Presentation on Calculations of Excited Electronic states by
converging to saddle points on the electronic energy surface
using density functionals or Hartree-Fock

Methodology:

- Variational, time-independent calculations
using density functionals to find solutions of
Kohn-Sham egns. corresponding to higher energy
(“delta SCF”, state-specific, ...).

- Orbitals optimised for excited states by converging
on saddle points on the electronic energy surface.

Applications:

- Twisting of C=C bond, avoided crossing,
conical intersection (molecular motors).

- Rydberg excited states of molecules.

- Charge transfer excitations in molecules.

- Nitrogen-vacancy defect in diamond, optical
preparation of a pure spin state.



Simulations of light-induced bond breaking / bond formation

Curchod and Agostini J. Phys. Chem. Lett, 8, 831 (2017)

Goal:
|[dentify and optimise the
mechanisms of solar energy
conversion to harness sunlight in
sustainable ways

Need to calculate the variation of the energy
as a function of atomic coordinates in
excited electronic states as well as ground st.
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Variational calculation of the ground electronic state

Recall, variational calculation of the ground state
Given a time-independent Hamiltonian, H, with eigenstates \gbn >
H|¢n >= En|¢n >

where n=0 for ground state, n=1 for first excited state, etc.
then for any arbitrary state vector [% > in the space spanned by the eigenstates,

i.e.
[ >=> " cnldn >,
we have
< Y|Hlp >
< H >= > FEp
<Y >

The best estimate of the energy of the ground state is obtained by finding the
minimum in the expectation value of the energy, and the corresponding state

vector is the best estimate of the ground state.

Most optimisation methods are designed to find a minimum (or maximum),
for example self-consistent field (SCF) procedures of various sorts.

[2]



More general variational optimisation (calculus of variations)

When an infinitesimal change in the state vector is made
> = [P > +[6y >, i

W} +(<§V>

expectation value of energy changes by § < H >

<H>—><H>+0< H >.

If [ > issuchthat d < H >= 0 forall |09 >, >

See, for example:

then Hl’l?b >—< H > |?7D > “Quantum Mechanics” by

Cohen-Tannoudji, Diu and Laloe.

i.e. |t > is an eigenvector of H with an eigenvalue <H >,
a solution to the Schrédinger equation.

This applies to excited states as well as the ground state.
Excited states are also stationary with respect to variations in |y > but
correspond to saddle points on the energy surface representing the
variation of < H > with respect to the various electronic degrees of freedom.

[3]



Time-independent excited state calculations — Concept

Ground state minimum

Excited state saddle points

Orbital rotation angle ¢g

Orbital rotation angle ¢,

Need to find saddle points on the electronic energy landscape
in order to converge on excited electronic states.

[4]



Cl: Exact solutions to the Schrodinger equation

Start with the simplest form for an N-electron wave function, a single
Slater determinant (SD).

Variational minimisation of the energy with respect to orbitals gives the
Hartree-Fock approximation, |to > .

Exact solution can then be obtained by taking a linear combination of all
SDs that can be formed with these orbitals and variationally optimise,
configuration interaction (Cl)

& >= Coltho >+ > Z Coln>+) Y Y ) Cohlrs>+....

Hartree-Fock SD T a b>a T s>7 .
smgle excitation SDs double excitation SDs

[5]



Cl: Exact solutions to the Schrodinger equation

Configuration interaction (Cl)

B >= 00|¢0>+ZZCT|¢T>+S‘S‘S‘S‘ TSlrS > 4.

Hartree-Fock SD T a b>a T S>T L
smgle excitation SDs double excitation SDs

The expectation value of the energy as a function of the linear expansion
coefficients defines an electronic energy surface,

< OIH|P >y, (cry,(Cm5)..)

Near a stationary point corresponding to an excitation to state k&
the eigenvalues of the Hessian matrix are 2(FE,, — Fx) where n =0,1,2, ....
and Eo < E1 < Es...

So, the ground state, k = 0, corresponds to a minimum,
first excited state, k = 1, corresponds to a 1st order saddle point,
second excited state, k£ = 2, corresponds to a 2nd order saddle point,
etc. (see T. Helgaker, P. Jgrgensen and J. Olsen
Molecular Electronic-Structure Theory, Chapter 4 (Wiley, 2000))

[6]



Electronic energy surface

An electronic energy surface describes how a system'’s energy varies as a
function of the electronic degrees of freedom (i.e. expansion coefficients)
Example, H,

use minimal basis set,
1s atomic orbital on each atom

Molecular orbitals for spin-up, &, and spin-down, ;3

Ugw

A B

Bonding MO ,\mih::::::g MO
The ground state wave function is
—— LUMO, Oy,

b =04(1)a4(2)((1)B(2) — a(2)5(1)) _H_ HOMO, T g

[7]



Electronic energy surface

Calculate the expectation value of the energy for an arbitrary linear
combination of the two molecular orbitals of an H, molecule.

Electronic energy surface:
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Stretch the H-H bond
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Symmetry breaking in a single Slater determinant wave function
can effectively account for static correlation to some extent
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Energy curve for the first excited state

20 A

15 A

A first order saddle point at, for example, (0, 90 deg.)
corresponds to an open shell singlet excited state, where

an electron has been excited from HOMO to LUMO
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Energy curve for the second excited state

A second order saddle point (here maximum) at, for example, (90, 90)
corresponds to a double excitation.

Whenr > 1.0 A, a higher energy broken symmetry solution exists.
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To follow the broken symmetry solution for the second excited state,

need to target the 2nd order saddle point (not the lower energy solution)
[12]




Calculations with density functionals

Can the Kohn-Sham equations be used to calculate
excited electronic states?

Can Kohn-Sham functionals, developed for ground state calculations,
give accurate estimates of excited electronic states?

By converging on a saddle point on the electronic energy surface,

- a solution to the Kohn-Sham equations is found that corresponds to
higher energy than the ground state,

- the orbitals are optimised for the excited electronic state.

- equivalent to solving the full TD-DFT equations for the exact functional.

[13]



Application 1: Rotation and pyramidalization in the V state of ethylene

Conical intersection between ground state, N, and excited singlet state, V, in ethylene
23

V state is open shell singlet,
S0 need to carry out spin purification

Ey =2E(|zy)) — E(|zy))

6: double bond torsion

¢: pyramidalization
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Application 1: Rotation and pyramidalization in the V state of ethylene

Conical intersection in ethylene Linear-response TDDFT
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Application 1:

Rotation of the double-bond in the Z state of ethylene

Second excited singlet state, Z

By consistently converging on the second order saddle point on the energy surface,
a broken symmetry solution is followed when the torsion angle is larger than ca. 60 deg.
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An avoided crossing can be reproduced nicely when the excited state is consistently
found by converging on a second order saddle point.

MRCISD calculations from: Barbatti, M.; Paier, J.; Lischka, H. J. Chem. Phys. 2004.
[17]



Energy [eV]

1 use PBE functional

PBE
—— MRCISD

12 A
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Double bond torsion 6 [deg.]

MRCISD calculations from: Barbatti, M.; Paier, J.; Lischka, H. J. Chem. Phys. 2004.
Schmerwitz, lvanov, Jénsson, Jonsson, Levi, JPC-L (2022)

[18]



use PBE functional use self-interaction corrected PBE
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PZ self-interaction correction makes the agreement with MRCISD nearly quantitative!
MRCISD calculations from: Barbatti, M.; Paier, J.; Lischka, H. J. Chem. Phys. 2004.

Schmerwitz, lvanov, Jonsson, Jonsson, Levi, JPC-L (2022) [18b]



Rydberg excited states of ethylene

9.5

B Experimental value? B exFCl (aug-cc-pVTZ)
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a. Melvin B. Robin. Higher excited states of polyatomic molecules. Vol. 3. Academic Press, Inc. 1985.

b. D. Feller, K. A. Peterson and E. R. Davidson, “A systematic approach to vertically excited states
of ethylene using configuration interaction and coupled cluster techniques”, JCP (2014).
Use correlation consistent basis set sequence cc-pVnZ, (n =D, T, Q, 5) extended with carbon

spd (VDZ), spdf (VTZ), spdfg (VQZ), and spdfgh (V5Z) diffuse functions. [19]



Side note: = Summary of calculations of Rydberg excited states of molecules

Over 30 singlet and triplet Rydberg excitations of

H,C=CH, ,H,C=0, NH,and H,0O
calculated using a real space grid basis with
projector augmented-wave (PAW) approach.

0.4

0.3

0.2

-0.5

—— Mean error
Singlet states
B Triplet states

Alec E.
Sigurdarson

HOMO Rydberg
state

PBE-SIC

PBE

TPSS

AAE = AE - AE(exp) (Error on the excitation energy with respect to experimental estimates)

PBE-SIC: orbital-by-orbital Perdew-Zunger self-interaction correction applied to PBE.

A. E. Sigurdarson, Y.L.A. Schmerwitz, D.K.V. Tveiten, G. Levi and H Jénsson J. Chem. Phys. 159, 214109 (2023)

[20]



1st order
saddle

Saddle point

—~ e

\)

minimum

minimum

At a 1st order saddle point, the
gradient is zero and the
Hessian (matrix of second derivatives)
has one and only one negative eigenvalue.

At an n-th order saddle point,
the Hessian has n negative eigenvalues.

[21]



Methodology:
Simple method for converging on a first order saddle point

: S A A S \\
The negative AL / R
gradient,-g, = é 1
around a , |
first order =
: —r
saddle point Z/" o @
N\
t 7 ~
FZRNR
I AN 7~
22500

[22]



Methodology:
Simple method for converging on a first order saddle point

The negative
gradient,-g,
around a
first order
saddle point

Find the eigenvector corresponding to
the lowest eigenvalue of the Hessian, T nEE f
V1, the so-called “minimum mode”.
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Methodology:
Simple method for converging on a first order saddle point

The negative
gradient,-g,
around a

‘ " . TN

first order =
saddle point > '
| : 7
N
Find the eigenvector corresponding to AR
t /7 m

the lowest eigenvalue of the Hessian,
V1, the so-called “minimum mode”.
Invert that component of the gradient

S ‘

g™ =g —2(vy - g)0

the transformed
negative gradient,
-Gmod, Corresponds
to a minimum

P 2P SV A R S

This projection locally transforms a first order saddle point to a minimum 2]



Minimum mode following (MMF) method

Minimum mode found using Davidson algorithm, requires only first derivatives,
no need to even construct the Hessian matrix.

If all eigenvalues are positive, move uphill along the minimum mode,
else invert the component of the gradient:

mod __
g = —(v1 - g)v1 if min eigenvalue > 0

=g—2(v;-g)vr  else

Then, can use any force-based minimisation to converge on the saddle point.

Example

| basins
i of
|| attraction

[23]



Generalized mode following method
for finding an n-th order saddle point

Find the eigenvectors corresponding to the n lowest eigenvalues
of the electronic Hessian (need more Davidson iterations).
If all n eigenvalues are negative,
invert the component of the gradient along each of the eigenvectors

gl =g -2 (vi-gv; if A <0
i=1

Otherwise, replace the gradient with the projection onto
the sum of eigenvectors corresponding to the positive

eigenvalues in this set
n

mod __ - 1
gmod — ;%(”z g)vi if An 20 @ '1

Thereby move uphill in directions that are not consistent
with the basin of attraction to an n-th order saddle point.

&
M@\\

basins
Yorick L. A. Schmerwitz, Gianluca Levi and Hannes Jonsson, JCTC 19, 3634 (2023). of attraction

[24]




Implementation of this methodology

Use direct orbital optimisation (DO) to calculate optimal orbitals
P = ey A=—AT

‘Direct energy minimization based on exponential transformation in
density functional calculations of finite and extended systems’,
A.V. lvanoy, E.O. Jénsson, T. Vegge and H. Jonsson,
Comp. Phys. Commun. 267, 108047 (2021).

Can be applied to non-unitary invariant functionals, such as
Perdew-Zunger self-interaction corrected functionals.

A.V. lvanov, G. Levi, E.O. Jonsson and H. Jénsson,
J. Chem. Theory Comput. 17,5034 (2021).

Implemented in the main branch of the GPAW code using
real space grid, plane waves or atomic basis sets,
PAW (projector augmented wave),

periodic or fixed boundary conditions.

J.J. Mortensen, A.H. Larsen, M. Kuisma, A.V. Ivanov et al.,
J. Chem. Phys. 160, 092503 (2024).

Also implemented in the ORCA code for calculations of molecules,

now the default time-independent excited state method. 25



Application 2: Charge transfer in N-phenylpyrrole

Transfer of electron density from the pyrrole group to the phenyl group,
appears to be a HOMO to LUMO excitation based on the ground state orbitals

Initial guess, 1st order SP

Energy

ground state orbitals

After optimising all but the electron/hole orbitals,
by minimizing the energy to allow for response
to the excitation,

the Hessian has 7 negative eigenvalues,

one larger than -1 eV.

[26]



Application 2: Charge transfer in N-phenylpyrrole

Appears to be a HOMO to LUMO excitation based on the ground state orbitals,
but turns out to be a 6th order saddle point after convergence.

Initial guess 1st order SP Turns out to be 6th order SP

ground state orbltals excited state orbitals

Large changes in the orbitals,
Guess 7 +/- 1 order saddle point, not HOMO - LUMO anymore
i.e. try also 6th order and 8th order

Y.L.A. Schmerwitz, G. Levi and H. Jonsson, J. Chem. Theory Comput. 19, 3634 (2023). [26b]



The calculated excitation energy is 5.39 eV using PBE,
while theoretical best estimate is 5.58 eV as obtained by Loos et al. in Toulouse
“Reference Energies for Intramolecular Charge-Transfer Excitations” J. Chem. Theory Comput. 17, 3666 (2021).

—2.0 1
oo B Orbital optimized Emm TDDFT '
§ P B . . Gianluca

o & RO Q .
AR O %,,)é & & Levi

In a benchmark study of 27 excitations in 15 organic molecules the time-INdependent
orbital optimised calculations give on average results with half as large error than
LR-TDDFT when long range charge transfer occurs [E. Selenius et al., JCTC 20, 3809 (2024)].

—— 0O PBE
—o— EOM-CCSD(T)
—o— TDDFT PBE

Intermolecular charge transfer excitation

‘e”
.
AE — AE[R = 0] (eV)

R (A) [27]
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Method for Calculating Excited Electronic States Using Density
Functionals and Direct Orbital Optimization with Real Space Grid or

Plane-Wave Basis Set
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ABSTRACT: A direct orbital optimization method is presented
for density functional calculations of excited electronic states using
either a real space grid or a plane-wave basis set. The method is
variational, provides atomic forces in the excited states, and can be
applied to Kohn—Sham (KS) functionals as well as orbital-density-
dependent (ODD) functionals including explicit self-interaction
correction. The implementation for KS functionals involves two
nested loops: (1) An inner loop for finding a stationary point in a
subspace spanned by the occupied and a few virtual orbitals
corresponding to the excited state; (2) an outer loop for
minimizing the energy in a tangential direction in the space of
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Application 3: Negatively charged nitrogen-vacancy defect in diamond

Well suited for many applications,
e.g. quantum information processing.

An optical cycle can be used to prepare a pure spin state
even at room temperature.
2.0 - .
N atom — m
substituted A
for C atom

7.

=
(92
1

€ >
vacancy \. (8 %
€ ¢ ’ € g
C atoms — o 1.0 A
adjacent /(' (
to vacancy ¢
1EV
C,, Symmetry 0-51
004 2 =0

This picture has emerged from various experiments and high level calculations.

Can density functional calculations be useful for such systems?
[29]



Negatively charged nitrogen-vacancy defect in diamond

Quote from C. Bhandari, A.L. Wysocki, S.E. Economou, P. Dev, and K. Park,
Multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond, Physical Review B, 103, 014115 (2021):

"Furthermore, DFT could not correctly predict either the ordering or the
energy difference between the excited spin-triplet and spin-singlet states
of the NV-center defect [28,38,39]. The aforementioned incorrect
predictions of DFT highly influence our understanding of ..."

| Periodic Molecular Molecular
25 LDA? LDA? BP°

14,
3E

2.0 1 3

1.51

Energy (eV)

1.01

0.5 e IE

0.0 A

d. A. Gali, M. Fyta, and E. Kaxiras, Ab initio supercell calculations on nitrogen-
vacancy center in diamond: Electronic structure and hyperfine tensors, Phys. Rev. B 77,
155206 (2008).

D. P.Delaney, J. C. Greer, and J. A. Larsson, Spin-polarization mechanisms of the
nitrogen-vacancy center in diamond, Nano Lett. 10, 610 (2010).

C. J.P.Goss, R. Jones, S.J. Breuer, P. R. Briddon, and S. Oberg, The Twelve-Line 1.682

ev Luminescence Center in Diamond and the Vacancy-Silicon Complex, Phys. Rev. Lett.
77.3041 (1996). [30]



Negatively charged nitrogen-vacancy defect in diamond

Calculations:
511 atoms in the supercell, (results for 215 atom calcs. are within 5 meV)
plane wave basis set,
PAW for inner electrons,
600 eV kinetic energy cutoff,
compare results obtained with LDA, PBE, TPSS and r2SCAN functionals.

Calculated band gap 4.2 eV using PBE,
4.7 eV using r2SCAN
5.4 eV using PBE-SIC/2 and HSEQ6

Experimental value 5.5 eV.

3 orbitals within the band gap are occupied by
4 electrons near the three C atoms by the vacancy N atom

substituted

Conduction Band for C atom

7,

Ly
5 2 vacancy \‘ €
X Y ;
4 C atoms / (]
adjacent /(' ¢
to vacancy e

Valence Band
[31]



Negatively charged nitrogen-vacancy defect in diamond

A single density functional calculation gives one of the following Slater determinants
that place 4 electrons in localized orbitals, within the band gap:
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Negatively charged nitrogen-vacancy defect in diamond

Single Slater determinant (SD) calculations give

Conduction Band Conduction Band Conduction Band

e, 4 . S o« 44— o P
. 4 . - o -

Valence Band

Valence Band Valence Band
ey ey) lexey) lexey)
triplet ground state singlet ground state singlet excited state,
ipiet srou inget grod second order SP (spm polarized)

Use the C,, symmetry and the character table from group theory to write the SDs
for the singlet states in terms of symmetry adapted wave functions, ¥ ('E) and ¥ (14,),

TPy = le_ey) = (lexey) —leyey)) /2+ (lexe,) —leyey)) /2

1 3
= @R+ ¥ (),

16, =|e,e) (le ey) tleyey,

)2+
= L (w(a)+e ()

The energy of the states can be obtained from the energy of the single SDs as
E['E]=2&E["®,] - E[°®,],
E['A 1= EP® ]+ 2(E[' @3] —E[M®,]) (33]
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Negatively charged nitrogen-vacancy defect in diamond

Results obtained here with various density functionals
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The excited singlet state is especially sensitive to the level of functional used

[34]
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r2SCAN gives similar results as ‘embedded beyond RPA’ calculations of
H. Ma, M. Govoni & G. Galli, npj Computational Materials 6, 85 (2020).

Structural relaxation lowers the excited triplet state by 0.24 eV,
in agreement with experimental estimate to within 0.04 eV.

A. Ivanoy, Y.L.A. Schmerwitz, G. Levi, H. Jonsson, SciPost Physics 15, 009 (2023).
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Summary

Methodology:

Saddle point searches can be used to calculate excited electronic states
in a time independent density functional approach,
variational calculations with orbitals optimised for the excited state.

Generalized mode following (GMF)
gives convergence to an n-th order saddle point on the energy surface.
Gives robust convergence on excited states, also when symmetry breaks.
Need to follow a saddle point of a given order to stay on a given state.

Applications:

For ethylene, the conical intersection between ground and first excited
state involving rotation around the C=C bond and pyramidalization,
as well as avoided crossing between ground and second excited state.

Rydberg excited states of molecules.

Charge transfer excitation in n-phenylpyrrole: 1st order SP = 6th order SP.

Energy levels of negatively charged NV-defect in diamond well reproduced,
even multi-configurational singlet excited states.



