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ABSTRACT 

The application of a recently developed method for 

global optimization to determine parameters in a 

model for multiphase flow in porous media is 

presented. The calculations are carried out using 

software for distributed or cloud computing to search 

for saddle points and minima of an objective function 

that is obtained from the iTOUGH2 code.  The 

method is illustrated using a simple model calibrated 

in a two dimensional parameter space, but it can be 

applied to problems with larger number of parameters 

and is currently being used to improve a model of the 

Laugarnes geothermal area in Iceland.   

INTRODUCTION 

The development of reservoir models often 

involves inverse modeling, which consists of 

estimating model parameters from measurements of 

the system response made at discrete points in space 

and time. The difference between the model 

calculation and the data at the calibration points is 

measured by the objective function. The objective 

function can, for example, be the sum of squares of 

the difference between calculated model output and 

field measured data. The estimation of model 

parameters is then formulated as an optimization 

problem where we focus on finding the values of 

those parameters that minimize the objective 

function. 

Even for small models with only a few parameters, 

the objective function can have more than one 

minimum. An example is given below. Multiple 

minima are more likely in more complex models with 

larger number of parameters.  The main task then 

becomes that of finding the global minimum of a 

function, which has several local minima.  This is a 

very challenging problem, illustrated in Figure 1. 

But, it is also important to know whether additional, 

local minima which are insignificantly higher 

(compared with estimated error bars) are also present 

and could represent equally good parameter sets for 

practical purposes.  

 

 
Figure 1: A schematic object function 

illustrating the problem of multiple local minima.  

The goal is to find the global minimum (red star) 

as well as any other local minimum that is only 

insignificantly higher and represents non-

uniqueness in the fit. A calculation starting from 

the second lowest minimum (green star) using the 

AKMC algorithm and coarse graining is 

illustrated.  The numbers refer to the sequence of 

composite states formed. 

 

 

Global optimization of functions of many variables 

is often carried out using computer simulated 

annealing algorithms that mimic roughly the 

annealing of materials.  The 1983 article by 

Kirkpatrick, Gelatt and Vecchi (Kirkpatrick 1983) 

illustrated how such an approach could be applied to 

circuit design. This article has been cited extensively 



and the method applied to many different types of 

objective functions. In every case, the objective 

function is taken to represent an 'energy' of the 

system. 

 

A Monte Carlo algorithm based on random 

numbers is used to simulate an annealing process 

were changes in the arguments of the objective 

function are accepted or rejected in accordance with a 

fictitious ‘temperature’. The reason for introducing 

temperature is to introduce and control the 

probability of accepting increases in the objective 

function since they may be an essential intermediate 

step to ultimately reach lower function values. 

A central issue in simulated annealing calculations 

is the ‘time’ scale of the ‘cooling’ of the system from 

high temperature to zero temperature.  The slower the 

cooling, the more likely the method is to find the 

global minimum.  For a given amount of 

computational effort, a method that can reach longer 

time scale is more likely to reach the global 

minimum.  

A method for long time scale simulations based on 

adaptive kinetic Monte Carlo (AKMC) algorithm has 

recently been developed (Henkelman 2001). It can be 

used for global optimization in a way that is 

analogous to simulated annealing (Pedersen 2012). 

The basic feature of this approach is an efficient 

method for moving from one local minimum of the 

objective function to another via paths that lie close 

to first order saddle points. The saddle points are 

found using the minimum mode following method 

(Henkelman 1999).  A kinetic Monte Carlo algorithm 

is used to select between paths through different 

saddle points.  Alternatively, the path lying through 

the lowest saddle point and leading to a new local 

minimum can be chosen, in which case a temperature 

does not need be defined (Pedersen 2012). The 

advantage of this algorithm over the original 

simulated annealing algorithm is that much fewer 

function evaluations are needed to move from one 

local minimum to another.  Also, the objective 

function only gets evaluated for parameter values for 

which the objective function is relatively small, that 

is parameter values leading to excessively high 

values of the function are avoided.   

A TWO PARAMETER TEST PROBLEM 

We illustrate the issues raised and the algorithm 

proposed here with the two-dimensional optimization 

problem originate from the inverse modeling of a test 

sample. This is problem 1 presented by Finsterle as 

an illustration of the iTOUGH2 code and various 

optimization methods included there (Finsterle 2007).  

The task is to determine parameters for a model 

describing injection of water at constant pressure into 

a one-dimensional, horizontal column filled with 

uniform, partially saturated sand. Only two 

parameters are varied here, the permeability and the 

porosity. The objective function is the squared 

deviation between ‘observed’ and calculated pressure 

and flow rate at two selected points within the 

column.  Figure 2 shows the shape of the objective 

function in the parameter space defined by porosity-

log(permeability), obtained using the Grid Search 

Method implemented in iTOUGH2.  It is clear from 

the figure that the objective function has two minima.  

The global minimun occurs for log(permeability) of -

11.7 and porosity of 0.35, but a local minimum 

occurs at log(permeability) of -12.2 and unphysical 

large porosity.  The two basins surrounding the 

minima are separated by a ridge along which there is 

a minimum, corresponding to a first order saddle 

point on the objective function surface.  

 

Figure 2: The objective function for the test 

problem as a function of the two variables: 

porosity and permeability. (this test problem is 

taken from the iTOUGH2 sample problem report, 

LBNL-40042, see Finsterle (2007)). 

 

 

While the local minimum is not physically 

reasonable (because the porosity becomes so large) 

and corresponds to a significantly higher value of the 

objective function, it will attract minimization paths 

started within a certain region of parameter space.  

While it can easily be discounted in this simple two-

dimensional problem, this is harder in larger 

problems involving more parameters. Such problems 

are also likely to have more local minima, several of 

which can have reasonable values of the parameters.  

We use this two parameter example to illustrate the 

problem, but the goal is to be able to deal with 

multiple local minima in realistic problems involving 

several parameters, which likely could arise while 



doing a calibration of a model of geothermal 

reservoir. 

 

FINDING THE NEAREST LOCAL MINIMUM  

The Gauss-Newton method is often used for 

minimizations of objective functions.  It is efficient, 

but only strives to converge onto the local minimum 

closest to the initial guess.  Figure 3 shows contours 

of the objective function and solution paths, for 

Gauss-Newton minimization algorithm, obtained 

using two different initial guesses.  We notice that if 

the initial guess is on the right hand side of the ridge, 

the method converges to the global minimum.  But, if 

the initial guess is to the left hand side of the ridge, it 

converges to the local minimum.  A large region of 

parameter space leads to convergence to the local 

minimum. In this particular case we realize it has no 

physical meaning but it could be difficult to 

determine in other situations. 

 

 

Figure 3: Solution paths of Gauss-Newton 

minimization algorithm in the 2D parameter 

space porosity-log(permeability), starting from 

two different points (squares), one to the right of 

the ridge and another to the left of the ridge. This 

illustrates the possibility that a minimization from 

an initial guess of the parameter values can lead 

to convergence to a local minimum with a 

substantially higher value of the objective 

function than the global minimum.  

 

 

The Levenberg-Marquardt method can be made to 

converge more efficiently by selecting appropriate 

values for convergence parameters, but as the Gauss-

Newton it only strives to converge to the minimum 

closest to the initial guess of the model parameters.  

Minimization paths generated using this method are 

shown in Figure 4.  The iTOUGH2 code is used to 

perform the optimization that lead to the solution 

paths in both Figures 3 and 4. The results for the 

minimization when using an initial guess to the right 

of the ridge are similar to the ones given in the 

iTOUGH2 User’s Guide (Finsterle 2007). 

This example illustrates the need for exploring the 

objective function surface beyond just finding the 

local minimum nearest to the initial guess.  While it 

is easy to envision setting up enough minimization 

calculations to cover a fine grid of possible initial 

guesses for all parameters when the number of 

parameters is small, this will quickly become 

unmanageable as the number of parameters increases. 

 

 
Figure 4: Solution paths of Levenberg-

Marquardt minimization algorithm in the 2D 

parameter space porosity-log(permeability), 

starting from two different points (squares), one 

to the right of the ridge and another to the left of 

the ridge. Similar to Fig. 2, this illustrates the 

possibility that a minimization from an initial 

guess of the parameter values can lead to 

convergence to a local minimum with a 

substantially higher value of the objective 

function than the global minimum. 

 

 

FINDING MULTIPLE MINIMA 

The task of finding the global minimum of a 

function with multiple local minima is a challenging 

one and the only method that is guaranteed to work is 

the simulated annealing method with an impossibly 

slow cooling rate and impossibly large computational 

effort.  A simulated annealing calculation for the two 

parameter test problem using a finite cooling rate 

given in the iTOUGH2 User’s Guide is shown in 

Figure 5.  While the calculation successfully does 

find the global minimum, the number of iterations of 

this kind of approach is large, orders of magnitude 

larger than for the minimization calculations shown 



in Figures 3 and 4. A more efficient method for 

dealing with objective functions with multiple local 

minima is clearly needed. 

The AKMC algorithm can be used to explore 

multiple minima of an objective function with 

computational effort that per minimum is just about 

two orders of magnitude greater than a single 

minimization from an initial guess. The basic feature 

of the algorithm is the ability to climb up the 

objective function surface to home in on regions 

around first order saddle points.  The algorithm, 

thereby, identifies new minima that are adjacent to a 

known minimum.  In a simulated annealing 

formulation the new minimum can be accepted or 

rejected based in the difference in the values of the 

objective function and the current value of the 

temperature (Pedersen 2012).  Alternatively, a map of 

the minima can be generated, with each additional 

minimum selected based on the height of the first 

order saddle point in the path to that minimum, as 

illustrated in Figure 1. 

 
Figure 5: Solution paths of Simulated 

annealing minimization algorithm in the 2D 

parameter space porosity-log(permeability), 

starting from a point to the right of the ridge.  The 

simulation does find the global minimum but 

requires a very large number of iterations.  

Picture taken from the iTOUGH2 User’s Guide 

(Finsterle 2007). 

 

 

The AKMC algorithm is based on the following 

principle (for more detailed description see 

Henkelman 2001 and Pedersen 2011).  For a given 

local minimum, several saddle point searches are 

carried out (on the order of 10 to 100) starting from a 

random change in the model parameters.  A small 

change in the parameter values at the minimum is 

generated from a Gaussian random distribution.  For 

each of the perturbed parameter values, the minimum 

mode following method (Henkelman 1999) is then 

used to climb up the objective function surface and 

home in on a saddle point. Such searches are 

continued until additional searches do not reveal new 

low-lying saddle points using a probabilistic 

confidence estimate (Xu 2008).   

Two calculations using this algorithm for the two 

dimensional test problem are shown in Figure 6, one 

starting from an initial point to the right of the ridge 

and another from an initial point to the left of the 

ridge.  In either case, both minima are found, the 

global one and the local one (to within a chosen 

tolerance in the gradient).  Both paths go through the 

vicinity of the first order saddle point.  The tolerance 

for convergence onto the saddle point can be large 

since the precise value of the objective function there 

is not important.  The fact that the paths taken from 

one minimum to another go through the vicinity of 

saddle points means that parameter regions with very 

large values of the objective function are avoided, 

which can be advantageous since unphysical 

parameters can lead to ill defined values of the 

objective function and large computational effort.  

 

Figure 6: Exploration of the objective 

function using the AKMC method. Two paths are 

shown one starting to the right of the ridge (blue) 

and the other from the left (red). First, a 

minimization is carried out (IM).  Then, an initial 

increment of parameter values from the minimum 

is made (dashed line) and the minimum mode 

following method used to climb up the objective 

function surface to home in on a saddle point 

(CSP). Then, an increment of parameter values 

from the saddle point along the direction of 

negative curvature away from the initial minimum 

is made and another minimization carried out 

(MSP). In either one of the two search paths, both 

the global and local minima were found.  

 

 



The most important aspect of the AKMC method is 

the slow increase in computational effort with the 

increase in the number of parameters.  This method 

was originally developed to search for transition 

mechanism and find stable arrangements of atoms in 

solids.  It has been applied successfully to systems 

with thousands of parameters (atom coordinates in 

those cases).  It has been implemented in software for 

distributed and cloud computing (Pedersen 2010) 

making it possible to use multiple CPUs 

simultaneously connected by simple internet 

connection.  Idle time on computer clusters or 

personal computers can be used to carry out the 

calculations.  The saddle point searches are farmed 

out to the various CPU and the saddle points and 

minima which found are reported back to the server 

which keeps track of them. 

DISCUSSION 

The problem of finding the global minimum of an 

objective function that has many local minima is a 

challenging one and the only method that is 

guaranteed to work is the simulated annealing 

method with an impossibly slow cooling rate 

requiring infinite computational effort (Kirkpatrick 

1983). For object functions that are continuous and 

differentiable the gradient can be used to navigate on 

the objective function surface so as to move from one 

local minimum to another.  This assumes the minima 

can be associated with basins of significant extent 

and that the surface is not ‘rippled’.  If these 

conditions are met, the AKMC method with 

systematic coarse graining can be used to map out the 

local minima and not only give an estimate of the 

global minimum (as the lowest minimum found) but 

also give an estimate for the uniqueness of the 

solution found and a few of the essential parts of the 

objective function.  
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