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Figure 9-7. The molecular orbitals § , and _ from Eq. 9-69 and their squares plotted along the
internuclear axis.

(e.g., the hydrogenlike atomic orbitals), whereas in the molecular case we have
only two HJ molecular orbitals. It is important to realize that we obtained
only two molecular orbitals because we used a linear combination of only two
atomic orbitals as our trial function (Eq. 9-52). This was done solely for
simplicity, and one could have just as well used a linear combination such as

Yo=cilsy + c25, + ¢32p. 4 + culsy + ¢s2sp + ¢62p.p (9-72)

This particular choice would lead to a 6 x 6 secular determinant with six
energies and six molecular orbitals instead of just two. Clearly there is no
limit to this procedure and we could generate a large set of molecular orbitals.
For pedagogical reasons, however, we shall develop a molecular-orbital theory
of H, using just Eq. 9-70 and 9-71.

9-7 The Simple Valence-Bond Theory Ignores Ionic Terms and the
Simple Molecular-Orbital Theory Overemphasizes Ionic Terms

Because v, is the molecular orbital corresponding to the ground-state
energy, we can describe the ground state of H, by placing two electrons with
opposite spins in y,. The Slater determinant corresponding to this assignment



364 9 Molecules

is
_ L Y1) Y1) (9-73)
V21 4B
- wb(l)wb(z)% [«(1)BQ) — oc(z)ﬁ(l)]] 9-74

Once again we see the spatial and spin separation that occurs for a two-electron
system. Because the Hamiltonian is taken to be independent of spin, we can
calculate the energy using only the spatial part of Eq. 9-74. Using Eq. 9-7C
for y,, we find

Yo [Ls4(1) + Lsg(1)][154(2) + 1s5(2)] (9-73

T 20 + )]

Note that the molecular wave function here is a product of molecular orbitals.
which in turn are linear combinations of atomic orbitals. This method of
constructing molecular wave functions is known as the LCAO-MO (linear
combination of atomic orbitals-molecular orbital) method and has been success
fully extended and applied to a variety of molecules as we shall see in Sec-
tion 9-16.

If we substitute the normalized LCAO-MO wave function, Eq. 9-75. intc

E= fwﬁwdrldrz (9-76

to find Eyo(R), then the resulting integrals are similar to those that we ==-
countered in the Heitler-London valence-bond method. The integrals can &
evaluated analytically, but they result in functions that are somewhat advances
If Eyo(R) is plotted versus R, then one finds Egiesociation = 0-099 au = 2.70 2%

R, = 1.61 au = 0.085 nm, and a fundamental vibrational frequency © =
416 x 103 cm™!. The experimental values of these quantities are gives =
Table 9-1 along with the results obtained from Eq. 9-75 when the orbmal
exponent in the 1s orbital is allowed to vary.

The valence-bond method and the molecular-orbital method may 2ppess
to be two rather different approaches to chemical bonding or to H, in particeas
Although the two methods appear to be quite different and in a sense com-
petitive, they actually are closely related to each other. To see their relztiom
consider the (unnormalized) molecular-orbital wave function

Uno = [1s4(1) + 1sB(¥)][1sA(2) + 1s5(2)]
15,()1s5(2) + Lsp(D)15,(2) + Lsu(D1sa2) + Lsp(DIss2) 5

Il

The first two terms here are just Yy, our valence-bond wave function for By
What do the second two terms correspond to? These terms repressst =

electron configurations in which both electrons are on one atorm. We cam
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describe these two terms by the electron-dot formulas

H,: Hz and H, :Hp
or as
H,; Hy and HJ Hjp

Thus, we see that third and fourth terms in Eq. 9-77 represent ionic structures
for H,.
If we let

Vionic = 154(1)154(2) + Lsp(1)1s5(2) (9-78)
then we can write Eq. 9-77 as
YUno = ¥ve + Vionic (9-79)

Equation 9-79 suggests that Yo overemphasizes ionic terms, whereas Yy
underemphasizes (ignores) them.

We can develop a method intermediate to the VB and MO methods
by using a linear combination of the form

V= ¢y + Vionic (9-80)

This was done by Weinbaum in 1933, who found R,;,, = 1.67 au = 0.088 nm
and Egicociation = 0.1187 au = 323 eV with Z =1, and R,;, = 143 au =
0.076 nm and Egjocintion = 0.1478 au = 4.03 eV when Z was allowed to vary.
In addition, Weinbaum found that ¢,/c; = 0.16 at R, for the Z = 1 case.
Some people would say that this implies that there is 0.16 or really (0.16)2 = 0.03
ionic character in H,, but this is a shaky interpretation. For instance,
Weinbaum also found that ¢,/c; = 0.26 for the optimum value of Z, and so
we see that the ratio depends on the functions used in vy and Yo, In fact,
as we have discussed briefly earlier, one does not need to use simple 1s orbitals.
For example, it is clear that the electron distributions in each hydrogen atom
do not remain spherical as the two atoms approach each other. If we let the
internuclear axis be the z axis, then we might try constructing our valence-
bond orbitals out of a linear combination of a 1s orbital and a 2p, orbital

¢ = 1s + A2p, (9-81)
instead of from just a 1s orbital. In this case, we would have

Yve = $41)p5(2) + dp(1)d4(2) (9-82)

where ¢, and ¢ are given by Eq. 9-81. Equation 9-82 was used by Rosen in
1931 (see Table 9-1), and ionic terms were included 2 years later by Weinbaum
(see Table 9-1). If this procedure is carried to its extreme, then we include
more and more terms in Eq. 9-81 and will eventually reach the Hartree-Fock
limit like we did in the atomic case. We shall discuss the Hartree-Fock method
for molecules in Section 9-16.
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9-8 Valence-Bond Theory Plus Ionic Terms Are Formally Identical
to Molecular-Orbital Theory with Configuration Interaction

The relation between the valence-bond theory and mo
theory is even more complete than we have shown up to now. Comaie
simple LCAO treatment of HJ, in which we obtained the |
molecular orbitals

¢, = 1s, + 1sg

¢, = 1s, — 1sg

In our molecular-orbital discussion, we used

¢po(1) ¢bﬂ(1)‘
$p2(2)  D,B(2)

or simply its spatial part, ¢,(1)¢,(2). However, we can extend our
orbital treatment by using the antibonding molecular orbital o s wa'
sidering only spatial parts for simplicity, we can form

¥y = ¢(1)$y(2)
Yy = ¢,(1)a(2) + $.(1)0,(2)
Vs = $(1)¢(2) — d,(1)¢y(2)
Vs = du(1)0,(2)

We should take a linear combination of these four wave functoms o
function and obtain a 4 x 4 determinant, but it is algebraically zzsws
with ¥, and to add in each wave function in turn. Consider rust &
first. In this case, then

Vo=cy + Y,

and
Hll_ESII H12_E512
H12 - ES12 H22 s ESZZ

where
H, = ﬂlplﬁwz dr dr,
— [[0.06,0800,006.,2 + 6,006,021 4r, .
Consider now the integral
I = [$,2)A0,2)dr,

= [[1542) + 15, A15,2) — 15,(2)] .
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Note that this integral appears in Hy, in Eq. 9-87. Tt is possible to show that
I vanishes without doing any intergrations at all. We simply shall appeal to a
symmetry argument. The subscripts A and B denote the labels of the two
hydrogen nuclei. The Hamiltonian is symmetric in A and B, in the sense
that it does not change if we relabel the two nuclei by replacing A by B and
Bby A. Thus, if we interchange 4 and B in Eq. 9-88, then we find that I = —1.
The fact that I = —I implies that = 0 and eventually that Hy, =0 n, -
Eq. 9-87. Similarly, it is straightforward to show that S, = 0 (Problem 16),
and so Eq. 9-86 becomes

H,, —E 0
H =0 (9-89)
0 H,, — E

The two roots to Eq. 9-89 are simply H,, and H,,, which are the results that
we would have obtained if we had used , and ¥, separately. Thus, we see
that the two states described by ¥, and y, have no influence on each other.
We say that /, and ¥, do not interact or mix.

Now let us consider a linear combination of /, and ¥ in Eq. 9-85. By
a similar analysis (Problem 17), we find that i, and i3 do not interact or mix.
The only wave function in Eq. 9-85 that interacts with ¥, iy,

-

EXAMPLE 9-4 |
Show that the symmetry argument that we used to show that y; does not
mix with ¥, and ¥, does not imply that ¥, does not mix with /9

Solution: The integral of interest here is H,,, because if Hyy = 0, then
¥, and Y/, do not mix, and if H,, # O, theny, and Y, do mix. The integral
H,,is

Hy, = f dr dr; ()90 Ha(1)¢(2)

The argument that we have used to show that H,, and H,; equal zero
is based upon the fact that ¢, > —¢, when nuclei 4 and B are inter-
changed. For example (see Eq. 9-87),

Hyy = [[drdes o00u2AG 08,2 + [[drydrs o062, (1042

When the two nuclei are interchanged, ¢, and H remain unchanged, but
¢, — — ¢, in each of the two integrals in H,. Thus, we find that H,, =
—H,,, which implies that H,, = 0.

Note that H,,, however, contains two factors of ¢,, the two factors
being ¢,(1) and ¢,(2). Thus, H,, does not change sign upon the inter-
change of the two nuclei. Consequently, we cannot conclude from a
symmetry argument that H,, equals zero, and in fact H,, does not equal
Zero.

I |
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The linear combination

Vo = ey + cals
Cb(tbb(l)d)b(z) =+ cad)a(l)d)a(z)

describes the ground state of H,. Equation 9-90 is a ground-
orbital wave function with an excited-state configuration
extension of simple molecular-orbital theory to include excited-s
figurations is called configuration interaction. The CI subscript in
denotes that Y is a configuration interaction wave function.

Let us look at ¢ given by Eq. 9-90 in more detail. Equation =-=0 =as
written out as

Vo = o[1sD1s,(2) + 1s,(D)1spQ2) + 1sp(1)1s42) + Isg(1)155020]
+ e[ 1s,()1s,2) — Ls,(Dsp(2) — Lsp(1)ls,(2) + Lsgllilsg?
= (Cb il Ca)l//VB + (cb o+ cn)l//ionic

Thus, we see that molecular-orbital theory with configuration interac
exactly the same as valence-bond theory with ionic terms incluczc
methods become exact in the limit of including more and mor :
ionic terms or more and more excited-state configurations. In practice =
one does not use the complete limit and so the two methods do &ifer

method has its advantages in certain applications, but molecular-orois
plus configuration interaction is much more widely used.

Before finishing our discussion of H,, we should discuss briefy e =
work of James and Coolidge (1933) and the more recent wo
Wolniewicz (1968). We saw in Chapter 8 that Hylleras was
essentially the exact ground-state energy of the helium atom by mcioi =g
interelectronic distance r,, explicitly in the trial wave function = ==
approach was applied to H, with equal success by James and Cooias o
early as 1933.

When discussing the hydrogen molecule and evaluatinz tme an
integrals that occur, it is natural to use a coordinate system cal=C
coordinates (see also Problem 3). The three coordinates used 1o o
location of a point in elliptic coordinates are

(T

1= ry +rg " ry — Ig
RAB RAB

and ¢, which is the angle of the (r,, r5, R,5) triangle about the n::
For the two electrons in H, we have

l _ g+ I 1 _Taq + I2p

"7 Ry 27 Ry
AB AB

o hig St e _Taq — T3

T PR
AB AB
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In addition to these four coordinates, James and Coolidge also introduced a
fifth coordinate

12
— ol (9-94)
P=Rus

and used a spatially symmetric trial function of the form

Vo= e R D (A + AT (9-99)
m,n, j,K,p

where o and the c,,;,’s are variational parameters. Using 13 terms in this
expansion, James and Coolidge found Eg; . ciaion = 0.1735 au = 4.72 ¢V and
R, = 140 au = 0.074 nm, in excellent agreement with the experimental
values (see Table 9-1). A more recent calculation by Kolos and Wolniewicz
in 1968 gave a dissociation energy of 0.1745 au = 4.75 eV, in complete agree-
ment with experiment.

We can see in Table 9-1 that the dissociation energy and the equilibrium
bond distance obtained by James and Coolidge or by Kolos and Wolniewicz
are in excellent accord with the experiment values. The calculation of James
and Coolidge represents one of the great early achievements of quantum
mechanics as applied to chemistry.

9-9  Molecular Orbitals Can Be Ordered According to
Their Energies

We can use either the valence-bond theory or the molecular-orbital
theory to treat molecules that are more complicated than H,. A great ad-
vantage of the molecular-orbital theory is that we can construct a set of molec-
ular orbitals into which we can place electrons in accord with the Pauli Exclusion
Principle. The assignment of electrons to molecular orbitals will allow us to
introduce electron configurations for molecules just as we did for atoms in
Chapter 8. To do this, we must construct sets of molecular orbitals. We shall
construct molecular orbitals for homonuclear diatomic molecules in some
detail and then just present some results for heteronuclear diatomic molecules
and polyatomic molecules.

We shall use the LCAO-MO approximation, in which we form molecular
orbitals as linear combinations of atomic orbitals. In the simplest case, we
have only one atomic orbital centered on each atom and, as in the molecular-
orbital treatment of H, discussed in Section 9-7, the two molecular orbitals are

Vi = 1s, & 1sg

if we start with a 1s orbital on each atom. These two molecular orbitals are
shown in Figure 9-8. Note that y, concentrates electron density in the region



