the Toucshtone Delta. Again, the x axis is the log, of the number of
nodes per submesh

is achieved before the time spent in local and rheofr increases significantly, with a minimum for the overall
time when the number of nodes per submesh is four or eight. The optimal decomposition is one which is neither
purely spatial nor purely orbital, but a combination of the two. Fig. 14 shows the total time per iteration of the
CP algorithm in a simulation of 64 Si atoms. It is possible to outperform a highly optimized sequential version
of the CP algorithm running on the Cray Y-MP using only 64 nodes of the Delta, and to almost match the
times on the Cray C90 using 256 nodes, even for a problem as small as 64 Si atoms. Fig. 15 shows a similar
comparison for a larger system of 128 Si atoms. As the size of the problem increases, the parallel algorithm
does even better; it is possible to outperform the C90 using 256 nodes on the Delta, decomposed as a 4 x 4
mesh of 4 x 4 submeshes.

The main motivation for parallel implementations of the CP algorithm is to open the possibility of simulating
systems with more atoms than are possible with existing and foreseeable sequential computers. As such, most
groups that have implemented CP or similar electronic-structure calculations on a parallel supercomputer have
reported timings for a few large systems. Both Nelson et al. [17] and Brommer et al. [14] report timings for
a system of 512 Si atoms; in order to make a comparison, we have done likewise on the Touchstone Delta.
Nelson et al. implemented their code on an nCUBE 2 with 1024 nodes located at the San Diego Supercomputer
Center; the calculation they timed was 512 Si atoms with one k-point and an 8-Ry energy cutoff; their time
per iteration was ~12000 seconds [17]. Brommer et al. implemented their code on the Connection Machine
CM-2, a Single Instruction, Multiple Data parallel computer. Their CM-2 was equipped with 65536 bit-serial
processors and 2048 64-bit floating point units. Their simulation was done on 512 bulk Si atoms with a 12-Ry
energy cutoff. Estimated by reading from a log-log scale graph (Fig. 9 in Ref. [14]), the time per iteration
was ~3000 seconds. For our calculation, we used 512 nodes of the Touchstone Delta. The nodes were mapped
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as a 4 x 8 mesh of 4 x 4 submeshes, and the time per iteration was 250 seconds. A concise list of times is given
in Table 2. It must be stressed that the other groups may not have implemented precisely the same algorithm;
for instance Nelson et al. actually implemented the first-order equation of motion approach of Williams and
Soler [32] which, while very similar to CP, is not identical.

6. Conclusions

The implementation of the Car-Parrinello algorithm on scaleable massively parallel computers permits sim-
ulations of systems too large to simulate on conventional vector supercomputers. Hybrid spatial and orbital
decomposition of the problem makes it possible to achieve substantially higher throughput with a given number
of processing nodes; neither a purely spatial nor a purely orbital decomposition gives optimal speedup.
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