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Importance of complex orbitals in calculating the self-interaction-corrected ground state of atoms
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The ground state of atoms from H to Ar was calculated using a self-interaction correction to local- and
gradient-dependent density functionals. The correction can significantly improve the total energy and makes
the orbital energies consistent with ionization energies. However, when the calculation is restricted to real
orbitals, application of the self-interaction correction can give significantly higher total energy and worse results,
as illustrated by the case of the Perdew-Burke-Ernzerhof gradient-dependent functional. This illustrates the
importance of using complex orbitals for systems described by orbital-density-dependent energy functionals.
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Density functional theory (DFT) of electronic systems has
become a widely used tool in calculations for solids, liquids,
and molecules [1]. The most commonly used approximation
to the exact energy functional for extended systems is the
so-called generalized gradient approximation (GGA), where
the functional only depends on the total spin density and its
gradient, an improvement on the local density approxima-
tion (LDA), where gradients are not included. The kinetic
energy is commonly evaluated by introducing orthonormal
orbitals ϕi(r), consistent with a given total electron density
ρ(r) = ∑

i |ϕi(r)|2. In many cases, DFT significantly improves
the total energy over the Hartree-Fock (HF) method and
gives acceptable accuracy with smaller computational effort.
However, a number of shortcomings are also known: The bond
energy tends to be too large while the activation energy for
atomic rearrangements tends to be underestimated [2]. There
is also a tendency to overdelocalize spin density, sometimes
making localized electronic defects unstable with respect to
delocalization [3]. For finite systems, an ionization energy
(IE) can be determined as the energy difference between the
ground states of charged and neutral species. These values
often agree well with experiment, but ionization from deeper
energy levels and ionization from solids cannot be estimated
this way. Unlike in HF theory, the energy associated with the
orbitals (single-particle eigenvalues) is in practice neither a
good nor a theoretically justified estimate of ionization energy.
Even the exact DFT functional would give an estimate of only
the first ionization energy.

A leading source of error is the spurious self-interaction
introduced when the Hartree energy EH is evaluated from the
total electron density ρ(r):

EH[ρ] = 1

2

∫
d3r d3r′ ρ(r)ρ(r′)

|r − r′| . (1)

If the orbital densities ρi(r) = |ϕi(r)|2 represent single-particle
distributions, a more accurate expression is

EODD
H [ρN ] = 1

2

∑
i �=j

∫
d3r d3r′ ρi(r)ρj (r′)

|r − r′| . (2)

Here, ρN denotes the set of orbital densities {ρ1, . . . ,ρN }
corresponding to the set of occupied orbitals {ϕ1, . . . ,ϕN }

*simon@theochem.org

denoted by ϕN . This expression for the energy is explicitly
orbital-density dependent (ODD). The difference between the
two expressions is the diagonal terms (i = j ), which can be
interpreted as the interaction of the electron in each orbital with
itself. In Hartree-Fock calculations, where the Hartree energy
is evaluated as in Eq. (1), the exchange energy includes equally
large self-interaction with opposite sign, so the self-interaction
cancels out exactly. In LDA and GGA [collectively referred
to as Kohn-Sham (KS) here], the exchange-correlation energy
Exc is approximate and the cancellation is incomplete. Perdew
and Zunger [4] proposed an orbital-based self-interaction
correction (SIC)

ESIC[ρN ] = EKS[ρ] −
N∑

i=1

ESI[ρi] (3)

using ESI[ρi] = EH[ρi] + Exc[ρi]. Other estimates of SIC
can be formulated [5,6], but here we take Eq. (3) to be the
definition. Originally, SIC was proposed for LDA, but it can in
principle be applied to other functionals. These are examples
of a more general class of functionals, ODD functionals, where
the Hartree energy is evaluated from Eq. (2).

Variational optimization of orbital-dependent functionals is
typically carried out by adding the orthonormality constraints
multiplied by Lagrange multipliers λji to the energy functional
to give

S[ρN ] = ESIC[ρN ] −
N∑

i,j=1

λji(〈ϕi |ϕj 〉 − δij ) (4)

and finding a stationary point with respect to variation of each
orbital |ϕi〉 and its complex conjugate. This gives two sets of
equations for the optimal orbitals [7–9]

Ĥi |ϕi〉 =
N∑

i=1

λji |ϕj 〉 and λ = λ†, (5)

with Ĥi |ϕi〉 = δESIC/δϕi and λji = 〈ϕj |Ĥi |ϕi〉. The ODD
functional form leads to orbital-dependent Hamiltonians Ĥi .
In the case of SIC, ESI is the orbital-density-dependent part of
the energy while EKS only depends on the total spin density,
so that

Ĥi = ĤKS[ρ] + v̂[ρi], (6)
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where v̂[ρi] = −δESI[ρi]/δρi = −(v̂H[ρi] + v̂xc[ρi]). At the
minimum, the constraint matrix λ is Hermitian and can be
diagonalized to give orbital energies εi and corresponding
eigenfunctions, the canonical orbitals ψN . In terms of these,
condition (5) can be written as

Ĥ |ψi〉 = εi |ψi〉, εiδij = (WλW†)ij , (7)

with |ψi〉 = ∑N
k=1 Wki |ϕk〉. The nonlocal operator Ĥ is defined

in terms of the N optimal orbitals ϕN and their corresponding
Hamiltonians Ĥi . In this way, the single-particle equations (5)
can be decoupled to give traditional eigenvalue equations [9].
The calculation is carried out using two sets of orbitals ϕN

and ψN while keeping track of the transformation matrix
W, relating the two sets. In HF and KS-DFT, the energy is
independent of the unitary transformation and the optimal
orbitals are typically chosen to be the same as the canonical
orbitals, i.e., W = 1.

At intermediate steps of the variational optimization of
ODD functionals, λ is in general not Hermitian, but can be
made Hermitian by finding the unitary transformation that
zeros the matrix κ = λ − λ† [7], where

κij =
∫

d3rϕ∗
i (r)ϕj (r){v[ρi](r) − v[ρj ](r)} = 0. (8)

With a Hermitian λ at each iteration, Eq. (7) can be used during
the minimization of the energy in a scheme analogous to what
is done in KS-DFT and HF.

The results presented here were obtained with the
program QUANTICE [10] using the Cartesian represen-
tation of the Gaussian-type correlation-consistent po-
larized valence quadruple zeta (cc-pVQZ) [11] ba-
sis set and numerical grids of 75 radial shells of
302 points [12]. The convergence criterion in the optimization
was a squared residual norm below 10−5 eV2. For LDA,
Slater exchange and the Perdew-Wang parameterization of
correlation is used (SPW92) [13].

Figure 1 compares the energy of the atoms H to Ar,
calculated using various functionals, with accurate reference
values [14]. While the inclusion of gradients in the GGA-type
PBE functional [15] improves on the results obtained with
LDA, the energy is still significantly too high and the error per
electron tends to increase with the size of the atom. SIC applied
to LDA reduces the magnitude of the error but gives a strong
overcorrection. The overcorrection also increases with the
atomic number. When SIC is applied to the gradient-dependent
PBE functional, the error is reduced to ∼0.1 eV per electron.
But this improvement is only obtained if the optimal orbitals
are complex, i.e., complex linear combination coefficients are
used for the expansion of the orbitals in the Gaussian basis.
When real expansion coefficients are used, the SIC actually
increases the error substantially, as had already been noted
previously [16]. A common approach to improve the results
obtained with DFT is to mix in HF exchange with GGA and
LDA in so-called hybrid functionals [17]. The PBE0 [18]
hybrid functional only gives slightly better results than PBE
(see Fig. 1). PBE-SIC with complex orbitals gives more
accurate total energy.

The ionization energy can be evaluated as the energy
difference of the charged and neutral system. These values
typically agree to within ±5% with experiment for the atoms
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FIG. 1. (Color online) Energy of atoms H to Ar using LDA,
LDA-SIC, PBE, PBE-SIC, and PBE0 functionals compared with
accurate, nonrelativistic estimates [14], normalized to the number
of electrons. Results obtained with complex orbitals (solid symbols)
and real orbitals (open symbols) are also compared. Vertical lines
indicate the s2, p3, and p6 electron configurations. The gray shading
at ±0.1 eV illustrates the different energy scales in (a) and (b). When
complex orbitals are used, PBE-SIC gives significant improvement
in the total energy, but not when real orbitals are used.

H to Ar, both for PBE and PBE-SIC. However, in extended
systems, subject to periodic boundaries, the charged system
cannot be calculated rigorously, so the IE has to be extracted
from ground-state properties. In Fig. 2, the energy eigenvalue
of the highest occupied canonical orbital is compared with the
calculated IE using the functionals PBE, PBE0, and PBE-SIC.
As is well known, for the commonly used LDA and GGA
functionals, the eigenvalues obtained from KS-DFT do not
give good estimates of ionization energy. The IE estimates
from PBE and PBE0 eigenvalues are too low, with errors
of ∼40% and 30%, respectively. In PBE-SIC, however, the
values are better, in most cases the error is within 5%–10%.
The eigenvalues are also in good agreement with experimental
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FIG. 2. (Color online) (a) Comparison of the eigenvalue of
the highest occupied orbital εHOMO with 	E = Ecation − Eneutral.
(b) Comparison of PBE-SIC eigenvalues with experimental ionization
energy [19]. Open and solid symbols are used as in Fig. 1. PBE-SIC
eigenvalues agree much better than PBE and PBE0 with both the
calculated energy difference and experimental data.
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FIG. 3. (Color online) Orbital densities of a Ne atom obtained
from a PBE-SIC calculation. (a) Electron density isosurfaces of the
complex canonical orbitals show clear correspondence with s and p

orbitals. The real canonical orbitals have a similar shape. Electron
density isosurfaces from (b) real and (c) complex optimal valence
orbitals shown from the top and side views for one spin component.
The gray spheres show the total density.

data on IE [19], as shown in Fig. 2. The values obtained
from complex orbitals are closer to both experiment and the
calculated energy difference than those obtained using real
orbitals. A similar improvement is observed for ionization
from lower-lying orbitals. For argon, for example, the second,
third, and fourth highest orbital energies in PBE-SIC using
complex orbitals deviate by 5%, 3%, and 1% (1.5, 7, and
−3 eV), respectively, from measured photoionization energy
[20]. Real orbitals give similar deviations of 10%, 3%, and 1%
(2.8, 7, and 2 eV), while the PBE values are off by 18%, 8%,
and 10% (−5.2, −19, and −32 eV).

Figure 3 compares the PBE-SIC ground state for neon
using real and complex orbitals. In both cases the canonical
orbitals are of s and p type and the total density is spherical.
The optimal orbitals, however, differ significantly in shape.
The real orbitals are aligned in the traditional tetrahedral
sp3 configuration and can be constructed from the canonical
orbitals as ϕr1 = 1

2 (s + px + py + pz), followed by three
consecutive fourfold improper rotations about the z axis, Ŝ4(z).
The complex optimal orbitals are also, despite their uncommon
tetragonal configuration, sp3-hybrid orbitals. Such a set can be
constructed from ϕc1 = 1

2 (s + px + py + ipz) and application
of the rotations Ŝ4(z). The shape of a real and complex orbital
is compared in Fig. 4. The density of the real orbital has axial
symmetry and a nodal surface. The complex orbital has lower
symmetry and lacks the nodal surface since orthogonality is
achieved by the phase of the complex expansion coefficients.

FIG. 4. (Color online) Isosurface and contour plots of an optimal
valence orbital of neon obtained with PBE-SIC using (a) real and
(b) complex expansion coefficients. The contour plots show the orbital
density in three planes through the nucleus. The complex orbital has
lower symmetry and no nodal surface.

FIG. 5. Orbital densities obtained from the Cartesian (upper
panel) and spherical basis (lower panel) using real expansion
coefficients. The Cartesian basis only gives localized orbitals but
allows for all orientations. The spherical basis makes a transition
from delocalized to localized orbitals possible but is restricted to
certain orientations of the localized orbitals.

The large increase in total energy that occurs when the SIC
calculation is restricted to real orbitals was also observed for
other GGA-SIC functionals as well as for exchange-only SIC
calculations. This effect can be explained by the fundamentally
different structure of the functional as compared to KS or
HF. There, the energy is invariant with respect to unitary
transformations of the orbitals so the full flexibility of complex
expansion coefficients is not needed. The SIC energy, however,
depends explicitly on the orbital densities. Nodal surfaces,
which are required for orthogonality of real orbitals, impose a
strong constraint on the shape of the orbital densities (and their
gradient, resulting in a stronger effect on the energy for SIC
applied to GGA functionals [6]). This can be illustrated by a
simple example: Given a basis set consisting of two Cartesian
p-type orbitals

ϕc
1(r) = Nxe−βr2

, ϕc
2(r) = Nye−βr2

, (9a)

a second set can be constructed as the complex spherical
representation

ϕs
1(r) = N√

2
reiφe−βr2

, ϕs
2(r) = N√

2
re−iφe−βr2

, (9b)

where r =
√

x2 + y2. The two sets of orthogonal orbitals
accessible by real linear combinations are defined by a single
parameter α:

ϕ̃x
1 = cos(α)ϕx

1 + sin(α)ϕx
2 , (10a)

ϕ̃x
2 = − sin(α)ϕx

1 + cos(α)ϕx
2 , x ∈ {c,s}. (10b)

The orbital densities are illustrated in Fig. 5 for several
values of α. For the Cartesian basis (9a), the variation of
α results in a rotation of the orbitals about the z axis,
while for the spherical basis a transition from delocalized
to localized orbitals occurs. The SIC calculated from the
Cartesian basis is independent of α, but for the spherical
basis the energy of the localized and delocalized orbitals
will differ. While the spherical basis (9b) can produce
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delocalized orbitals, it is incapable of describing localized
orbital densities pointing in the “diagonal” orientation if real
linear combination coefficients are used. Only when complex
coefficients are used can both basis sets give the full range of
possibilities.

While errors in the total energy of atoms can, to a large
extent, cancel out when the energy differences of two atomic
configurations are calculated, as, for example, in calculations
of bond energy, we find that the calculated binding energy
in diatomic molecules is significantly affected both by the
inclusion of SIC and then also by a restriction to real orbitals.
The binding energy of N2 is predicted by PBE to be ∼0.65 eV
too large compared with experimental estimates (see the
references in Ref. [15]). PBE-SIC reduces the bond energy by
0.69 eV, giving good agreement, while a calculation confined
to real orbitals overcorrects, giving a bond that is 0.43 eV too
weak. For O2, PBE predicts a binding energy that is 1.02 eV

too large. Here, PBE-SIC overcorrects and gives a value that is
0.54 eV too small, while a calculation restricted to real orbitals
gives an even larger overcorrection, a binding energy that is
1.05 eV too small.

The calculations presented here for atoms demonstrate that
PBE-SIC gives substantial improvement in the total energy
and physically meaningful orbital energies. The SIC applied
to KS functionals represents only a small set of possible
orbital-density-dependent functionals. It is likely that other
functionals of ODD form allow for an even more accurate
modeling of the electronic ground state, providing a more
flexible and computationally efficient alternative to hybrid
functionals. The derivation of a functional that makes optimal
use of the more general ODD form appears to be a promising
prospect. But it is clear that an assessment of the quality of
any ODD functional requires a minimization in the variational
space of complex orbitals.
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