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Abstract. We discuss the optimization of a functional with respect to
sets of orthonormal functions where unitary invariance does not apply.
This problem arises, for example, when density functionals with explicit
self-interaction correction are used for systems of electrons. There, uni-
tary invariance cannot be used to reformulate the minimization of the
energy with respect to each of the functions as an eigenvalue problem as
can be done for the commonly used GGA-DFT and Hartree-Fock theory.
By including optimization with respect to unitary transformations as an
explicit step in the iterative minimization procedure, fast convergence
can, nevertheless, be obtained. Furthermore, by working with two sets of
orthonormal functions, the optimal functions and a set of eigenfunctions,
the implementation of the extended functional form in existing software
becomes easier. The additional computations arising from the lack of
unitary invariance can largely be carried out in parallel.
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1 Introduction

The task of optimizing the value of a functional of orthonormal functions arises
in many contexts in engineering, physics and chemistry [1]. One example is
the description of many-electron systems using density functional theory (DFT)
which has become a widely used tool in calculations of the basic properties
of solids, liquids and molecules [2]. Various approximations to the exact but
unknown energy functional are used, but those that are commonly used and can
be applied to large systems have several limitations in terms of the accuracy of
the results, as described below. In this article, we discuss a possible extension
of the form of energy functionals and the corresponding modifications in the
minimization procedure. The extended functional form calls for new numerical
methods and software implementations for solving the resulting equations.

In Kohn-Sham (KS) DFT [3] using local (LDA) or semi-local (GGA) func-
tionals, the energy due to Coulomb interaction between the electrons

EH[ρ] =
1

2

∫
d3rd3r′

ρ(r)ρ(r′)

|r− r′| (1)
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and the energy due to an external potential vext(r)

Eext[ρ] =

∫
d3r vext(r)ρ(r) (2)

are evaluated directly from the total electron density, ρ(r), rather than the much
more complicated many-electron wave function. But, in order to get a good
enough estimate of the kinetic energy, a set of orthonormal functions ϕN =
{ϕ1, . . . ,ϕN} ∫

d3r ϕ∗
i (r)ϕj(r) = δij (3)

each depending on the coordinates of just one electron (single-particle functions),
are introduced and the kinetic energy minimized with respect to all sets ϕN

consistent with the total electron density ρ(r) =
∑N

i ρi(r) where ρi(r) = |ϕi(r)|2

TKS[ρ] = min
ϕN

N∑

i

∫
d3r ϕ∗

i (r)

(
−1

2
∇2

)
ϕi(r) . (4)

The remaining contributions to the energy, which include the quantum mechan-
ical exchange and correlation energy as well as correction to the above estimate
of the kinetic energy, are denoted by Exc[ρ]. They are estimated by comparison
with numerically exact calculations of the homogeneous electron gas (when using
the LDA approximation) or - as in most calculations today - also include esti-
mates of the effect of local variations by including dependence on the gradient
of the density (the GGA approximation) [2]

EKS
xc [ρ] =

∫
d3r εxc(ρ,∇ρ) . (5)

The notation here ignores spin for simplicity. The ground state energy of the
system is then obtained by variational minimization of the energy with respect
to all electron density distributions, ρ, integrating to N electrons

EKS[ρ] = TKS[ρ] + EH[ρ] + EKS
xc [ρ] +

∫
d3r vext(r)ρ(r). (6)

Using Lagrange’s method, the orthonormality constraints are incorporated into
the objective functional by

SKS[ρ] = EKS[ρ] −
∑

i,j

λji

[∫
d3rϕ∗

i (r)ϕj(r)− δij

]
(7)

where Λ = {λij} is a matrix of Lagrange multipliers. The variational optimiza-
tion of SKS with respect to the orthonormal, single-particle functions [4] gives

Ĥϕi(r) =
N∑

j=1

λjiϕj(r) (8)
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where Ĥ is an operator (the Hamiltonian) defined as

Ĥϕi(r) =
δE

δϕ∗
i (r)

(9)

and turns out to be the same for all the functions. The functional is invariant
under unitary transformations of the functions and variation with respect to
ϕi rather than ϕ∗

i gives the same result. One can choose the particular set of
functions for which Λ is diagonal (see section 3). The set of coupled equations
for the ϕN functions then reduces to a set of eigenvalue problems

Ĥϕi(r) = εiϕi(r) (10)

which, however, are still coupled through the total electron density. A solution
can be obtained using an iterative procedure starting with a guess and eventually
obtaining self-consistency.

Functionals of this type are widely used in the modeling of solids and liquids.
Various semi-local approximations to Exc[ρ] have been proposed and powerful
software packages have been developed utilizing highly efficient optimization al-
gorithms to solve the fundamental minimization problem [5]. However, several
limitations of these functional approximations have also become apparent: (a)
The predicted total energy is generally not accurate enough. Useful estimates
of energy differences can still be obtained in many cases because of cancella-
tion of error, but this is problematic when the two systems being compared are
qualitatively different. For example, the energy of transition states compared
with energy of stable states (i.e. reaction barriers) are typically underestimated
[6,7]. (b) Electronic defect states tend to be overly delocalized and even unsta-
ble [8]. (c) Neither the functions ϕi nor energy eigenvalues εi have any known,
directly observable meaning (but the εi are sometimes used as estimates of ion-
ization energy or band gap, giving generally poor approximations). This list is
far from being complete, but illustrates that the deficiencies of GGA functionals
are significant. For a more complete discussion, see [9].

One approach to improve the semi-local approximation is to mix in some
‘exact exchange’ in so-called hybrid functionals [10,11] through a linear combi-
nation with LDA and GGA. Hybrid functionals can cure some of the deficiencies
mentioned above for example improved bond energy and bond length [6,12]. The
optimal linear combination coefficients, i.e. mixing parameters, are, however, not
the same for all types of systems (for example molecules vs. solids) and this ap-
proach should be regarded as semi-empirical and relies on tuned cancellation
of errors of different origin. For metallic systems, hybrid functionals in fact give
poorer predictions than GGA. Although hybrid functionals are available in most
major DFT software packages today, their application to systems with apprecia-
ble numbers of electrons is, furthermore, hampered by the expensive evaluation
of the non-local, exact exchange. The computational effort scales as N4 rather
than the N3 scaling for LDA and GGA.
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2 Orbital Density Dependent Functionals

While the single-particle functions, which frequently are referred to as ‘orbitals’,
are in GGA-DFT simply mathematical constructs that represent the total elec-
tron density and improve the estimate of the kinetic energy beyond what has
been possible from the total electron density alone, these functions can in prin-
ciple be interpreted as meaningful representations of the electrons and the cor-
responding probability density, ρi, represent the probability distribution of an
electron. This is an assumption, consistent with intuition that is often invoked,
but no proof of this has been presented. The form of the energy functional then
should include explicit dependence on the orbital densities. We will refer to such
an extended functional form as orbital density dependent (ODD) functionals.
This can lead to much improved estimates of various properties, but the math-
ematical task of finding the optimal set of orbitals becomes more challenging.

The ODD functional form can, in particular, be used to correct for the so-
called self-interaction error in GGA functionals. The evaluation of the Coulomb
energy from the total electron density as in (1) includes interaction of the elec-
trons with themselves, a self-interaction energy. Ideally, the Exc correction term
should remove this error, but in practice the approximations used for Exc, such
as PBE, only partly cancel it out. A better estimate of the Coulomb interaction
is the orbital density dependent expression

EODD
H [ρN ] =

1
2

∑

i!=j

∫
d3rd3r′

ρi(r)ρj(r
′)

|r− r′| = EH [ρ]− 1
2

N∑

i=1

∫
d3rd3r′

ρi(r)ρi(r
′)

|r− r′| (11)

where the i = j terms representing self-interaction are excluded. Here, ρN

denotes the set of N orbital densities, ρN = {ρ1 . . . ρN}. Revised exchange-
correlation functionals are necessary in order to account for this modification in
the Coulomb term. The evaluation of this expression for the Coulomb energy re-
quires N+1 solutions of the Poisson equation and thus is computationally much
less demanding than the exact exchange of hybrid functionals and scales as one
lower power in N . Furthermore, the N + 1 Poisson equations can be solved si-
multaneously on N nodes or sets of nodes, making parallel implementation easy
and efficient. Parallel implementation of hybrid functionals is more difficult [13].

Perdew and Zunger [14] proposed an estimate of the total self-interaction
energy for each orbital as

ESI[ρi] =
1

2

∫
d3r′

ρi (r) ρi (r′)

|r− r′| d3r− Exc [ρi] (12)

and an improved estimate of the energy by explicit subtraction

EKS-SIC[ρN ] = EKS[ρ]−
∑

i

ESI [ρi]. (13)
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The energy is no longer invariant under unitary transformations of the orbitals.
For example, if delocalized Bloch functions are used in a calculation of a crystal,
the self-interaction energy is small or even zero, but if localized orbitals - which
can be formed by a unitary transformation of the Bloch functions - are used,
then ESI is finite and can be significant.

The problem is now to optimize SODD with respect to the orbitals, where

SODD[ρN ] = EODD[ρN ] −
∑

i,j

λji

[∫
d3rϕ∗

i (r)ϕj − δij

]
. (14)

The orbitals ϕN are in general complex functions, yielding two equations for the
extremum

δSODD

δϕ∗
i (r)

= 0

δSODD

δϕi(r)
= 0






=⇒






Ĥiϕi(r) =
N∑
j=1

λjiϕj(r)

Ĥiϕi(r) =
N∑
j=1

λ∗
ijϕj(r)

(15)

where

Ĥiϕi(r) =
δE

δϕ∗
i (r)

(16)

is the functional derivative of the energy with respect to the conjugate orbital.
Note that both equations in (15) coincide whenever the matrix Λ is Hermitian.
Thus, an alternative set of conditions for the optimal set of orbitals is given by

Ĥiϕi(r) =
N∑

j=1

λjiϕj(r) (17a)

Λ = Λ†. (17b)

For GGA, Λ is guaranteed to be Hermitian, but not for ODD functionals. The
orbitals ϕN obtained from an ODD functional are not arbitrary since the energy
is not invariant under unitary transformations.

While there have been few self-consistent calculations using this functional
form in the 30 years since the publication of the article by Perdew and Zunger
(compared with the very large number of GGA calculations), see references in
[9], it is clear that this functional form introduces flexibility that can be used to
remove several deficiencies of the semi-local GGA functionals.

In the next section we will give a brief review of the minimization approaches
that have previously been used for PZ-SIC. We then present our approach and
compare the performance and reliability of various minimization schemes. We
emphasize that the algorithms discussed here may be utilized for any functional
of the ODD form, the PZ-SIC is used here only as an example. Development of
an improved functional of the ODD form is currently ongoing.
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3 Minimization of Energy Functionals

3.1 Minimization of Unitary Invariant Functionals

For GGA functionals and hybrid functionals, the functional derivative of the
energy can be expressed by a single opeartor, Ĥ , the same for all orbitals

Ĥ = T̂ + vext(r) + vH(r) + v̂xc(r) . (18)

For GGA, v̂xc is a local multiplicative potential while hybrid functionals yield
a non-local potential. Projection of (17a) yields an expression for the Lagrange
multipliers

λij = λ∗
ji =

∫
d3r ϕ∗

i (r)Ĥϕj(r) . (19)

which always fulfills also eqn. (17b). As the constraint matrix Λ is Hermitian, it
can be diagonalized using a unitary transformation W giving real eigenvalues εi

λij =
N∑

k=1

εkW
∗
kiWkj (20)

and eigenfunctions ψN = {ψ1, . . . ,ψN}

ψi(r) =
N∑

k=1

W ∗
ikϕk(r) . (21)

The total density and energy do not change when the transformation is applied.
The functions ψN are commonly taken to represent pseudo-particles of the non-
interacting electron reference system. They span the total density ρ and make it
possible to get a good estimate of the kinetic energy. One may be tempted to go
beyond this and interpret these orbitals in terms of electrons since the defining
equations are structurally equivalent to non-interacting Schrödinger equations.
Any unitary transformation of the orbitals is, however, equally justified, but
can typically give a range from highly localized to delocalized functions. The
introduction of hybrid orbitals, for example sp2 and sp3 atomic orbitals, is an
example of this flexibility in choosing the unitary transformation.

3.2 Minimization of ODD Functionals

The algorithm for the minimization of an ODD functional with respect to the
orbitals needs to be substantially different from the one used to minimize GGA
functionals since the functional derivatives give a different operator, Ĥi for each
orbital

Ĥiϕi(r) =
δE

δϕ∗
i (r)

, Ĥi = Ĥ0 + V̂i (22)
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where Ĥ0 is the unitary-invariant part of the operator and V̂i an orbital depen-
dent part. From eqn. (17), a projection can be used to evaluate the Lagrange
multipliers

λij =

∫
d3r ϕ∗

i (r)Ĥjϕj(r) . (23)

Note that in contrast to eqn. (19), the constraint matrix is not Hermitian. An
asymmetry is introduced by the orbital dependence. The second condition (17b)
should be enforced explicitly. This has consequences for the SODD objective
functional: Its imaginary part is related to the anti-Hermitian part of Λ and the
deviation from orthonormality.

Im{SODD} =
N∑

i,j=1

λ∗
ij − λji

2i

[∫
d3r ϕ∗

i (r)ϕj(r)− δij

]
(24)

While any solution of the extremum condition (15) yields a Hermitian Λ matrix,
intermediate stages of an iterative procedure typically lead to asymmetric matri-
ces and there is not a unique way to define a proper set of Lagrange multipliers.
Various possible choices to deal with this problem are discussed below.

Heaton, Harrison and Lin [16,17] presented an approach which corresponds
to solving equations (16) and (23) without considering the symmetry condition
for the Lagrange multipliers. An optimization with respect to unitary transfor-
mations of the orbitals was not included. Goedecker and Umrigar pointed out
problems with this approach [18].

Asymmetric and symmetric constraint An alternative approach is to use
one of the equations (15) to define the Lagrange multipliers and the other one
to define the orbitals, for example

Ĥiϕi(r) =
N∑

j=1

λa
jiϕj(r) , λa

ij =

∫
d3r ϕ∗

i (r)Ĥiϕj(r). (25)

The constraint matrix Λa is not necessarily Hermitian, but converges to a Her-
mitian matrix at the end of the iterative procedure.

Goedecker and Umrigar (GU) [18] used the Hermitian average, Λs, of the two
possible choices for the definition of the Lagrange multipliers

Ĥiϕi(r) =
N∑

j=1

λs
jiϕj(r), λs

ij =

∫
d3r ϕ∗

i (r)
Ĥi + Ĥj

2
ϕj(r). (26)

It can be shown that for a given set of orbitals, ϕN , this choice of the constraint
yields the direction of steepest descent for a correction to the orbitals.

Unitary Optimization Neither the symmetrized Λs nor the asymmetric Λa

make explicit use of the necessary requirement for a Hermitian constraint matrix.
Defining κ as

κ = (Λa −Λa†)/2 (27)
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yields an anti-Hermitian matrix with elements

κij =

∫
d3r ϕ∗

i (r)
Ĥj − Ĥi

2
ϕj(r) (28)

=

∫
d3r ϕ∗

i (r)
V̂j − V̂i

2
ϕi(r). (29)

When the two orbital dependent operators are subtracted, the unitary invariant
part is cancelled out, leaving only the difference of the orbital dependent parts.

Expressing explicitly the dependency of κ on unitary transformations amongst
the orbitals

ϕi[U](r) =
N∑

j=1

Ujiϕj(r) , ρi[U] = |ϕi[U](r)|2 (30)

the equation defining the optimal unitary transformation U is

κ[U] = 0 . (31)

This is referred to as the “localization condition” [19]. The efficiency of unitary
variant minimization algorithms depends on fast and reliable solution of this
equation. Lagrange multipliers that are evaluated from orbitals satisfying the
localization condition are guaranteed to fulfill the symmetry requirement (17b).
Furthermore, using unitary optimization as a preconditioner for the constraint
matrix, unifies the previously reported constraint definitions.

Reintroduction of Eigenfunctions Although the minimization can be carried
out by solving the coupled set of equations (15), this is cumbersome and makes
it difficult to incorporate ODD functionals into existing software which typically
relies on the formulation of the optimization problem as an eigenvalue problem.
This has led to the idea of using two sets of functions.

The first set, referred to as the optimal basis, is given by the functions ϕN

which should converge to the solutions of the optimization problem (15). The
second set, the ‘canonical orbitals’ ψN , is introduced to decouple the equations
into single-particle eigenvalue equations analogous to the ones obtained for uni-
tary invariant functionals. Both sets of functions span the same total density ρ
and are related to each other by a unitary transformation W

ϕi(r) =
N∑

k=1

Wkiψk(r) , ψi(r) =
N∑

k=1

W ∗
ikϕk(r) . (32)

In order to decouple (15) into single-particle equations, W has to diagonalize
the constraint matrix

λij =
∑

k

εkW
∗
kiWkj , δij =

∑

k

W ∗
kiWkj . (33)
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This step requires a Hermitian constraint matrix, which is provided either by
the symmetrized eqn. (26), or by unitary optimization at each iteration.

Expressing the condition for minimal energy (15) in terms of the ψN yields

N∑

k′=1

Wk′iĤ0ψk′(r) +
N∑

k′=1

Wk′iV̂iψk′(r) =
N∑

jk′=1

λjiWk′jψk′(r). (34)

and the equations can be decoupled by forming the linear-combination
∑N

i=1 W
∗
ki

Ĥ0ψk(r) +
N∑

ij=1

W ∗
kiV̂iWjiψj(r) = εkψk(r). (35)

The resulting operator is still orbital dependent but now with respect to the
canonical orbitals rather than the optimal ones

(
Ĥ0 + V̂ c

k

)
ψk(r) = εkψk(r) (36)

where V̂ c
k is given by

V̂ c
k f(r) =

N∑

i=1

W ∗
kiV̂iϕi(r)

∫
d3r′ ψk(r

′)f(r′). (37)

V̂ c
k is structurally simpler than the previous V̂k in eqn. (22). It is invariant un-

der unitary transformations of the functions ψN in a subtle way: The unitary
transformation is simply compensated by an inverse change to W in eqn. (32)
maintaining the same ϕN . The canonical orbitals ψN turn out to converge faster
than the ϕN which improve mainly through the unitary optimization. Numer-
ically, the separation into basis set optimization and unitary optimization is
advantageous in the electronic structure problem as different energy scales are
separated, i.e. the relatively small contribution from V̂k is separated from the
large contribution from Ĥ0. A similar procedure has been used in time-dependent
DFT [20].

4 Performance

The performance of the minimization was benchmarked in all electron
Gaussian type orbital based calculations of the N2 molecule. The convergence
was measured in terms of the residual, R,

R =




N∑

i=1

∫
d3r

∣∣∣Ĥiϕi(r) −
N∑

j=1

λjiϕj(r)
∣∣∣
2




1/2

(38)

and a measure, K, of the error in the localization condition

K = ‖κ‖ =




N∑

ij=1

|κij |2



1/2

. (39)
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Fig. 1. Convergence of steepest descent minimization for a N2 molecule starting from
same initial orbitals. The residual R (black) and K (grey) are shown for different
methods of evaluating the Λ matrix: symmetric, asymmetric and including unitary
optimization until K < 0.1R.

Figure 1 compares different choices for dealing with the Λ matrix. The energy
was minimized using the steepest descent method which allows for direct com-
parison of different functionals and algorithms. Both the symmetric definition
(26) and the asymmetric one (25) result in slow convergence rate in the later
stage of the minimization. However, the origin of the slow convergence is differ-
ent in the two cases. For the symmetric definition, the convergence of R and K is
roughly equally slow, but for the asymmetric definition, which gives faster con-
vergence, R is slower. In the unitary optimization, which converges much faster,
K is reduced to less than 10% of R by an intermediate unitary optimization,
followed by the use of the symmetric constraint.

The effort involved in minimizing the ODD type LDA-SIC functional is com-
pared with LDA, GGA (using PBE) and Hartree-Fock in Fig. 2. The ODD
calculation required similar number of iterations as the LDA and GGA calcu-
lations. Hartree-Fock requires many more iterations. The CPU time needed to
reach convergence is also shown. The ODD calculation turns out to be faster in
this case than the PBE calculation because the gradient dependent terms, which
are absent in LDA, involve significant computational effort. The Hartree-Fock
calculation is much faster than the others despite the large number of iterations
because the integrals can for this small system be stored in memory.
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R
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H
a
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 50  100  150  200  250  300

CPU-time [s]

LDA-SIC
LDA
PBE

HF

Fig. 2. Convergence of a steepest descent minimization of the energy of N2 using
various functionals: LDA, PBE (a GGA functional), LDA-SIC (an ODD functional)
and Hartree-Fock (HF).
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5 Parallelization

The main computational effort when ODD functionals are used is related to the
evaluation of the N orbital dependent potentials. Each of them is as expensive
as the GGA potential for the total electron density. But, since the calculations
for the N orbitals are indendent, they can readily be distributed over N proces-
sors without the need for significant communication. The real time of an ODD
calculation would then be similar to a regular GGA calculation even for a large
system. Our results obtained so far indicate that performance similar to GGA
functionals can be accomplished for this more general functional form.
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