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A theoretical basis is presented for reversible work evaluation of transition rates within the 
framework of transition state theory. The method involves computing statistical averages of forces 
without having to evaluate transition state partition functions or densities, and therefore eliminates 
the need for a harmonic reference system. The method can be applied to systems of high 
dimensionality which is particularly important in calculations on quantum systems, where each 
quantum particle may be represented by several images in a Feynman path integral chain. The 
relationship between this method and the fixed centroid method of Gillan and centroid density 
theories is established. The various methods are compared on a model quantum system consisting 
of an Eckart barrier coupled to a harmonic oscillator. 

I. INTRODUCTION 

Gillan recently introduced a method for calculating the 
rate of transition in a quantum mechanical system based on a 
Feynman path integral (FPI) representation of the quantum 
particle.’ In the FPI formalism, the quantum statistical me- 
chanics of a particle is shown to be equivalent to the classical 
statistical mechanics of a chain of images of the particle 
connected by harmonic springs.’ The distribution of the im- 
ages in a FRI chain represents quantum delocalization of the 
particle. The high temperature or large mass classical limit is 
obtained naturally as the springs become stiffer and the 
chains contract to a point. The FPI formalism has proven to 
be very useful for calculating thermally averaged properties 
of quantum systems, even when multiple quantum degrees of 
freedom are included. In Gillan’s method, a transition rate is 
estimated by calculating the reversible work of moving the 
centroid of the path integral chain from a reactant region up 
to the saddle point of the potential energy surface. A free 
energy barrier for the transition is obtained from this 
calculation.’ In this sense, the method is a version of quan- 
tum mechanical transition state theory (TST). The method 
was originally justified by considering a one dimensional 
double-well coupled to a heat bath.*@) This is inherently a 
one-dimensional system. A generalization of a quantum par- 
ticle in three-dimensional space and the technical details for 
calculating an effective free energy difference were later 
discussed.*(b)*‘(c) The reversible work is obtained by evaluat- 
ing the thermal average of the force acting on the quantum 
chain with the centroid held fixed. A line integral of the force 
is then evaluated over a path connecting a point in the reac- 
tant region to the saddle point. 

Following Gillan’s ideas, Voth, Chandler, and Miller 
(VCM),3 provided a quantum mechanical generalization of 
conventional classical TST by treating the FPI centroid co- 
ordinates as classical coordinates. Their theory gave an esti- 
mate for the pm-exponential factor in the rate expression that 
recovers the classical TST result in the classical limit. As 
formulated, the expressions for the rate constant no longer 
involved statistical averages of the force on the FPI images, 

but rather the evaluation of partition functions and centroid 
densities. The method was applied to one- and two- 
dimensional test problems using Monte Carlo simulations 
with a harmonic reference system and the results were shown 
to be in good agreement with direct dynamical calculations.7 
The multidimensional generalization of the method was dis- 
cussed and relied on identifying a specific reaction coordi- 
nate for the centroid constraint. In this work and in work to 
follow, the role of a multidimensional dividing surface as a 
dynamical bottleneck was emphasized.3(b) 

In an effort to make a closer tie to classical variational 
TST, Messina, Schenter, and Garrett (MSG)4 provided a gen- 
eralization of the VCM expression that allowed for arbitrary 
nonplanar and/or momentum dependent dividing surfaces. In 
this formulation an expression for the rate was introduced 
that was an explicit functional of a given dividing surface. 
The dividing surface was then allowed to rotate and move 
along the minimum energy path connecting reactants to the 
saddle point to find the lowest reactive flux through the di- 
viding surface. In the classical limit, this is consistent with 
variational TST, where the dividing surface is placed in such 
a way as to minimize the calculated rate. The central ap- 
proximation in classical transition state theory is the assump- 
tion that trajectories only cross the dividing surface once. 
Since recrossings are neglected, the TST estimate is always 
larger than the true rate, leading to a rigorous variational 
principle for the TST estimate. This theoretical justification 
for the variational principle does not apply in quantum me- 
chanical systems. However, MSG found that optimization of 
the dividing surface led to a strict upper bound in the har- 
monic limit and gave much improved results for an anhar- 
manic test problem.4 Garrett and Truhlar implemented clas- 
sical variational TST calculations and quantized variational 
transition state theory with multidimensional semiclassical 
tunnelling corrections by generating a one-parameter se- 
quence of generalized dividing surfaces and then minimizing 
the calculated rate constants with respect to this parameter.5 
Although their methods employed different approximations 
than the current work, the idea of minimizing the rate along 
a path was similar. 
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troid. The free energy F at a point r can be defined in terms 
of the centroid constrained imaginary time Feynman path 
integral as follows: 

Most recently, in evaluating the rate of H, dissociative 
adsorption on a Cu(ll0) surface, Mills and J6nsson6 pro- 
posed an extension of Gillan’s method where the centroids 
were constrained to be on a multidimensional hypersurface 
instead of being at a point as in Gillan’s method. The free 
energy barrier was obtained from the reversible work of 
gradually moving the system confined to a hyperplane from 
the reactant region towards products. This method is consis- 
tent with the transition state theories of VCM and MSG, but 
has an advantage over centroid density methods because 
only averages of forces need to be evaluated. This is particu- 
larly important in high dimensional systems where the 
Monte Carlo evaluation of partition functions and densities 
becomes ineffective. Furthermore, the method can be applied 
easily to systems where a good harmonic reference system 
does not exist (such as the double well problem). In the H, 
dissociative adsorption simulation, the two transition par- 
ticles and eight of the surface atoms were treated quantum 
mechanically with up to 50 images in each FPI chain. In 
addition, the system included a couple of hundred classical 
atoms representing the solid.6 

BewPF(‘)= Dr(7)e-S’“S(Fo-r), 
I (1) 

where B is an integration constant, j?=lIk,T, T is the tem- 
perature of the system, and S is the Euclidean action, 

(2) 

The centroid of the FPI chain, f,, is given by 

This article is organized as follows. The equations for 
the mean force and reversible work TST calculations are 
derived and compared with equivalent expressions for 
Gillan’s fixed centroid method and the MSG centroid density 
expressions in Sec. II. We then present calculations on a 
model system described in Sec. III consisting of an Eckart 
barrier linearly coupled to a harmonic oscillator bath. Results 
calculated with the reversible work TST method are pre- 
sented in Sec. IV and compared with calculations using 
Gillan’s fixed centroid method and with the MSG centroid 
density method. The reversible work TST calculations have 
been carried out for two different paths with quite different 
characteristics but leading to very similar estimates for the 
rate. The results are shown to be in excellent agreement with 
the MSG centroid density method and in good agreement 
with an accurate estimate obtained from dynamical wave 
packet calculations, a calculation that is tractable for this low 
dimensional model system.7 We present our conclusions in 
Sec. V. 

and is constrained by the delta function in Eq. (1) to be at the 
point r. In the Feynman path integration, only closed paths 
r(pri)=r(O), with the centroid fixed at I?, are included. Dif- 
ferentiating both sides of Eq. (1) with respect to I?, one ob- 
tains an expression for the mean force on the centroid of the 
Feynman path integral chain. It is convenient here to Fourier 
expand the Feynman path and transform the path integration 
into an integration over the Fourier components.4 The zeroth 
order component is the centroid. The final result is 

VF(lT)= 
i: 

I,” $ VV[r(7-11 , 
i r 

where the centroid constrained statistical average is defined 
as 

Line integration along a path connecting reactants (R) to the 
saddle point (sp) gives the reversible work and hence the 
change in the free energy associated with the two points on 
the path 

II. REVERSIBLE WORK TRANSITION STATE THEORY 

In this section the rigorous relation between the centroid 
density TST expression and the reversible work evaluation of 
the rate constant will be established. We will begin by deriv- 
ing an expression for the free energy barrier obtained by 
applying Gillan’s fixed centroid method. We will then use the 
MSG expression for a dividing surface dependent rate con- 
stant to define a free energy associated with the system con- 
fined to a hypersurface. We then derive an expression for the 
generalized force on the system and show how the free en- 
ergy barrier can be obtained by integration. With these ex- 
pressions, the relation between Gillan’s method, the MSG 
expression, and the present reversible work method for esti- 
mating the rate will become evident. 

The free energy change is independent of the path chosen to 
connect the reactants to the saddle point. Therefore, any path 
can, in principle, be used to evaluate the free energy differ- 
ence. In practice, it is best to choose a path which gives 
minimal cancellations in the numerical evaluation of the line 
integral. 

B. Hypersurface free energy 

A. Fixed centroid free energy 

In Gillan’s method’ the rate is obtained from a free en- 
ergy difference between two point locations of the FPI cen- 

Proceeding along similar lines as above, for convenience 
we start with the MSG expression for the rate constant in 
terms of an arbitrary 3N- 1 dimensional dividing surface in 
the coordinate space of the system defined here by the con- 
dition Z(r)=O. This equation becomes equivalent to a multi- 
dimensional version of VCM for the case of a planar divid- 
ing surface. The reactive flux is 

QRkQTST[Z] = / s e-S’hl VZ( i!,J /6[Z( i$)] (7) 
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with QR being the reactant partition function and ICQTSTIZ] 
the centroid density quantum transition state theory estimate 
for the rate constant. In analogy to Eq. (l), we define the free 
energy, F[Z], of the system confined to a hypersurface Z to 
be 

Ae-PF[%~R,$TsT[z]. (8) 

The factor A is an arbitrary integration constant. We will 
obtain a TST estimate of the transition rate by evaluating the 
free energy difference, FS-- FR, between a dividing surface 
Zs separating reactants and products and a hypersurface ZR 
of same dimensionality located in the reactant region. The 
transition rate is then given by 

kQTST.- a;,, 
ZR 

iR gW’-FR~, 

where Q ZR * 1s the partition function for the system confined to 
the hypersurface ZR. We will show below how the free en- 
ergy barrier, F*- FR, can be evaluated from the average 
force acting on the system. The ratio of the partition func- 
tions QZRIQR can typically be evaluated easily, especially if 
a limit can be taken where the reactant coordinates decouple. 
Before proceeding to take variations of this expression with 
respect to the hypersurface in analogy to Eq. (4), we will 
restrict the analysis to hyperplane surfaces which intersect a 
reaction path r(s) =rs at a single point in coordinate space 
[see Fig. l(a)]. We choose hyperplane surfaces here for con- 
venience, but in general the optimal dividing surface is 
nonplanar” and in principle the present analysis can be ex- 
tended to arbitrary surfaces. The parameter s will be referred 
to as the reaction coordinate. The hyperplane is given by the 
condition 

Z(r)=n,.(r-I?,)=O, (10) 

where the normal to the hyperplane, n,, is a unit vector 
defined for all s. 

With this choice for the s dependent hyperplanes, the 
expression for the hyperplane free energy, Eq. (8), becomes a 
one dimensional function of s, 

&-b%)= W 7) 
~ e+‘“s[ns.(Fo-rs)]. 
63 

(11) 

C. Evaluation of the free energy barrier 

In order to evaluate derivatives of F with respect to s, it 
is convenient to introduce a rotated set of local coordinates, 
z, at each point along the reaction path. In terms of the local 
coordinates z, the global coordinates r can be obtained as 

r=U,z+ r, , 02) 

where U, is an orthogonal rotation matrix with 

i 
uJJ,‘= 1 (13) 

and 

! CUd=Mk. (14) 

With this change of variables, the Feynman path integral 
expression becomes 

(b) Hyperplane Progression 

FIG. 1. (a) Reaction path r parametrized with reaction coordinate S. For 
each point along the path, a hyperplane intersecting the path at that point 
and having a normal nS is defined, Z=&.(r-I’,)=O. The force acting on the 
FPI images is evaluated and averaged over a statistical sample of configu- 
rations with the centroid of the FIT chain constrained to lie in the hyper- 
plane. (b) The hyperplane is gradually moved from the reactant region to- 
wards products by varying the reaction coordinate, S. The activation free 
energy for the transition is obtained by calculating the reversible work in- 
volved in moving and rotating the hyperplane to an intermediate position 
chosen to be the dividing surface between reactant and product regions. The 
maximum free energy barrier is obtained where the force and torque on the 
hyperplane vanishes. This is equivalent to finding the optimal hyperplanar 
dividing surface in classical variational transition state theory. 

A~-@-%)= I d;z;p e-sI”@(Ql] (15) 

and all of the s dependence is contained in the Euclidean 
action 

s= /op’dr[ 5 [ F]2+v[usz(T)+rsj]. (16) 

Performing the differentiation of Eq. (11) with respect to 
s gives 
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F’(s) = 

-{r;+u:u,‘Crt+r,l} , ) s 
(17) 

D. Summary of the reversible work TST calculation 

where the primes denote differentiation with respect to s and 
the dividing surface statistical average is defined as 

(.+ =SDr(7)e-s'h...~n,.(a-r,)l 
’ SDr(7)e-s’Z”S[n,.(~~-rs)] * 

By integrating Eq. (17), one obtains an expression for the 
reversible work involved in moving the system from the re- 
actant region, R, to a dividing surface, $ 

.{r~+u~u,Tcr(7)-r,]} . 
1 s 

The method for evaluating the free energy barrier and 
the transition rate, therefore, involves identifying some reac- 
tion path leading from the reactant to the product region and 
defining a series of hyperplanes intersecting the path. The 
force acting on the quantum chain confined to a hyperplane 

0% is evaluated and integrated according to Eq. (19) as the hy- 
perplane is translated and rotated in such a way that a point 
of intersection between the hyperplane and the reaction path, 
rS, gradually moves from reactants towards products [see 
Fig. l(b)]. While many different paths can be used, it is 
important the path leads to a good dividing surface. A natural 
choice for the dividing surface is the position of the hyper- 
plane giving maximum integrated free energy barrier. At 
each point along the path the hyperplane can be rotated to 
maximize the free energy, equivalent to zeroing the “torque” 
acting on the hyperplane. The optimal planar dividing sur- 
face, which gives a minimum rate, has zero force and zero 
torque acting on it. This search for the optimal hyperplanar 
dividing surface is consistent with a variational minimization 
of the quantum transition rate.’ In the classical limit, this 
corresponds to the optimal variational TST rate.” 

(19) 

This expression is similar in form to the fixed centroid ex- 
pression, Eq. (6), but now there are two contributions to the 
free energy difference. The first term in the square bracket, 
I?: corresponds to the work associated with translation of the 
hyperplane. The second term corresponds to work associated 
with the rotation of the hyperplane. 

In three dimensions the rotational contribution can be 
rewritten to make a more direct connection with the work 
done against the torque acting on the hyperplane. The differ- 
ential change in the free energy due to the rotation can be 
rewritten as 

. (20) 
s 

We now consider a generalized rotation defined by the trans- 
formation 

u= &Pq (21) 

where LG= - LE are totally antisymmetric matrices of the 
dimension of r and 6B” is an infinitesimal angle of rotation 
about direction a. For the case of a three dimensional sys- 
tem, we have Lc= Eiaj, with eikj being the totally antisym- 
metric tensor defining the cross-product. From Eq. (21), we 
have 

sv=c L”GmJ. (22) 
(Y 

Inserting this expression into Eq. (20) gives 

&F-z (1 $ $2 Vflr(7)]aL”.[r(7)-r,]&9a . 
ct ) d 

(23) 
For a three-dimensional system, this reduces to 

&i-Q’= - (24) 
s 

an expression involving an averaged torque with fir(T)] rep- 
resenting the force -on the bead at position r(T). 

III. CALCULATIONS ON A MODEL SYSTEM 

As a model system, we consider the two dimensional 
Hamiltonian 

2 2 

H(q,p,r,p,)=&+ E+Vo sech2 

+ ; /..Luo2(x-cq)2 (25) 

which consists of an Eckart barrier along a “solute” cuordi- 
nate 4 with a single harmonic oscillator “bath,” X, linearly 
coupled through the coupling constant C to the solute reac- 
tion coordinate. This model system has been used in the past 
to make critical comparisons of approximate and accurate 
quantum mechanical calculations of the rate .constants,7 and 
corresponds to a generalized Langevin equation description 
of the classical motion,s 

p@=- (26) 

with p the reduced mass, rl(t) the so-called friction kernel, 
and F(t) a fluctuating force that is related to the friction 
kernel by the fluctuation-dissipation theorem. 

It has been shown that a single oscillator bath recovers 
the same qualitative trends in reaction rates as a bath con- 
sisting of a continuum of harmonic oscillators. The values 
for the parameters a, V,, and p are chosen to mimic a H+H2 
gas-phase reaction, and are Vo=9.8 kcal/mol, cr=3.97 A-‘, 
and ,~=0.672 amu. The “bath” parameters are chosen to 
mimic the linear response of a friction kernel that has a 
Gaussian time dependence with the characteristic time scale 
a=86.6 fs. We set w=n/(4~)=48 cm-l and we vary the 
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strength of the coupling by considering the dimensionless 
integrated friction f= ~a/(~~~), where w~=I 164 cm-’ is 
the imaginary frequency for the unbound motion atop the 
Eckart barrier, and v. is the integrated viscosity. We use the 
expression7 

fwp p,- e -(w&2 

WC7 
(27) 

to relate the coupling constant C to f, where we have taken 
advantage of the classical equivalence of the motion from the 
above Hamiltonian and the generalized Langevin equation 
with friction kernel 77(t) =,u?C~ cos( wr). The calculations 
were carried out for two different values of the friction, 
f= 10 and f = 15. 

The contour plot of the potential energy surface is shown 
for the two cases in Fig. 2. The zero of the reaction coordi- 
nate s is taken to be the saddle point. There is significant 
distortion from a harmonic surface with these values of f 
causing considerable curvature in the minimum energy path 
along the surface. Because of the large deviation of this sur- 
face from a harmonic surface, it is difficult, both classically 
and quantum mechanically, to estimate the transition rate us- 
ing harmonic system based TST with a planar dividing sur- 
face located at the saddle point. 

IV. RESULTS AND DISCUSSION 

We have used two different paths, Fs, to parametrize the 
progression of the hyperplane in the evaluation of the free 
energy barrier. We first present calculations using the mini- 
mum energy path (MEP) in configuration space. The MEP is 
such that for any direction p, perpendicular to the path, 
PS . ri = 0, the potential energy is at a minimum, 
p;VV(r,)=O. We then present a calculation where the path 
was chosen in such a way as to minimize the torque acting 
on the hyperplane. It turned out that this zero torque path 
(ZTP) nearly coincided with the collection of average cen- 
troid positions that were constrained to lie on the hypersur- 
faces defined by the MEP. Since the torque on the hyperplane 
was very small, the free energy was almost entirely com- 
posed of the translational component of the work and the 
rotational component was negligible. The net free energy 
barrier obtained from the two different calculations was very 
similar and therefore gave close estimates of the transition 
rate. 

As a matter of convenience, we chose in both cases the 
hyperplanes in such a way that the normal to the hyperplane 
associated with the point lY, was parallel to the tangent of the 
reaction path 

n,=r;/jr;]. (28) 

The calculations were carried out for T=300 K with 10 im- 
ages included in the FPI representation of the quantum par- 
ticle. 

When the hyperplanes were constructed from the MEP 
the rotational contribution was very large. Figure 3 shows the 
generalized force acting on the system evaluated along the 
reaction path. The contributions, due to translation and rota- 
tion of the hyperplane, are shown separately in addition to 

4 

3 

2 

1 

g, 
63 
* -1 

-2 

-3 

-4 

-5 
-2 -1’5 -i -65 d i 

q (BOW 

5 o- 

4 

3 

2 

10 

11 
0 0.5 1 1.5 

4 (Bow 

FIG. 2. Contour plot of the potential energy surface with q the solute coor- 
dinate and x the harmonic oscillator bath coordinate. Two different coupling 
strengths between the two coordinates are considered; (a) f=lO, and (b) 
f= 15. The thick line shows the minimum energy path. 

the total mean force. In both the f= 10 and f= 15 cases the 
rotational contribution could be quite large where both the 
path curvature and the torque acting on the hyperplane were 
large. The translation dominated the contribution to the work 
near the saddle point and in the asymptotic regions and was 
positive throughout the path. The rotation contribution, 
which has a large negative component for the hyperplane 
rotating about the comer oft the MEP, was responsible for 
lowering the free energy to yield a good estimate for the rate 
constant. 
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mw 
(b&r-‘) 

BW4 
(b&r-‘) 

(a) f = 10, MEP 

-1.6 -1 -9.6 0 0.5 

Reaction coordinate, s (b&r) 

(b) f=lS, MEP 

4 

0 

-4 

-d 
Reactant Saddle 
region t point 

-2 -1.6 -1 -9.6 0 0.5 

Reaction coordinate, s (bob) 

FIG. 3. The generalized force on the hyperplane along the minimum energy- 
path [see Pq. (17)]. The system is confined to a hyperplane intersecting the 
path at s with the plane’s normal tangent to the path. The contributions due 
to translation and rotation of the hyperplane are shown separately as well as 
the total force. The rotational contribution is large near s = rtO&7 bohr where 
both the path curvature and the torque acting on the hyperplane are large. 
The saddle point on the potential energy surface is at s =O. (a) f=lO, and (b) 
f=15. 

Figure 4 shows the potential energy along the minimum 
energy path and the free energy change at T=300 Kobtained 
by evaluating the reversible work in moving the hyperplane 
[integration of Eq. (17) to give Eq. (19)]. For comparison, 
the free energy obtained from a fixed centroid calculation 
using E$. (6) as given by Gillan is also shown. The effect of 
the large curvature of the reaction path in this system leads to 
an overestimate of the free energy barrier by the fixed cen- 
troid method of approximately 1 kcal/mol. 

The estimate of the rate constant was obtained from the 
reversible work evaluation of the free energy barrier and Eq. 
(9) and is displayed in Fig. 5. For comparison, the rate ob- 

(a) f = 10, MEP 
10 - Potential 1 

9- 

Energy 
(kcal/mol) 

. 
I 3 

-2 -1.6 -1 -0.5 0 0.5 

Reaction coordinate, a ‘(bob=) 

Energy 
(kcal/mol) 

10 
(b) f =‘15, M?3P Potential 

energy i 

9- 

eentroid 

8- 
. ‘. 

‘.- . . . . . ****a . . . . . *. I’ 

Hyperplana 
constrained 

I 
-1.5 -1 -0.5 0 0.5 

Reaction coordinate, s (bohr) 

FIG. 4. Potential energy along the minimum energy path and the change in 
the free energy evaluated from the reversible work in moving the hyperplane 
from reactant region towards products (filled circles). For comparison, the 
free energy obtained from a fixed centroid calculation is also shown (open 
circles). The fixed centroid method overestimates the free energy barrier by 
l-2 kcal/mol. AU three curves are arbitrarily set equal at s = -50 where the 
potential energy has dropped to -0.1 kcal/mol. (a) f= 10, and (b) f= 15. 

tained by MSG centroid density calculation using a harmonic 
reference is also shown. Excellent agreement was found be- 
tween the two methods with differences being consistent 
with the numerical evaluation of averages. The transition rate 
has also been calculated for this system using wave packet 
propagation on the potential energy surface.7 We took this to 
be the best estimate of the rate and use it to give an indica- 
tion of how well TST is working here. For both coupling 
constants, the TST calculation was found to give too large of 
an estimate of the transition rate; 85% too high when f= 10 
but only 2% too high when f=15. The Monte Carlo calcu- 
lations of the MSG rate used lo6 Monte Carlo moves for 
each point. The reversible work calculation used the same 
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10 1 I 

(a) f = 10, MEP 
1 

o MSG centraid density TST 
l FCeversibk Wurk TST 

.  .  .  .  

Wavepacket dynamia 

I 
-1.5 -1 -0.5 0 0.5 

Flmction coordinate, 8 (bohr) 

0 
-a -1.6 -1 -0.5 0 0.5 

Fkaction coordinate, I (bohr) 

FIG. 5. The transition rate obtained from the reversible work evaluation of 
the activation free energy and Eq. (9) (solid circles). For each value of the 
reaction coordinate an activation free energy is obtained and the correspond- 
ing rate evaluated. The minimum rate corresponds to the maximum free 
energy barrier along the path. For comparison, the rate obtained from a 
calculation using the MSG centroid density theory and Monte Carlo sam- 
pling is also shown (open circles). The two methods give nearly identical 
results. Also shown is the transition rate obtained by dynamical wave packet 
calculations which can be taken as the best estimate of the true transition 
rate. The TST results are very close, but slightly overestimate the rate. (a) 
f= 10, and (b) f= 15. 

number of moves with considerably less statistical uncer- 
tainty in the final results. Even in this two-dimensional test 
system it was computationally more efficient to evaluate the 
free energy using the current method instead of evaluating 
the ratio of the partition functions directly. 

As an alternative to the MEP, we constructed a different 
path, the zero torque path (ZTP) resulting in negligible rota- 
tional contribution to the free energy barrier. Since the opti- 
mal planar dividing surface corresponded to zero torque, a 
starting point for the construction of the ZTP was to find an 

-0.5 0 0.5 1 

q POW 

FIG. 6. Average FPI centroid position, (Fo), within hyperplanes constructed 
from the minimum energy path (MEP). Away from the saddle point, the 
average centroid position is shifted away from the MEP towards q=O be- 
cause the FPI chain is able to slide into both potential wells [see the contour 
plot of this potential surface in Fig. 2(b)]. This is a reflection of tunneling 
through the potential barrier. The zero torque path (ZTP) (shown with dotted 
line) was constructed to minimize the rotational contribution to the free 
energy barrier and nearly coincides with the average centroid position in the 
MEP calculation. 

orientation of a hyperplane going through the saddle point 
with zero torque. The path was then continued in such a way 
as to asymptotically become parallel to the MEP in the reac- 
tant region. This was achieved by requiring the path to sat- - 
isfy .’ - 

where r; = ( 1, C)/ dm and the zero torque orientation 
was obtained at the saddle point for the f=15 case with 
r; = (0.316,0.949) and X=0.5. This path, the ZTP, is 
shown in Fig. 6 along with the MEP. 

It turns out that the ZTP coincided roughly with the av- 
erage centroid positions obtained in the previous calculation, 
when the centroids were constrained to lie on the hyper- 
planes constructed from the MEP With the ZTP as reference, 
only the translational component of the work contributes to 
the free energy change. In Fig. 7 we compare the free energy 
along the MEP to that obtained along the ZTP. The shape of 
the two curves is quite different. The ZTP free energy is 
smooth and peaks at the saddle point, s=O, while the MEP 
free energy curve exhibits large variations and peaks at s 
=rtO.7 close to the region of large curvature in the MEP. 
However, the net free energy barrier is remarkably similar in 
the two cases giving close estimates for the transition rate. 

V. SUMMARY 

In the work reported here we have introduced a proce- 
dure for evaluating TST reaction rate constants following the 
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FIG. 7. Comparison of the hyperplane free energy calculated from the mini- 
mum energy path (solid circles) and the zero torque path (open circles). 
While the latter gives a much smoother variation of the free energy and has 
negligible rotational contribution, the net free energy barrier and therefore 
the transition rate obtained from the two calculations is nearly identical. 

spirit of the original work of Gillan where free energy barri- 
ers were evaluated from a reversible work calculation. Start- 
ing with the MSG centroid density expression for the divid- 
ing surface dependent rate constant we define a free energy 
for the system confined in a N-l dimensional hyperpiane 
and recast the rate constant expression in terms of the free 
energy difference between a hyperplane dividing surface and 
a hyperplane in the reactant region. The method was applied 
here to a model system consisting of an Eckart barrier 
coupled to a harmonic oscillator and the results shown to be 
in good agreement with Monte Carlo simulations based on 
centroid density TST formulation. The method relies on 
identifying a path from reactants to products. This path was 
used to parametrize the gradual progression of the hyper- 
plane from the reactant region to the optimal dividing sur- 
face. In this system the necessity of treating free energy con- 
tributions from both rotational and translational movement of 

the dividing surface was exaggerated due to the large reac- 
tion path curvature along the MEP. With a different choice 
for the path, the ZTP, we were able to make the torque neg- 
ligible and the free energy change was almost entirely due to 
the translational component. The resulting free energy barrier 
was nearly identical for the two different paths. For this low 
dimensional model system we were able to compare with 
results obtained by other methods. However, since the re- 
versible work TST method only requires the evaluation of 
the statistical average of forces rather than partition func- 
tions, it can be readily applied to studies of high dimensional 
systems,6 and we expect it will become an important tool in 
the future. 
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