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1. { Introduction

Many important problems in chemistry and condensed matter physics involve the
characterization of the rate of a transition of atoms and/or electrons. Most transitions
observable in the laboratory are `rare events' in the sense that the transition rate is
many orders of magnitude smaller than the rate associated with molecular vibrations. A
direct simulation of the atomic scale dynamics is not useful for studying such transitions
because the simulated time interval is far too short to include even a single transition.
Transition state theory (TST) is well established and widely used for calculating rates of
slow transitions in classical systems [1, 2]. It gives an approximate estimate of the rate
constant which frequently is accurate enough for practical purposes. It, furthermore,
can provide a viable way of computing the exact rate constant because the dynamical
corrections to TST can often be readily evaluated from short time trajectories launched
from the transition state.

Basically, classical TST transforms the dynamical problem into a statistical one by
approximating the transition rate as being proportional to the probability of �nding the
system in a transition state times a ux factor representing the rate at which the system
leaves the transition state in the direction of products,

kTST =
�v

2

Qz
cl

QR
cl

(1)

Here, �v is the average velocity, QR
cl is the classical reactant partition function,
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and Qz
cl is the transition state partition function
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V (q) is the potential energy function and q is an N-dimensional vector of the mass-scaled
coordinates of the system. The classical transition state is a N-1 dimensional surface
separating the regions of con�guration space associated with reactants and products.
(This can be generalized to phase space [2, 3]). A good approximation to the rate constant
can be obtained from TST if the transition state is chosen to be a dividing surface
that represents a tight bottleneck for the advancement of the system from reactants to
products. The accuracy of the TST approximation depends strongly on the choice of
the dividing surface. For classical systems, it can be shown that TST always gives an
overestimate of the rate. This provides a variational principle for optimizing the location
of the dividing surface [2, 3]. A convenient way to calculate the variationally optimized
rate constant is to evaluate the reversible work of shifting a dividing surface from the
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reactant region towards products, identifying on the way the optimal transition state
as the dividing surface corresponding to maximum free energy. The free energy change
includes both the work of pushing the dividing surface along the reaction path and the
work of rotating the dividing surface against the (generalized) torque acting on it [4].

The challenge is to generalize TST to quantum systems. Several experimentally
measured transition rates show temperature dependence where below a crossover tem-
perature, Tc, the e�ective activation energy is signi�cantly reduced and may even vanish
[5]. This is characteristic of the onset of quantum behaviour where thermally assisted
tunneling becomes the dominant transition mechanism. A purely statistical quantum
TST, which does not require calculations of the system's time evolution, is particularly
useful for analyzing such transitions since accurate calculations of quantum dynamics
can presently only be carried out for low-dimensional systems, short time intervals, or
for certain model systems [6, 7].

2. { Feynman path integrals

Several versions of quantum TST have been proposed [2]. The most widely used
formulation is based on statistical Feynman path integrals where the canonical partition
function of a quantum system is given by [8]

Q = (�=2��h�� )
NP=2

Z
e�SE[q(�)]=�h D[q(�)]:(4)

Here SE is the so called Euclidean action, SE =
R ��h
0 Hd� with H being the classical

Hamiltonian. The statistical mechanical path integrals are directly related to the path
integrals for time evolution of a quantum system and can be obtained by replacing time
with an `imaginary time' i� [8]. For discretized paths described by P con�gurations of
the system, the action can be approximated as

SE(q) = ��

PX
j=1

"
�

2

����qj+1 � qj
��
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+ V (qj)
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where �� = ��h=P with � = 1=kBT and � is the scaling mass (boldface type is used here
for NP dimensional vectors specifying the con�guration of a closed Feynman path with
P images, while N dimensional vectors are not boldface). This leads to a mathematical
analogy between the partition function of a quantum particle and the classical partition
function of a string of P `images' (or replicas) of the system connected by springs with
spring constant that depends on temperature [9]

ksp = �P

�
kBT

�h

�2
:(6)

This discrete path integral formulation becomes exact as P !1 [8].

3. { How should a quantum transition state be de�ned?

While the Feynman path integral formulation provides a practical method for eval-
uating numerically the statistical mechanical properties of quantum systems in thermo-
dynamic equilibrium, the question arises how this can be used to calculate a transition
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rate, and the critical question becomes: How should the quantum transition state be
de�ned? In previous theories, the transition state has been de�ned in terms of an N-1
dimensional dividing surface in the classical coordinate space just as in classical TST [2].
In particular, in the centroid density method, proposed by Gillan [10] and later general-
ized by others [11, 12, 13, 14, 4], the transition state constraint is applied to the average,

or centroid, of the Feynman paths q0 = (1=��h)
R ��h
0

q(�)d� . This was tested and found
to work well for transitions involving symmetric barriers [10, 11, 15].

The centroid constraint, however, does not work well for asymmetric transitions at
low temperature [16, 17]. We show an example of that below. We also present here
a discussion [18, 19] of a di�erent formulation of a quantum TST where the transition
state is de�ned in a more general way, as a NP-1 dimensional cone in the space of
all closed Feynman paths discretized with P images. The theory represents a natural
generalization of the so called `instanton theory' (see below) which is based on a harmonic
approximation. The centroid does not play any special role in this new theory. A method
for evaluating the free energy barrier in this higher dimensional space, which we will refer
to as `action-space', is described. The technique involves evaluating the reversible work
required to shift the system con�ned to a NP-1 dimensional dividing surface in action-
space from the reactant region towards products. We refer to the method as reversible
action-space work quantum transition state theory (RAW-QTST). The discussion here
will be focused mainly on the methodology and an application to a one-dimensional test
problem. An application to a large problem, the associative desorption of H2 from a
Cu(110) surface, has been described elsewhere [18].

4. { The action surface and the minimum action path

We �rst discuss the motivation for our de�nition of the quantum transition state.
In classical systems, the optimal transition state is a bottleneck region on the way from
reactants to products where the probability of �nding the system is small, i.e. con�gura-
tions q where the statistical weight exp(�V (q)=kT ) is minimal. In the low temperature
limit, the saddle point on the potential energy surface, V (q), is of crucial importance
and, in a harmonic limit (i.e. in harmonic TST [28, 29]), the transition rate depends
exponentially on the energy di�erence between the saddle point and the initial state. A
direct generalization of these concepts to quantum systems, where the statistical weight
of a con�guration q of a closed Feynman path is given by exp(�SE(q)=�h), focuses on the
action surface SE(q) [16] as opposed to the potential energy surface V (q) in the classical
case. A logical choice for a quantum transition state is a region in action space where
exp(�SE(q)=�h) is small, i.e. where the action SE(q) is large. This would imply that sad-
dle points on the action surface become dominant regions for determining the transition
rate at low temperature. Such saddle points are commonly referred to as `instantons' and
a very successful theory of transition rates at low temperature indeed involves harmonic
approximation of SE(q) in the neighborhood of the saddle points [5].

The topology of the action surface is, therefore, of central importance but is very
hard to visualize because of the high dimensionality (NP) even for systems with only one
degree of freedom (N=1). Figure 1 shows the potential energy function for a simple, one-
dimensional test problem, an asymmetric Eckart barrier. The transition is exoergic by
0:19 eV with a barrier height of 0:25 eV (the functional form and potential parameters are
the same as in reference [17]). In order to visualize the action surface with a contour plot,
the closed Feynman paths may only include two variables. Rather than represent the
paths with two images in real space, it is preferable to go to Fourier space and represent
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the paths with two Fourier components q(�) = q0 + q1 sin(2��=��h). The variable q0 is
the average position of the images (the location of the centroid) and the variable q1 is
the lowest order Fourier component representing the extent to which the path stretches
away from the centroid location. The action SE along the line where q1 = 0 is simply
proportional to the potential energy, V (q0). At high temperature (see �gure 2a), the
action increases as the Feynman paths are stretched out from the centroid (q1 6= 0), i.e.
when quantum delocalization is introduced. This means that the optimal way for the
system to go from the reactant region to products is without quantum delocalization,
i.e. by classical hopping over the potential barrier. But, below a crossover temperature,
Tc (275 K in this case), the topology of the action surface changes as a local maximum
of action appears at q1 = 0 in the barrier region (see �gure 2b and �gure 2c). Then, a
smaller action is obtained with open, delocalized paths (see �gure 2d). This means that
the optimal way for the system to go from the reactant region to products at temperatures
below Tc is by taking advantage of quantum delocalization, i.e. by quantum mechanical
tunneling. In this low temperature region, saddle points on the action surface appear o�
the `classical', collapsed path (q1 = 0) axis.
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Fig. 1. { The potential energy for a one-dimensional test problem, an asymmetric Eckart barrier.
The potential energy is shown with a solid line. The points show the scaled action, SE=��h, along
the minimum action path at various temperatures. As the temperature is lowered below the
crossover temperature, Tc, the springs in the Feynman paths become weaker and the paths open
more up near the barrier. The maximum action along the minimum action path (the instanton)
is much closer to the reactant region than the product region due to the asymmetry of the
potential barrier.
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Fig. 2. { Contour plots of the Euclidean action, SE, for an asymmetric Eckart barrier in a two-
dimensional space of closed Feynman paths given by q(�) = q0+q1 sin(2��=��h). The horizontal
axis gives the location of the average of the path, q0 (the `centroid') and vertical axis, q1 (the �rst
non-zero Fourier component), indicates how much the paths stretch out from q0. The dotted
line at q1 = 0 represents the collapsed, classical paths. The maximum along the minimum
energy path, the saddle point, is shown with a �lled circle. (a) T = 300 K, above the crossover
temperature: At this temperature, the action increases when the paths are spread open, i.e. q1
becomes non-zero. The MAP therefore only includes collapsed paths and reduces to the MEP.
(b) T = 150 K, below the crossover temperature: A local maximum in SE(q) develops on the
barrier region (q0 = q1 = 0). The projection of the MAP onto the two-dimensional space is
shown with a dashed line. The MAP now includes delocalized paths, a signature of tunneling. A
hyperplanar dividing surface going through the upper saddle point of the action is indicated by
a thick, solid lines. This is not a good choice of a transition state because it does not include the
lower saddle point (at negative q1). A hyperplane going through the lower saddle point is shown
with a dotted line. When P images are included in the discrete representation of the Feynman
paths, saddle points appear in sets of P equivalent saddle points and it takes P hyperplanes to
form a good transition state dividing surface. In the continuum limit, this family of hyperplanes
envelopes a cone in action space. (c) T = 50 K, well below the crossover temperature:
Same qualitative picture as in (b) but now the cone needs to be more pointed. The vertical line
indicates a dividing surface de�ned in the classical coordinate space (such as the dividing surface
used in the centroid density approximation). Clearly, such a dividing surface would not be a
good transition state. The system would be able to slide to the low action regions (shown with
stars) away from the saddle point region (�lled circle). (d) A plot of a few of the Feynman paths
showing qualitatively (by including only two Fourier components) the variation along the MAP
at temperature below Tc. The top and bottom paths, corresponding to reactant and product
regions, are collapsed q(�) = q0. But, in the intermediate, barrier region the paths stretch out
because the curvature of the potential is larger than the spring constant in the Feynman paths.
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Note from �gure 2 that the action surface has a twofold symmetry about the q1 = 0
axis. This is a reection of the arbitrariness in parametrizing the path with � . A
change in the sign of q1 does not change the action. When the paths are represented
in a discrete way by P images in real space, the action surface has a P-fold symmetry.
Given a con�guration of a closed Feynman path, q = fq(1); q(2); q(3); : : : ; q(P )g, a
relabeling of the images, such as fq(P ); q(1); q(2); : : : ; q(P�1)g does not change the
action. Therefore, for any saddle point con�guration of the path, there are other P �
1 saddle point con�gurations that simply correspond to relabeling of the images, an
operation that leaves the value of the action unchanged. In the limit of a continuous
representation of the Feynman paths (P ! 1), there is a continuum of saddle points.
An e�ective transition state dividing surface should be such that the system is con�ned
to the region around all of the P saddle points.

An important concept in classical TST is the minimum energy path (MEP) connect-
ing reactants and products. At any point along the path, the potential is at a minimum
with respect to all directions perpendicular to the path. An alternative way of describing
the MEP is that it follows the steepest descent in potential energy down from the sad-
dle point both in the direction towards reactants and in the direction towards products.
Letting �s denote a point on the path, where s is a parameter going from zero at the
potential energy minimum in the reactant region to unity at the product minimum, the
MEP satis�es

d

ds
�s =

�rqV (�s)

jrqV (�s)j
(7)

subject to the additional boundary condition that the path goes through the saddle point.
The MEP is the path of maximal statistical weight in the sense that the statistical weight
exp(�V (q)=kT ) is maximal with respect to all displacements perpendicular to the path.
The MEP is, therefore, a natural choice for a reaction path and the parameter s a natural
choice of a reaction coordinate for the transition. There is a clear generalization of this
to quantum systems, a path, �s (recall, bold face is used for NP dimensional vectors),
through action space which has maximal statistical weight exp(�S(q)=�h) with respect
to displacements perpendicular to the path in action space (see �gures 2b and 2c). Such
a `minimum action path' (MAP), can be de�ned as

d

ds
�s =

�rqSE(�s)

jrqSE(�s)j
(8)

subject to the boundary condition that the path goes through a saddle point on the
action surface. Above the crossover temperature (�gure 2a), the MAP reduces to the
MEP. We will choose s as the `reaction coordinate' of the quantum transition. It is
a parameter that gradually shifts the quantum system from reactants to products as
s goes from 0 to 1. Figure 3 shows the MAP for the Eckart barrier corresponding to
T = 50K. The MAP was found by constructing a sequence of 81 closed Feynman paths,
where in addition to the spring interaction between images in a given path (chosen to
be appropriate for T = 50K), the corresponding images in adjacent Feynman paths in
the string were connected by an arbitrary spring force, simply to ensure a continuous
string of Feynman paths stretching from the reactant region to the product region. This
`elastic band' of closed Feynman paths was then optimized using the Nudged Elastic
Band (NEB) method [20] so as to trace out the MAP. Towards the ends of the elastic
band, in the reactant and product regions, the Feynman paths collapse to a point since
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the forces due to the Eckart potential are very small and the Feynman springs dominate.
At low enough temperature, below the crossover temperature Tc, the spring constant in
the Feynman paths (eqn. 6) becomes smaller than the curvature of the potential barrier.
Then, the Feynman paths open up in the barrier region as shown in �gure 3. This means
that tunneling becomes important.
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Fig. 3. { The minimum action path discretized with a total of 81 closed Feynman paths. The
path was found using the Nudged Elastic Band method for the Eckart barrier (see �gure 1)
and Feynman springs set for T = 50 K. The vertical axis gives the location of the images in
the Feynman paths (each image is shown as a circle) and the horizontal axis is the reaction
coordinate scaled with 80. Each of the closed Feynman paths includes P = 20 images. A
string or `elastic band' stretching from the reactant (q = �2) to the product region (q = 2)
is formed. Corresponding images in adjacent Feynman paths are connected with springs of
arbitrary spring constant (shown for two examples as small-dashed lines) to ensure continuity
and equal distribution of the Feynman paths along the elastic band. The Feynman paths open
up in the intermediate, barrier region (analogous to �gure 2(d), except the paths only included
two Fourier components in that case). The saddle point (instanton) path corresponding to the
maximum action along the minimum action path is shown with �lled circles (Feynman path
number 26 in the elastic band).

The action along the MAP is shown in �gure 1 at various temperatures. At high
temperature, above Tc, the SE=��h is identical to the potential energy curve. Below Tc,
the action curve drops more and more the lower the temperature is. The saddle point
on the action surface, the instanton, is the point of maximum action along each of the
curves. Note that due to the asymmetry of the potential barrier, the instanton is much
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closer to the reactant than the product region.

5. { The conical dividing surface of RAW-QTST

The MAP de�nes a `direction' for the transition in action space. It is advantageous
to use dividing surfaces that have normal vector tangent to the MAP, n̂s � �0s=k�

0
sk

(prime denotes d=ds). This ensures that when the system is con�ned to a dividing
surface that includes the saddle point, the system remains in the saddle point region and
does not slide down along the unstable mode (a normal mode corresponding to concave
shape of the action surface). Since the goal is to �nd a bottleneck region and the free
energy associated with that, it is important to constrain the system in the appropriate
way.

The simplest dividing surface of this kind is a hyperplane with normal vector n̂s.
To calculate the partition function of a hyperplane, the constraint factor �rp � �(n̂s �
(q� �s)) would need to be included in the path integral, eqn. 4. However, it can be
seen clearly from �gure 2b and 2c, that a hyperplanar dividing surface is not a good
choice for a transition state. The problem is that the hyperplane only goes through
one saddle point while P equivalent saddle points will be present when P images are
used in the discretization of the Feynman paths. In the continuum limit (P ! 1), the
Feynman paths are q(�), and since they are closed, they satisfy q(�) = q(��h + �). The
Euclidean action is invariant under relabeling of the images in the discrete representation,
as discussed above, or, equivalently, using the continuous representation, SE [q(�)] =
SE [q(� + t)]. This simply reects the fact that the origin of the variable � is arbitrary.
It can be shown that the Feynman paths equivalent by this symmetry form a `circle' in
action-space [19]. For each point on the MAP, �s and tangent n̂s there is a family of
equivalent points lying on a circle �s;t and corresponding tangents n̂s;t as the parameter
t runs through the interval 0 < t < ��h (see �gure 4).

A better dividing surface, that will lead to a better transition state, can be con-
structed from a family of hyperplanes de�ned from by the normal vectors n̂s;t and points
�s;t. This family of hyperplanes envelops a cone (see �gure 4). The axis of the cone
consists of all collapsed paths with no spreading of the images. The set of equivalent
points f�s;tg is the circular intersect between the cone and a plane with normal along
the axis. The calculation of the partition function of the system con�ned to the conical
dividing surface includes integration over all the equivalent con�gurations within a circle
f�s;tg. We will refer to this degree of freedom , t, as the `zero mode'. Since the action
is invariant along the circle, its contribution to the partition function can be separated
out and evaluated analytically. This facilitates the numerical sampling of the remaining
degrees of freedom in the Feynman paths which will, eventually, be used to calculate the
free energy di�erences. The remaining degrees of freedom represent a NP-2 dimensional
wedge of the cone (see �gure 4). The contribution of the zero mode to the partition
function is [19] Qloc

0 (q) � ��h (v̂s � _q) where v̂s � _�s=k _�sk and _q = dq=d� . The cone
dividing surface partition function, Qs, can then be evaluated from

Qs =
� �

2��h��

�NP=2
Z

e�SE(q)=�h Qloc
0 (q) �rp �0 Dq[� ]:(9)

where �0 � �(v̂s � (q� �s)). The constraint, Qloc
0 �rp�0, speci�es the NP-2 dimensional

wedge of the dividing surface cone.
The transition state in our theory is chosen to be the cone corresponding to the

tightest statistical bottleneck, i.e. the cone with maximum free energy [21]. The cal-
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Cone dividing surface: n̂s;t � (q� �s;t) = 0
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Fig. 4. { The dividing surface cone. The cone is enveloped by the hyperplanes satisfying
n̂s;t � (q� �s;t) = 0 for each value of the parameter t in the interval [0; ��h]. The set of Feynman

paths �s;t form a `circle' in action space. The circle is centered at the centroid, ~�s;0 on the
axis of the cone. The unit, local velocity, v̂s;t � _�s;t=k _�s;t j, is shown for t = t1 and t = t3
as well as the normal vector tangent to the Feynman paths n̂s;t � �0

s;t=k�
0

s;t j (prime denotes
d=ds). When evaluating the partition function for the dividing surface, the zero mode, t, can be
integrated out analytically, and the numerical, statistical sampling is carried out over a NP-2
dimensional wedge of the cone, chosen here to include the point �s;t1 .

culation of the free energy is carried out by evaluating the reversible work of shifting
the dividing surface from the reactant region towards products, using the reaction co-
ordinate, s, to parametrize the progression. Since the statistical weight of a Feynman
path con�guration in the wedge of the cone is exp(�SE(q)=�h) Q

loc
0 (q) it is convenient

to de�ne an e�ective potential

Veff (q) � �kBT ln
�
e�SE(q)=�hQloc

0 (q)
�

(10)

and the resulting e�ective force Feff (q) = �rqVeff . This simpli�es the notation of the
free energy expression. The change in the free energy as the dividing surface is shifted
along the reaction coordinate s is [19]

F 0
s = �



Feff � fn̂s � (n̂sn̂

0
s + v̂sv̂

0
s) � (q� �s)g �

v̂0s � _q

�v̂s � _q

�
:(11)

The �rst term is due to translation of the dividing surface along the reaction coordi-
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nate. The remaining terms account for rotation in the ns and vs directions. In the
numerical sampling, we start with the MAP q = �s obtained from the NEB calcula-
tion, and then run classical `dynamics' simulations for a discrete set of values of s where
the system is constrained by �rp�0 and the force is the negative gradient of Veff (given
by eqn. 10). This gives the required statistical sampling. The e�ective force includes
rq

�
��h lnQloc

0 (q)
�
which points towards paths with larger Qloc

0 and is in�nite wherever
Qloc
0 = 0. This `phantom' force arises from the fact that only a wedge of the dividing

surface cone is sampled and it guarantees that Qloc
0 > 0.

The transition state, sz, is the cone which gives a maximum in the free energy

function Fs. The free energy barrier is �F =
R z
R
F 0
sds = �(1=�) lnQsz=QsR and the

rate constant is given by

QR
k kQTST = � e���F(12)

where � is a weakly temperature dependent prefactor, given below, and QR
k � QR=QsR .

Here sR refers to a dividing surface located in the reactant region, s=0.

6. { The prefactor for RAW-QTST

The discussion above focused on the de�nition of the quantum transition rate and
a method for calculating the free energy barrier. This is the most important factor
determining the transition rate. But, in order to obtain an estimate of the rate constant,
it is also necessary to estimate the ux out of the transition state. For this purpose, we
use the `ImF' formalism which has been shown to work well for classical as well as low
temperature quantum systems [5, 22, 24, 25]. It can be related to the rigorous ux-ux
correlation function expression of the rate [13, 27]. We expand the dividing surface free
energy around sz up to second order in s. This represents an unstable state. A total
free energy, exp(��F) =

R
exp(��F(s)) ds, can be de�ned for this unstable state by

rotating the integration contour to the imaginary s axis. The decay rate of the state is
then directly related to imaginary part of the free energy[22]. The resulting prefactor for
RAW-QTST is [26]

� =
�

��h

s
2�

�jF 00(sz)j
(13)

where � is the A�eck switching factor, � = 1 for T < Tc and � = Tc=T for T > Tc [25].
With this prefactor, RAW-QTST becomes variational classical transition state theory [2]
in the high temperature, classical limit [27].

At su�ciently low temperature, the statistical sampling of Feynman paths is domi-
nated by regions of small SE . A harmonic approximation obtained by expanding SE(q)
around the MAP can then be used. The saddle point of the action surface, i.e. the
maximum of the action along the MAP, becomes the bottleneck. This is analogous to
the situation in classical systems where the saddle point of the potential energy surface
becomes the bottleneck at low temperature. In fact, TST is most often applied within
the harmonic approximation where a normal mode expansion around the saddle point
and the reactant minimum is used to evaluate the partition functions [28, 29]. A quan-
tum theory based on an analogous harmonic expansion of the action has been developed
[23, 24]. The dominant, exponential variation of the rate with temperature is given by
the action at the saddle point while the prefactor is given by the eigenvalues of the nor-
mal modes, except the zero mode which has to be treated separately. The saddle point
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Feynman path is often referred to as the `instanton' and the harmonic rate theory as
`instanton theory' [24]. Being a stationary point of the action, the instanton is typically
described in terms of a classical trajectory on the inverted potential. Instanton theory,
which is known to give accurate rate estimates at low temperature, can be obtained from
RAW-QTST by taking the harmonic limit. The high temperature limit of RAW-QTST
is variational classical transition state theory, which is known to work well for classical
systems. The high temperature and low temperature harmonic limits of RAW-QTST are
therefore known to give good rate estimates. At all temperatures, RAW-QTST treats
tunneling on an equal footing with over-the-barrier transitions and includes full anhar-
monic e�ects in both the transition and reactant states. Above Tc, where tunneling is
unimportant, our theory reduces to variational centroid density theory [14], but below
Tc the centroid variable does not play any special role.

7. { Application of RAW-QTST to a test problem

We now discuss the results obtained when the RAW-QTST method is applied to the
one-dimensional Eckart barrier shown in �gure 1 and discussed above (see also �gures 2
and 3).

For this simple test problem, the exact rate can be evaluated (see ref. [17]) and the
temperature dependence shows the characteristic crossover from a classical to a quantum
regime as the temperature is reduced, as shown in �gure 5. The rate calculated by the
RAW-QTST method is found to give good agreement with the exact rate over the whole
temperature range as shown in �gure 5. At just below the crossover temperature, Tc, the
centroid density theory gives similar results. But, at lower temperature the results of the
centroid density calculation become unphysical, the calculated rate constant increases
as temperature is further reduced (even though the dividing surface is adjusted in these
calculations to minimize the rate at each temperature). The problem is that the dividing
surface de�ned in terms of the centroid coordinate becomes too weak a constraint and
the system can avoid the bottleneck region by sliding down towards reactants or products
along the unstable mode at the saddle point (the centroid density dividing surface, as well
as any dividing surface de�ned only in terms of the N classical coordinates, corresponds to
a vertical line �gure 2(a-c)) [16]. This problem with the centroid density approximation
does not arise in symmetric systems because then the unstable mode at the saddle points
happens to be in the direction of the centroid coordinate (q0 axis in �gure 2). The
instanton theory is very good at low temperature but overestimates the rate at higher
temperatures, as can be expected, and breaks down as the temperature approaches Tc.
[5].

The RAW-QTST method is not only applicable to small test problems. It has
already been applied to a large system, the associative desorption of H2 from a Cu(110)
surface, a transition involving the displacement of two quantum particles and thermal
averaging over a couple of hundred other quantum and classical particles. The results of
those calculations have already been described elsewhere [18].
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Fig. 5. { The calculated transition rate for the asymmetric Eckart barrier. At low temperature,
below 100 K, the results of the variational centroid density approximation (VCD-QTST) show
an unphysical increase in the rate as temperature is reduced. At high temperatures, near the
crossover temperature Tc = 273 K, the instanton results overestimate the rate. The results
of the RAW-QTST calculations, which include full anharmonicity, agree well with the exact
results, coincide with the centroid density results at high temperature, and are close to the
harmonic, instanton limit at low temperature.
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