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We simulate the compression of a two-component Lennard-Jones liquid at a variety of constant
temperatures using a molecular dynamics algorithm in an isobaric–isothermal ensemble. The
viscosity of the liquid increases with pressure, undergoing a broadened transition into a structurally
arrested, amorphous state. This transition, like the more familiar one induced by cooling, is
correlated with a significant increase in icosahedral ordering. In fact, the structure of the final state,
as measured by an analysis of the bonding, is essentially the same in the glassy, frozen state whether
produced by squeezing or by cooling under pressure. We have computed an effective hard-sphere
packing fraction at the transition, defining the transition pressure or temperature by a cutoff in the
diffusion constant, analogous to the traditional laboratory definition of the glass transition by an
arbitrary, low cutoff in viscosity. The packing fraction at this transition point is not constant, but is
consistently higher for runs compressed at higher temperature. We show that this is because the
transition point defined by a constant cutoff in the diffusion constant is not the same as the point of
structural arrest, at which further changes in pressure induce no further structural changes, but that
the two alternate descriptions may be reconciled by using a thermally activated cutoff for the
diffusion constant. This enables estimation of the characteristic activation energy for diffusion at the
point of structural arrest. ©1995 American Institute of Physics.
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I. INTRODUCTION

The glass transition most often studied is that which o
curs when a viscous liquid forms a glass upon reduction
the temperature at constant, usually zero, pressure. A tran
tion into a solid amorphous structure could alternately b
obtained at constant temperature by applying pressure.
examine this latter transition here, through molecular dynam
ics ~MD! simulations of a two-component Lennard-Jone
~LJ! system.

The combination of pressure and temperature effects
sults in behavior not seen in cooling studies without pre
sure. We are particularly interested in the relationship b
tween structural and dynamical properties, and we addres
nontrivial aspect of this relationship in this paper, demon
strating that diffusion, a dynamical property, is correlated
an activated, nonlinear way with the structural changes th
occur as the material is compressed.

II. METHOD OF SIMULATION

We, like many others who have studied glassy behavi
through computer simulations,1,2 have used a two-componen
Lennard-Jones~LJ! system as the model: interactions be
tween atoms are described by the pair potenti
vab54e@(sab /r )

122(sab /r )
6#. All data reported here

were obtained for a 2000-atom system consisting of 16
small atoms with s1151 and 400 larger atoms with
s2251.2, withs1251.1 for the interaction between the two
different types. The other parameters, massm and energy
e, were the same for all atoms. We used periodic bounda
conditions in all three directions. The time step for integra
tion was 0.01t, wheret5(ms11

2 /e)(1/2).

a!Present address: Department of Chemistry, University of British Columb
Vancouver, BC, Canada V6T1Y6.
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We have simulated with a molecular dynamics algorithm
in an isobaric–isothermal ensemble, using Andersen’s con
stant pressure method3 combined with stochastic collisions.
A detailed description of this algorithm is given in the ap-
pendices to a paper by Fox and Andersen.4 Andersen’s
method adds an extra degree of freedom, the total volume,
the Lagrangian for the system. The volume adjusts freely t
maintain a nearly constant, though fluctuating, pressure. W
show in Appendix A how to calculate a reasonable value fo
the ‘‘piston mass,’’ which determines the coupling strength
of the volume term. The stochastic collisions involve effec-
tively colliding a few randomly selected particles each time
step with a heat bath that has a Boltzmann distribution o
velocities at the correct temperature. Andersen ha
demonstrated3 that the combination of his constant pressure
method with such stochastic collisions in standard molecula
dynamics results in a correct isothermal–isobaric ensembl
the time-averaged valuêF& for any quantityF converges to
the correct isobaric–isothermal ensemble averageFNPT in
the limits of t→` andN→`.

We have run at five different constant temperatures, in
each case with pressure increasing over time as shown
Fig. 1. At a temperature ofT*5kT/e50.8, we have exam-
ined the behavior at several intermediate pressures mo
closely by running for a long time at constant pressure with
initial configurations given by the endpoints of the plateaus
in the rapidly increasing-pressure runs, as shown in the ins
to Fig. 1. Pressure is given throughout this paper in units o
e/s11

3 , which would be about 425 bar if the smaller particles
were argon.

III. DIFFUSION

The self-diffusion constantDa5(d/dt^xa
2&)/6 is a con-

venient measure of how freely atoms of typea are able to
a,
5/102(4)/1796/10/$6.00 © 1995 American Institute of Physicsto¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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1797Shumway, Clarke, and Jónsson: Pressure-induced glass transition
move around within the system. As the liquid becomes m
viscous and relaxations freeze out, atoms become stuc
their places and the diffusion constant falls. This is seen
Fig. 2 for an average diffusion constant5 D5(D11D2)/2 for
each of the constant temperatures we simulated. At a t
perature ofT*50.6, the diffusion constant falls to nearl
zero by the rather low pressure of 6, while at a higher te
perature ofT*51.5, diffusion persists to much higher pres
sures. We have fit the data for the three lower temperature
an exponential functionD5Ae2BP, for T*51.0 to a sum of
two exponentials,D5Ae2BP1Ce2EP, and forT*51.5 to a
sum of three exponentials. Our least-squares fitting progr
returnedx2,431025 in each case. The single exponenti

FIG. 1. For each temperature simulated, pressure increases over time
stepwise fashion, with brief periods of constant, though fluctuating, press
alternating with linearly increasing applied pressure. For one temperat
T*50.8, we also ran long constant pressure runs from the endpoint c
figurations of the short plateaus as illustrated in the inset. Results from b
are included in data plotted in other figures.

FIG. 2. Average diffusion constant D, in units ofs11
2 /t, with fitting func-

tions as described in the text. The three different symbols forT*50.8 cor-
respond, respectively, to the regular short-plateau run of Fig. 1,
extended-plateau run of the inset to Fig. 1, and a third run in which
average rate of pressure increase was slower by about a factor of 8 th
the short-plateau run.
J. Chem. Phys., Vol. 102,Downloaded¬16¬Feb¬2001¬to¬128.95.128.146.¬Redistribution¬subject
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was not used for the two highest temperatures because the fit
was bad, withx2 two orders of magnitude higher for
T*51.0 and four forT*51.5.

Experimentally, the glass transition in a real material is
defined by an arbitrary cutoff in viscosity (h): by h;1014 P,
the liquid is acting solid on human time scales. Since the
behavior of the diffusion coefficient D is similar6,7 to that of
1/h in glassy materials, the transition could alternately be
defined in terms of an arbitrary cutoff in D;h is easier to
measure experimentally, D is easier in computer simulations.
We define our glass transition pressurePg , which is plotted
in Fig. 3, as the point at which D falls below 0.001, in units
of s11

2 /t, using the fitting functions described above to de-
termine this point. Some other cutoff could equally well have
been chosen; the behavior of thePg vs T curve is qualita-
tively the same for cutoffs ranging from 0.0005 to 0.004, as
shown in the inset to Fig. 3. Of course, any diffusion mea-
sured in our simulations corresponds to a much lower vis-
cosity than 1014 P. Our cutoff ofD50.001 corresponds to
about 531027 cm2/s using argon units, or a diffusion length
of about 0.4 Å for the 40 ps constant pressure plateaus of the
fast runs, or 2 Å for the 1 ns extended plateaus of the runs
shown in the inset to Fig. 1. A liquid in the laboratory with
such a diffusion constant would still be described as a vis-
cous liquid,6 not a glass; it is basically frozen on time scales
of our simulation, though not yet on laboratory time scales.

We have plotted the potential energy as a function of
cube root of volume in Fig. 4, indicating the point corre-
sponding toPg for each temperature. At the beginning of
each run, when the pressure is low, thermal fluctuations keep
the atoms farther apart on average than would be optimal
energetically. As the pressure goes up, atoms move closer
together, mapping out a picture of the average potential seen
by the ensemble at each density. Clarke8 noticed such an
effect many years ago in simulations of a one-component LJ
system, and thought the glass transition would generally tend
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FIG. 3. The transition pressurePg in the main figure is defined as the
pressure at which the diffusion constant falls below a cutoff of 0.001. The
inset shows similar curves for cutoffs ranging from 0.0005 to 0.004.
No. 4, 22 January 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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1798 Shumway, Clarke, and Jónsson: Pressure-induced glass transition
to occur near the minimum in the potential energy. While th
is indeed true at some temperatures, it is not universal.
lower temperatures, diffusion halts before the average sp
ing even reaches the optimal value, almost as soon as t
mal vibrations start forcing atoms into the region dominat
by the repulsive potential, while at higher temperatures, d
fusion continues well into the repulsive region.

IV. ICOSAHEDRAL ORDERING

It has been previously observed in simulations and e
periments in which viscous liquids were cooled into a glas
state that an increase in icosahedral bonding is often ass
ated with vitrification.2,9 An increase in local icosahedral or

FIG. 4. Average effective potential as a function of average interatom
spacing, with the point corresponding toPg from Fig. 3 indicated for each
temperature.

FIG. 5. The dark atoms illustrated here form a 555 bonded pair: they h
five common neighbors, there are five bonds between the common ne
bors, and the longest chain of bonds between the common neighbors
sists of five bonds. An icosahedron is formed of 12 pairs bonded in this w
one of the dark atoms and each of the light atoms here, paired with the o
dark atom, is one of the 12 pairs, so the atoms shown here comprise
central atom and half the outer atoms of a complete icosahedron. We th
fore refer to 555 pairs as ‘‘icosahedrally bonded.’’
J. Chem. Phys., Vol. 102,Downloaded¬16¬Feb¬2001¬to¬128.95.128.146.¬Redistribution¬subject
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dering has also been observed during densification of ha
sphere packings.10 This effect is also seen in the pressure
induced transition, as we now show.

We have analyzed the bonding using a common
neighbor analysis11 ~CNA! in which a set of three indicesjkl
specifies the local environment of a bonded pair of atom
Two atoms are considered bonded if they are within a certa
distance of each other, which depends on the type of ea
The cutoff is chosen here as the location of the first min
mum in the appropriate partial radial distribution function
g(r ). The first indexj is the number of common neighbors,
or the number of atoms bonded to both. The next indexk is
the total number of bonds between these common neighbo
andl is the number of bonds in the longest continuous cha
formed by thek bonds between the common neighbors. In a
fcc crystal, for example, all bonds would be of the type
‘‘421.’’ Icosahedral bonding results in ‘‘555’’ pairs, as illus-
trated in Fig. 5. Chemical ordering is not reflected in thi
scheme; the label does not reflect the atomic types of t
bonded neighbors.
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FIG. 6. ~a! Each run produces configurations at a sequence of increasi
pressures at a given temperature. In order to compare the underlying diff
ences between them, we bring them all into the same state by quenching
zero temperature, then releasing the pressure.~b! We took a quenched state
and alternately applied and released a pressure of 13 (e/s3). Almost no
structural change was observed. The number of 555 pairs is computed ba
on a cutoff in the maximum distance between bonded pairs. We scaled
cutoff by the length scaleV1/3 in order to compare configurations in different
pressure states. Because the distribution of bond lengths changes slig
under pressure, this resulted in a slight difference in the number of pa
found in the compressed states relative to the uncompressed states, e
though no rearrangements actually occurred. This illustrates the subtl
involved in trying to compare configurations at different pressures, which
why we generally bring configurations into the same zero-temperature ze
pressure state before making comparisons.
No. 4, 22 January 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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1799Shumway, Clarke, and Jónsson: Pressure-induced glass transition
Because thermal vibrations obscure the underlying ord
we use quenched configurations for the structure analysi
steepest descent minimization of the potential energy un
constant pressure is performed until the nearest local m
mum on the potential energy surface is reached. We t
decompress the quenched configurations, at zero temp
ture, in order to bring everything to the same state for co
parison, as illustrated in Fig. 6~a!. Virtually no structural
change is observed upon repeated compression and de
pression at zero temperature, as shown in Fig. 6~b!, although
this certainly would not be true at any finite temperature.
bringing everything to the same state for comparison by
route in which activated changes do not occur, we can
the underlying structural changes resulting from activat
processes that took place during compression at finite te
peratures. The differences we see this way involve ene

FIG. 7. ~a! Bonding. We show here the number of pairs of several typ
throughout the glass transition. The top curve, showing ‘‘555’’~icosahe-
drally bonded! pairs, is the same as in~b!. The occurrence of ‘‘421’’ and
‘‘422’’ pairs, associated with fcc and hcp bonding, and also ‘‘433’’ pair
decreases gradually throughout the transition, while ‘‘544’’ pairs, associa
with distorted icosahedra, increase slightly.~b! Diffusion and icosahedral
bonding. The top curve shows the number of icosahedrally bonded p
increasing throughout the glass transition for a run atT*50.8. Each point is
an average over the number of 555 pairs in five different configurations
had been raised to and held at a pressureP; each configuration was
quenched and decompressed before the structural computation. The bo
curves show the diffusion constant,DA for small atoms andDB for large
ones, decreasing through the same transition.
J. Chem. Phys., Vol. 102Downloaded¬16¬Feb¬2001¬to¬128.95.128.146.¬Redistribution¬subjec
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barriers, and no simple relaxation could take the system from
one state to the other.

The nature of the bonding changes as the system rea
ranges in response to pressure applied at finite temperatu
fcc and hcp bonding, identified as 421 and 422 pairs, de
crease gradually, and 544 pairs increase gradually, as show
in Fig. 7~a!. The only dramatic change is a strong increase in
icosahedral bonding, or 555 pairs, throughout the transitio
region, stabilizing at a maximum value at about the sam
pressure as the diffusion constant becomes nearly zero@Fig.
7~b!#.

V. ISOTHERMAL COMPRESSIBILITY

We evaluated the isothermal compressibility,
k52(1/V)(]V/]p)T , throughout the transition. For all
temperatures,k was a smoothly varying function of pressure,
with nothing special at or nearPg . As indicated in Fig. 8 for
the T*50.8 run,k correlates well with the diffusion con-
stant. Both fall together as the pressure increases, althou
compressibility never goes to zero, but continues to decreas
gradually after diffusion is halted. This is because further
compression continues to push atoms closer together, furth
into the repulsive region, but without inducing the structural
changes that causedk to decrease so rapidly with pressure
while the material was still liquid. Quenched, decompresse
configurations show a 1% increase in density as a result o
the structural changes that take place as pressure increases
to the point of structural arrest, so some anomaly ink would
be expected in the transition region. No such anomaly i
seen, although a small signal could easily be obscured by th
underlying continuous decrease ink combined with noise in
the data.
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FIG. 8. Diffusion and isothermal compressibility. The compressibilityk
decreases rapidly in the region where structural changes are occurring
accommodate the increasing pressure, and then only gradually after vitrifi
cation, where pressure continues to force atoms closer together, but witho
inducing structural relaxation. As in Fig. 7,DA andDB are diffusion con-
stants for small and large atoms respectively.
, No. 4, 22 January 1995t¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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1800 Shumway, Clarke, and Jónsson: Pressure-induced glass transition
VI. WCA RADIUS AND PACKING FRACTION

Hudson and Andersen12 reported in 1978 that vitrifica-
tion in binary alloys tends to occur at about the same eff
tive hard-sphere packing fraction, computed using an ext
sion of the method of Weeks, Chandler, and Anderse13

~WCA! for several different materials, and that comput
models of hard spheres and LJ fluids performed before t
date all gave similar results. The value of this packing fra
tion, hg5prR3/6, was 0.5360.02. They concluded that the
underlying physical process driving the transition is dom
nated by the repulsive part of the interaction and the sim
inability of atoms at this density to slide freely past ea
other, whatever the details of the interaction potential.

In the years since then, many authors have computed
packing fraction at vitrification for various model system
and have generally concurred with the concept introduced
Hudson and Andersen, although not everyone has obta
the same numbers for the packing fraction, perhaps
partly to differences in the definition of the transition poin
and in the method for computing the effective radius. F
example, Clarke8 found vitrification in a one-componen
Lennard-Jones system at a packing fraction of 0.60, but co
mented in a later paper6 with Angell and Woodcock that his
results were actually consistent with those of Hudson a
Andersen if the same criterion forTg were applied to both
sets of data. Alexanian and Haywood14 obtained values of
0.586, 0.569, and 0.571 for a hard-sphere system in wh
the transition point was determined respectively by a sig
in the heat capacity, vanishing of the diffusion coefficien
and a calculated equation of state. Berg and co-worke15

obtained experimental values from fits to viscosity data
0.537 for a binary mixture of alkali metals and 0.547 for
ternary mixture. Pusey and van Megen16 found that for par-
ticles in colloidal suspension, it is 0.56. Simulations by Ca
and Woodcock17 and by Ullo and Yip18 gave between 0.52
and 0.55 for soft sphere and truncated LJ system
Abraham19 found values of 0.534–0.55 for a one-compone
LJ system using Monte Carlo simulations in which he, lik
us, studied the effects of squeezing as well as of cooling,
he came to the conclusion that the packing fraction at vi
fication is the same for either squeezing or coolin
Bengtzelius20 performed theoretical calculations for an L
fluid and calculated that the effective packing fraction wou
be 0.536–0.552 at the glass transition, defined as the poin
which discontinuities appear in the specific heat and isoth
mal compressibility.

Following this large and illustrious group, we have als
computed an effective WCA packing fraction at vitrification
defined here as the point at which the diffusion coefficie
falls below a cutoff of 0.001. We are interested in compari
glasses with different temperature and pressure histories
ing the same criterion for vitrification and exactly the sam
method for calculating the hard-sphere radius for each,
order to identify any trends that may exist.

We used the WCA method with the corrections of Verl
and Weiss,21 as outlined in Appendix B, to compute effectiv
hard-sphere radiiR near vitrification for each of the five
temperatures we simulated, as well as for cooling runs at
different pressures,P50 and P58, for comparison.R is
J. Chem. Phys., Vol. 102,Downloaded¬16¬Feb¬2001¬to¬128.95.128.146.¬Redistribution¬subject
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computed analytically based on the number densityr, tem-
perature, and the form of the interaction potential. The pack
ing fractionh is then computed asprR3/6. One subtlety in
applying this formalism to a two-component system is tha
the effective size of the two components does not scale pre
cisely ass3; the large atoms are a bit softer than small at-
oms, and are thus squeezed more, so they occupy a bit le
space. Results reported in this paper are calculated with th
approximation that size does scale withs3, so that the pack-
ing fraction is the same for different species. This assump
tion is consistent with the work of Lee and Levesque22 in
their analysis of two-component Lennard-Jones systems. Ju
to be sure, though, we recalculated using the location of th
first peak ing(r ) rather thans to determine relative atomic
sizes and thus effective density separately for each comp
nent. The final packing fractionsh thus obtained agreed to
within 2% in every case.

Our results forhg , the effective packing fraction at the
glass transition, are given in Table I. For the zero-pressur
cooling run, we obtain a valuehg50.564, in reasonable
agreement with values obtained by others. Glasses prepar
at high pressures in the laboratory, according to Woodcock
Angell, and Cheeseman,23 tend to have higher densities when
examined at normal pressure than the same glasses prepa
at normal pressure. Thus it is not surprising that our value
for hg for the P58 cooling run and also for the squeezing
runs are higher than those obtained at zero pressure. T
reader might be surprised that the packing fraction atPg for
theT*51.5 run exceeds the hard sphere dense random pac
ing limit of about 0.64, but this limit does not apply here
because this is not really a hard-sphere system; the WC
radius corresponds closely to the position of the first peak i
g(r ), but some interatomic distances are as much as 12%
less than this value, allowing densities that considerably ex
ceed the corresponding hard-sphere limit. What we find re
markable about the results is the trend inhg for the squeez-
ing runs: the higher the temperature at which the material i
compressed, the higher the packing fraction at which diffu
sion falls below the cutoff.

VII. DISCUSSION

This trend requires an explanation. It is conceivable tha
the material is able to densify better when compressed a
higher temperature, but we found no evidence for this. Bond

TABLE I. Effective packing fractionhg near the pointPg at which diffusion
falls below the cutoff. Values near the analogous pointTg for two cooling
runs are also given for comparison. Calculation ofhg5(p/6) rRWCA

3 re-
quires calculation of an effective radiusRWCA for the particles, which is a
function of temperature and density.

Point Temperature Pressure Density RWCA hg

Pg 0.6 5.49 0.908 1.0270 0.590
Pg 0.7 7.74 0.929 1.0213 0.594
Pg 0.8 10.47 0.952 1.0161 0.599
Pg 1.0 18.18 1.007 1.0070 0.617
Pg 1.5 42.40 1.121 0.9913 0.655
Tg 0.35 0 0.829 1.0430 0.564
Tg 0.65 8 0.936 1.0228 0.601
No. 4, 22 January 1995¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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1801Shumway, Clarke, and Jónsson: Pressure-induced glass transition
ing, as determined by a CNA analysis, is the same with
error bars for all the structurally arrested final states pr
duced by compression at various temperatures, and also
theP58 cooling run. Details of the structure are different in
random ways for every run, of course, but the average o
currence of each type of bonded pair is the same within o
error bars. Also, when the final states are quenched and t
brought to zero pressure, systematic differences in dens
disappear for the squeezing runs and for theP58 cooling
run. ~We should note that theP50 cooling runs were differ-
ent: they produced glassy states that are intrinsically le
dense, and with slightly different bonding.! The large sys-
tematic increase inhg with higher temperature for compres-
sion is thus not associated with any intrinsic structural di
ferences that we could detect in the glassy states produc

There is a more subtle structural difference, however:
the material densifies during squeezing, the first part of t
split second peak ofg(r ) increases in height, and wheng(r )
is scaled by the location of the first peak, the second a
further peaks move closer, as illustrated in Fig. 9. We ha
found a small, but consistent, trend ing(r ) scaled by the
location of the first peak at the glass transition: for highe
temperature compression runs, the second, third, and fou
peaks are located at smaller values ofr . These values con-
tinue to decrease somewhat past the pressure at which di
sion falls below the cutoff, and then stabilize.

A structural measure of the transition point, then, cou
be defined as the pressurePg for which further compression
results in no change in the scaledg(r ) function because no
further structural changes can occur. Another manifestati

FIG. 9. Radial distribution function for component 1 at and beyondPg . The
lower two curves show the rdf, scaled by the WCA radius, at the transiti
point as defined by a constant diffusivity cutoff for systems compressed
T*50.6 and atT*51.5. The upper curve is the scaled rdf for the
T*50.6 run at a much higher pressure. Only this latter curve depicts a fu
densified structure: in the lower curves, the split second peak is not yet fu
developed and the more distant peaks have not stopped moving in relativ
the first peak. The structurally arrested material of the upper curve und
goes no further changes except for an overall scaling factor with furth
increases in pressure, while the material at the diffusivity-determinedPg has
not yet reached this point. Of the two lower curves, theT*51.5 one is more
like the upper curve; the second and further peaks are slightly closer
gether because the material has proceeded farther toward structural arre
the time diffusion stops than has theT*50.6 material.
J. Chem. Phys., Vol. 102,Downloaded¬16¬Feb¬2001¬to¬128.95.128.146.¬Redistribution¬subject
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of structural arrest is that the volume after quenching an
then releasing the pressure becomes constant.~Quenching
eliminates the temperature-dependent thermal expansio
and releasing the pressure eliminates the overall rescaling
atomic positions, allowing direct comparison of states with
different histories.! This is plotted for ourT*50.8 run in
Fig. 10. Another correlated property is the disappearance
anharmonicity: the only change the structurally arrested sta
undergoes when quenched is the elimination of therma
noise, or Gaussian fluctuations of the atoms about their a
erage positions. The rms value~^x2x0&

2!1/2 of these fluctua-
tions is proportional to temperature, so when the harmon
system is quenched and atomic locations before and after t
quench are compared, the average rms difference is prop
tional to temperature, and independent of pressure history
anything else. This is certainly not the case for the liquid
state, in which quenching induces considerable non-activat
structural changes. Rms differences for the quenched vers
unquenched configuration of the viscous fluid decrease wi
pressure until structural arrest is reached, at which point the
settle down to a constant, as shown in Fig. 10.

We have measured these three properties for th
T*50.8 run, and have found that all three give results con
sistent with the conclusion of structural arrest occurring at
pressure of 14. This is higher than the pressure of 10.5
which diffusion falls below the cutoff of 0.001; diffusion
essentially ceased before pressure stopped having any eff
on the structure of the system.

The preceding three methods are unsuitable for detaile
analysis of all the data. Changes ing(r ) are small, so the
uncertainty in locating the point at whichg(r ) stops chang-
ing is large. The other two methods involve quenches, whic
are expensive. A more usable method, introduced by Ull
and Yip,18,24 determines structural arrest from pressure ver
sus density plots. At high pressures, the density of the gla
is essentially linear in pressure, or vice versa for those wh
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FIG. 10. Probes of structural arrest. The upper curve shows the rms diffe
ence between atomic positions before and after quenching as a function
pressure; the harmonic limit is reached at a pressure of 14. The lower cur
shows the volume after quenching and releasing the pressure; this sto
decreasing at a pressure of 14, indicating that the material is fully densifie
and structurally arrested, so that further increases in pressure induce
further structural changes.
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1802 Shumway, Clarke, and Jónsson: Pressure-induced glass transition
simulate by imposing a density and measuring the pressu
as shown in Fig. 11. Ullo and Yip define the density of th
transition point as the intersection of a straight line throug
the high-density points with a line drawn through the lowe
density points. Even a generous reader would disapprove
we tried to draw a straight line through our nonlinear low
density data, so we will use a slightly different definition
rg is the density at whichr begins to deviate from the linear
behavior of the high-density data. For theT*50.8 data, the
point at which structural arrest was determined to occur
other methods is atP514, and the density at this point de-
viates from the value predicted by the linear behavior of th
higher density points by 1.4%. We therefore define the stru
tural transition pressurePg

s for the squeezing runs by the
criterion that it is the lowest pressure at which density
within 1.5% of the value extrapolated from the high densit
linear region.

The values thus obtained forPg
s , with the corresponding

packing fractionshg
s , are shown in Table II. There is a smal

systematic decrease inhg
s with increasing temperature,

which is reasonable since temperature effects are included
the WCA calculation. The structural similarity between a
the final states, atP.Pg

s , as measured by a CNA analysis o
local bonding and by the density after quenching and deco
pressing, implies that they are all similar at the point o
structural arrest.25 Once a maximally dense type of configu

FIG. 11. Density versus pressure. This data is forT*51.5. The dark point,
which is identified as the structural transition point, is where the deviatio
from the approximately linear behavior of higher pressures reaches 1.5%

TABLE II. Effective packing fractionhg
s near the point of structural arrest,

Pg
s. The systematic trend in the packing fractionhg

s reflects temperature
effects included in the WCA calculation; other measures indicate that t
structure at the point of structural arrest is similar for all the runs, as d
cussed in the text.

Temperature Pressure Density RWCA hg
s

0.6 10 0.965 1.0259 0.625
0.7 11 0.968 1.0206 0.617
0.8 14 0.988 1.0155 0.620
1.0 15 0.979 1.0074 0.600
1.5 25 1.021 0.9908 0.596
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ration is attained, barriers to further structural relaxation in
response to pressure apparently diverge rapidly: we do n
observe any tendency for the higher temperature runs t
achieve denser final states than those squeezed at lower te
perature.

If the structure is similar at the point of structural arrest,
then the distribution of barriers to diffusion at this point must
be similar. We have determined this effective energy barrie
by plotting the diffusion coefficient at the point of structural
arrest,Dg

s , against the inverse temperature, as shown in Fig
12. This clearly shows thermally activated behavior with a
high activation energy, 4.4e, associated with diffusion near
the point of structural arrest. The material at this point is
densely packed, each atom is in a cage formed by 12 or s
tightly pressed neighbors, and atomic rearrangement requir
crossing a barrier corresponding to the strength of 4.4 inte
atomic bonds.

We thus see that a definition of the glass transition as th
point at which further increases in pressure induce no struc
tural changes is qualitatively different from a definition mea-
suring the point at which diffusion reaches some constan
cutoff, although it is equivalent to a definition involving dif-
fusion if a thermally activated cutoff is used. This distinction
exists only for the glass transition caused by increasing pre
sure: in the transition caused by cooling, there is no changin
pressure or any other driving force to induce structura
change, so all structural rearrangement stops when diffusio
stops. The difference between the two definitions may not b
significant in the laboratory, since the glass transition is shar
under long time scales, but in computer simulations, in
which the transition is smeared out almost beyond recogn
tion ~some readers might prefer to leave out the ‘‘almost’’!, it
is important to distinguish between the two.

The increase with temperature of our effective packing
fractionhg is now understood: the transition point defined by
a constant cutoff in the diffusion coefficient, although it is a
natural extension of the customary laboratory definition, is

n
.

he
is-

FIG. 12. Diffusion coefficient at the structural transition point. The natural
logarithm of the diffusion coefficient at the pressureDg

s at which structural
arrest occurs, determined as shown in Fig. 11, is well described by a the
mally activated form with an activation energy of 4.4e. Temperature, as
usual, is in units ofe/kB .
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1803Shumway, Clarke, and Jónsson: Pressure-induced glass transition
not well correlated with structural properties, andhg is a
structural property. At higher temperatures, diffusion cont
ues at a level above the cutoff until the material is closer
the final glassy configuration than at lower temperatur
thus achieving a higher value forhg .

VIII. CONCLUSIONS

Of the structural changes that occur as a two-compon
LJ system is compressed at constant temperature, the m
noticeable is a twofold increase in icosahedral ordering, a
the transition caused by cooling at constant pressure.
glass has essentially the same structure whether it was
duced by squeezing at low or high temperature or by cool
under pressure: atoms are bonded in the same way, and
volume after quenching and then releasing the pressure is
same. Subtle differences presumably do exist, but their ef
on at least these two structural probes is small.

The effective hard-sphere packing fraction computed
ing the WCA method at the pressurePg for which diffusion
falls below a given cutoff was found to depend on the te
perature at which the material was compressed: It was hig
for high temperature runs. This resulted, not from any fu
damental difference caused by squeezing at higher temp
ture, but rather from the fact that pressure-driven structu
effects are not well correlated with the diffusion coefficie
at any constant time scale. Pressure-induced struct
changes, which for low temperatures continue to occur w
beyond the density at which diffusion becomes immeas
ably small, result in a denser final structure for the co
pressed glass than is achieved by cooling at zero press
with a correspondingly higher effective packing fraction.

The glass transition point defined in terms of a consta
cutoff in diffusion, analogous to a constant cutoff in visco
ity, is not equivalent to the transition point defined in term
of structural properties. Because diffusion is a thermally a
tivated process, the better correlated definition involves
exponential, thermally activated form for the cutoff in diffu
sion. The activation energy thus found to be associated w
diffusion at the point of structural arrest is large; we estima
it to be about 4.4e.
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APPENDIX A: CHOOSING THE PISTON MASS

Andersen’s method4 for running isobaric MD simula-
tions couples an extra degree of freedom, the volume of
system, into the equations of motion. To do this, an effect
‘‘piston mass’’ is needed, which sets the relative strength
the volume term. Equilibrium properties of the system a
not actually affected by the piston mass, but dynamical pr
erties are, and using an inappropriate value can slow
approach to equilibrium. According to Andersen,4 the correct
‘‘piston mass’’ to use is such that the time scale for fluctu
tion of the volume of the sample is equivalent to the tim
scale for sound waves to travel through the sample.
J. Chem. Phys., Vol. 102,Downloaded¬16¬Feb¬2001¬to¬128.95.128.146.¬Redistribution¬subject¬
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We show how to do this here, deriving a simple formula
that can be applied frequently during the simulation to re
cale the piston massMp appropriately.

The pressure and volume of the system are functions
the atomic coordinates. However, by including an overa
scaling factor for the coordinates, volume can be treated
an independent variable.

The equation of motion for the volume is

MpV̈5P2Peq, ~A1!

wherePeq is the externally applied, equilibrium pressure.~So
if P.Peq, a force acts to raise the overall scaling factor an
thus the volume, which reduces the pressure.! We can Taylor
expand V as follows:

V5Veq1~P2Peq!
dV

dPU
eq

1••• ,

~A2!
5Veq2~P2Peq! k Veq1••• ,

wherek is the isothermal compressibilityk
T
for simulations

in an isothermal ensemble~as in this paper!, or the adiabatic
compressibilityks for simulations in a microcanonical en-
semble

k52
1

Veq

]Veq

]P U
s or T

. ~A3!

Ignoring higher order terms, this gives a differential equatio
for V

MpV̈52~V2Veq!/~kVeq!52Mpv
2~V2Veq!, ~A4!

where

v[~MpkVeq!
21/2. ~A5!

We want to chooseMp so that the periodT52p/v cor-
responds to the time it takes a sound wave, velocityvs , to
travel the length of the box,Veq

1/3

2p/v5Veq
1/3/vs⇒Mp5@~2pvs!

2kVeq
1/3#21. ~A6!

We now note thatvs is related26 to the adiabatic com-
pressibilityks

vs
251/~ksr!, ~A7!

wherer is the mass density, so for adiabatic simulations,

Mp5
r

4p2Veq
1/3 . ~A8!

For isothermal simulations, we need to substitut
kT5gks , whereg5c

P
/c

V
, the ratio of the specific heats.

We have approximated this ratiog as unity in the current
work, simply using the same expression forMp as would be
appropriate for adiabatic simulations. This admittedly intro
duces a systematic underestimation ofMp by several per-
cent; should a more accurate value forMp be required, a
more accurate estimate ofg should be used.
No. 4, 22 January 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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APPENDIX B: EFFECTIVE HARD-SPHERE RADIUS

We give here a brief sketch of how we computed th
effective hard-sphere radius using the WCA method13 with
the corrections of Verlet and Weiss.21 All of this is published
elsewhere, but we have attempted to sketch the entire pro
dure here in one place in a way that enables the reader
quickly set up a similar calculation using, for example,
mathematical symbolic manipulation program.

The goal is to find the radius of the hard-sphere syste
that most closely resembles a system of particles interact
through some other kind of potential, in our case, th
Lennard-Jones potential.

The WCA method is appropriate for potentials whic
have a strong repulsive core. With this assumption, the a
proximation is made that the functiony(r )5g(r )ebv0(r ) is
similar to that of a hard-sphere system, so the radial dist
bution function g(r ) may be written as
g(r )'e2bv0(r ) yHS(r ), wherev0(r ) is the repulsive part of
the potential. For the Lennard-Jones system,

v0~r !5H 4e@~s/r !122~s/r !6#1e r,21/6s

0 r>21/6s
. ~B1!

Taking the Fourier transform ofg(r ) to get the structure
factor and equating the structure factor for the model syste
to that of a hard-sphere system atk50 gives27 the WCA
formula for the effective hard-sphere radius of a system wi
repulsive potentialv0(r ):

E
0

`

yHS3~12e2bvHS~r !! r 2 dr

5E
0

`

yHS3~12e2bv0~r !! r 2 dr, ~B2!

where

vHS~r !5H ` r<R

0 r.R
. ~B3!

It might seem that just setting thek50 peaks equal
would be inadequate, that the structure factor should rea
be matched as closely as possible over its entire range,
example by minimizing the integral over the whole range
but Verlet and Weiss have performed both calculations a
found effective hard-sphere radii that agree to within a fe
tenths of a percent28 so we will use the simpler WCA crite-
rion here.

To get the functionyHS needed for calculatingR, we
begin with the expression given by Wertheim,29 in the form
given by Throop and Bearman30 ~with typographical errors
corrected!, for the radial distribution functiong(r ) for hard
spheres in the Percus–Yevick approximation. For ha
spheres,g(r )50 for r,R. SinceR always comes out pretty
close tos, certainly always within a factor of 2, we only
need the part forR,r,2R here, which is

gW~x,h!5
1

~12hx!(
1

3

lim
t2.t i

F ~ t2t i !
tL~ t !et~x21!

S~ t ! G , ~B4!

L~ t !512h@~11h/2!t1~112h!#,
J. Chem. Phys., Vol. 102,Downloaded¬16¬Feb¬2001¬to¬128.95.128.146.¬Redistribution¬subject¬
e

ce-
to

m
ng
e

p-

ri-

m

h

lly
for
,
d

rd

S~ t !5~12h!2t316h~12h!t2118h2t212h~112h!,

x5r /R,
~B5!

h5
p

6
rR3,

wherer is the number density. The sum is over the three
roots ofS(t).

This g(r ) can be more conveniently written as

gW~x,h!5
1

12hx~12h!2 F z1ez1~x21!L~z1!

~z12z2!~z12z3!

1
z2e

z2~x21!L~z2!

~z22z1!~z22z3!
1

z3e
z3~x21!L~z3!

~z32z1!~z32z2!
G ,
~B6!

where$z1 ,z2 ,z3% are the three roots ofS(t).
What we need isy(r )5g(r )2c(r ). The direct correla-

tion functionc(r ) is zero forr.R, and Wertheim gives the
following approximation forr,R:

cW~r !5H 2[ ~112h!226h~11h/2!2x
1h/2~112h!2x3]/ ~12h!4 r,R

0 r>R
.

~B7!

Verlet and Weiss point out that thisy(r ) does not match
simulation results for hard spheres well, but that it can be
substantially improved by a rescaling and the addition of an
extra function. Their improvedy(r ) is

yVW~r /R,h!5g
W
~x8,h8!2c

W
~x8,h8!1dg1~r ,R,h!,

~B8!

with the rescaled variables

h85h~12h/16!,
~B9!

x85x~12h/16!21/3.

The extra functiondg1(r ,R,h) is apparently added over the
entire range 0,r,2R:

dg1~r ,R,h!5
A

r
e2m~r2R! cos@m~r2R!#, ~B10!

A'
3

4
R

h82~120.7117h820.114h8!2

~12h8!4
, ~B11!

m'
24A/R2

h8gW~1,h8!
. ~B12!

More accurate, though more complicated, formulas forA
andm and also forc(r ) have been given by Henderson and
Grundke,32 but we use the simpler Verlet approximations
here.

The effective hard-sphere radius, finally, isR for which
Eq. ~A2!, which may be rewritten this way, is satisfied:
No. 4, 22 January 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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1805Shumway, Clarke, and Jónsson: Pressure-induced glass transition
E
0

R

~2cw~x8,h8!1dg1~r ,R,h!!r 2 dr

5E
0

R

~2cw~x8,h8!1dg1~r ,R,h!!~12e2bv0~r ,s!!r 2 dr

1E
R

21/6s
~gw~x8,h8!1dg1~r ,R,h!!

3~12e2bv0~r ,s!!r 2 dr. ~B13!

We note in passing that while the form forc(r ) used
here is, according to Henderson and Grundke,32 quite poor,
the final answer forR is quite insensitive to it. In fact, we
originally computedR with dg1(r ,R,h) added only for
r.R, and the results forR differed from the current result
by only a few tenths of a percent.
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