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ABSTRACT: Semiempirical (SE) methods can be derived from either Hartree−Fock or
density functional theory by applying systematic approximations, leading to efficient
computational schemes that are several orders of magnitude faster than ab initio calculations.
Such numerical efficiency, in combination with modern computational facilities and linear
scaling algorithms, allows application of SE methods to very large molecular systems with
extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of
biological and other soft matter systems, however, good accuracy for the description of
noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model
noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss
the most significant errors and proposed correction schemes, and we review their performance using standard test sets of
molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value
and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods
in the analysis of complex molecular systems.
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1. INTRODUCTION: NONCOVALENT INTERACTIONS
IN (BIO)CHEMISTRY AND THE VALUES OF
QUANTUM MECHANICAL MODELS

Noncovalent interactions are crucial in chemistry, biochemistry,
and materials science. They govern the structure and
conformational dynamics of molecular systems and are
therefore also crucial to reactive properties. The ability to
understand and predict noncovalent interactions is thus
indispensable to theoretical and computational studies of
complex molecules.
In many computational studies, a classical potential function

(i.e., a molecular mechanical force field) is used to describe
noncovalent interactions. This is based on the assumption that,
in the absence of chemical reactivity and therefore any change
in covalent bonding, the potential function can be expressed as
a sum of a set of relatively simple functional forms. For the
noncovalent component, for example, the typical force field
includes Coulombic terms between point charges or higher-
order multipoles,1 Lennard-Jones terms for van der Waals
interactions, and sometimes polarizable dipoles,1,2 fluctuating
charges,3 or charge transfer terms.4 Classical force fields are
vital for condensed-phase simulations due to their computa-
tional efficiency; their accuracy for certain properties (e.g.,
population of various conformations) can be rather high for
well-calibrated systems.
Despite the success of force fields, there is still tremendous

interest in developing efficient quantum mechanics (QM)
based methods for treating noncovalent interactions due to
several considerations. First, the parametrization of a force field
is often a laborious process that requires extensive tests and
refinement of parameters that are not easily decoupled. In the
recent years, there has been progress regarding the develop-
ment of “ab initio” force fields in which parameters are
computed rather than fitted.5−7 Although this is an exciting and
promising direction, there are still technical challenges, such as
the balance of bonded and nonbonded contributions in the
treatment of polymeric systems. Second, most force fields,
including those based on first-principles calculations, use rather
simple functional forms, which may not be able to capture
subtle effects such as hyperconjugation, charge transfers, and
other many-body effects.8−10 Third, due to the various
approximations in classical force fields, they are likely most
suitable for a particular set of molecules under a specific range

of conditions. For example, the stability of ion-pair interactions
in a protein’s interior is likely overestimated by typical
nonpolarizable force fields.11

These considerations have led to the development of various
linear-scaling QM methods,12−14 which hold the promise to
treat both covalent and noncovalent interactions for large
molecules. In practice, however, linear-scaling QM calculations
remain computationally expensive whenever ab initio QM or
density functional theory (DFT) methods are used. This is a
particularly serious limitation for the study of biomolecules and
other soft matter, where adequate conformational sampling is
imperative. For many biological applications,15,16 for example,
molecular dynamics simulations on a nanosecond to micro-
second scale are required, which involve millions to billions of
energy and force evaluations.
It is in this context that semiempirical (SE) methods, which

have a long history in quantum chemistry,17 have come back
into the spotlight in recent years. The most prevalent SE
methods are those based on approximations (e.g., neglect of
diatomic differential overlap, NDDO) to the Hartree−Fock
(HF) theory, leading to methods such as AM1,18 PM3,19

MNDO/d,20 and OMx.21 Another approach that has become
popular in the past decade is the density functional tight
binding (DFTB) approach,22−24 which was derived in the
framework of DFT based on a Taylor expansion of the energy
with respect to a reference density. Both sets of SE methods use
minimal basis sets and involve various approximations to
electron integrals, leading to an increase of computational
efficiency by a factor of 100 to 1000 over typical
implementations of ab initio QM and DFT methods. As a
result, with the same computational resources, SE methods can
be used to study systems 10 times larger or to carry out 1000
times longer sampling.25 These enhancements can be further
improved by integrating SE approaches with modern computa-
tional architectures (e.g., GPUs)26,27 and computational
algorithms (e.g., linear-scaling/fragmentation techni-
ques,12−14,28,29 faster diagonalizations, and/or extended La-
grangian MD algorithm).30

These considerations, however, raise the following critical
question: Are the SE methods sufficiently accurate for the
description of structure, dynamics, and reactivity of complex
molecular systems? The development of SE methods has
focused on the description of the chemical bond traditionally;
therefore, there is vast literature on the parametrization and
benchmark of SE methods for heats of formation, structures,
and other properties of mostly small molecules.31−34 The
description of larger systems, in which noncovalent interactions
like van der Waals forces and hydrogen bonds are important,
poses different challenges. In this review, we focus on this
aspect of SE methods.
Along this line, we note three major sources of error for SE

methods in general. The first source is limitations of the
“parent” approach, which is HF for the NDDO-based methods
and DFT within the generalized gradient approximation
(GGA) for DFTB. HF lacks electron correlation; thus,
dispersion interactions are absent entirely. Popular GGA
functionals do not describe dispersion properly also and are
often problematic for the description of Pauli repulsion. The
second source of error is the use of a minimal basis set, which is
important to computational efficiency but also introduces
errors in electronic polarizability, van der Waals interactions,
and hydrogen bonding. The third source of error is integral
approximations, which also lead to errors in nonbonded
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interactions. In recent years, various empirical corrections or
extension to SE methods have been proposed to ease the errors
due to these approximations; they range from somewhat ad hoc
empirical fixes to physical enhancements that explicitly modify
the electronic structure (i.e., electron density) of molecules.
In the following, we first briefly review the formalism of HF-

based (NDDO) and DFT-based (DFTB) SE methods. Then,
we discuss the various correction schemes/extensions proposed
for the SE methods for the treatment of noncovalent
interactions. We then summarize the performance of SE
methods and the correction schemes/extensions by reviewing
the results for various standard test sets and recent applications.
Finally, we conclude with a few remarks concerning future
developments.

2. SEMIEMPIRICAL MOLECULAR ORBITAL THEORY
In standard electronic structure methods, the molecular orbitals
(MOs, {ψi}) are approximated by a linear combination of basis
functions represented by atomic orbitals (AOs, {χμ}):

∑ψ χ=
μ

μ μCr r( ) ( )i i
(1)

The conventional HF theory usually expands all electrons in
the AO basis, while SE methods typically only treat the valence
shell electrons and assume these in the field of the nuclei and
the (unpolarizable) inner-shell electrons. Commonly, SE
methods expand the valence electron density in a minimal set
of Slater-type orbitals.
The molecular orbital coefficients Cμi are obtained by solving

the Roothaan−Hall equations, which can be written in the form
of a generalized eigenvalue problem,

ϵ=FC SC (2)

where F, C, and S are the Fock, MO-coefficient, and overlap
matrices, respectively, and ϵ is the diagonal matrix containing
the orbital energies. The Fock matrix (F) can be separated into
its one-electron (h) and two-electron parts (G), the elements
of which are given by

∑μ ν μ ν= ⟨ |− ∇ − | ⟩μνh Z
R

1
2

1

A
A

A

2

(3)

∑ μν λσ μλ νσ= | − |μν
λσ

λσ
⎡
⎣⎢

⎤
⎦⎥G P ( ) 1

2
( )

(4)

Approximations to these matrix elements are discussed next.
2.1. Approximations to Matrix Elements

The bedrock of the large family of SE MO methods is the
neglect of certain integrals that make up the computational
bottleneck in a conventional HF calculation.
In the zero-dif ferential overlap (ZDO) approximation, only

two-electron integrals of the type (μμ|νν) are calculated.35 This
conveniently reduces the scaling behavior of the two-electron
part of the Fock matrix in eq 4 from N( )46 to N( )26 in the
number of atoms.
In the complete neglect of dif ferential overlap (CNDO) family

of SE methods, the ZDO approximation is used, and the
Mataga−Nishimoto approximation is further applied to para-
metrize the retained integrals as36

μμ νν γ
γ γ

γ γ| = =
+

+ +R
( )

2 ( )AB
AA BB

AB AA BB (5)

which ensures the correct convergence to 1/RAB in the long-
range limit and to γ γ+( )AA BB

1
2

in the short-range limit. Since
the Mataga−Nishimoto expression only depends on the atomic
parameters γAA and γBB, there is little directionality in the
integrals; for instance, p-orbitals are treated equally to s-
orbitals, and relative energies, such as rotational barriers, etc.,
are described only crudely.
The intermediate neglect of dif ferential overlap (INDO)

approximation is similar to CNDO, but integrals centered on
the same atom are parametrized. Several extensions to INDO
have been proposed with a focus on excited-state proper-
ties.37−39 While INDO methods are still widely used for
simulating molecular properties related to electronic excita-
tions, these are not recommended for computing energetics.40

The neglect of dif ferential-diatomic overlap (NDDO) approx-
imations extend INDO by further including two-electron
integrals of the type (μν|λσ), where μ and ν are AOs centered
on one atom, and λ and σ are AOs centered on another atom.41

The integrals retained in NDDO greatly improve the
description of rotational barriers and relative energies,
compared to the predecessors of the method.42 Although a
larger number of two-electron integrals have to be computed in
NDDO, the number of integrals still scales as N( )26 .
In the one-electron part of the Fock matrix (eq 3), the

scaling behavior is reduced to N( )26 by employing the
following rules:

∑

∑

μμ μ ν

μν μ ν μ
ν

β β
μ ν

=

− | =

− | ≠ ∈
∈

+
⟨ | ⟩

μν

μμ

μ ν

≠

≠

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

h

U Z s s

Z s s A
A

( ) if

( ) if , ,

2
otherwise

B A
B B B

B A
B B B

(6)

Here, Uμμ is a free parameter related to the ionization potential,
(μν|sBsB) is an electron−core integral that models the
interaction of orbitals centered on atom A with the
unpolarizable core of atom B represented by an s-orbital-like
density, and βμ and βν are resonance integrals similar to those
in the Hückel theory.17

The last approximation in NDDO is that core−core
interactions are described with

= |−E Z Z s s s s( )A B A A B Bcore core
(NDDO)

(7)

rather than with an interaction between classical point charges,
as done in HF. The reasoning behind this is to simulate the
interaction between not only the two nuclei but also the
electronic core.
2.2. Simplifications to the Roothaan−Hall Equation
The Roothaan−Hall equations are normally solved by first
applying an orthogonalization transformation and solving a
standard eigenvalue problem in the orthogonal basis denoted
by λ,

ϵ=λ λ λF C C (8)

and then transforming the coefficient matrix back into the AO
basis, from where new density and Fock matrices can be built.
In NDDO, the computational time of matrix operations is
substantial compared to building the Fock matrix, and the
approximation is made in NDDO theory such that
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= λF F(NDDO) (9)

where F(NDDO) is the NDDO Fock matrix that is assumed to be
a priori orthogonal. In this case, the Roothaan−Hall equation
takes a simple form

ϵ=F C C(NDDO) (10)

which avoids the orthogonalization procedure entirely. The
diagonalization procedure required to calculate the eigenvalues
and eigenvectors thus remains the bottleneck in NDDO
calculations, as it inherently scales as N( )36 , and techniques
such as pseudodiagonalization are often applied to reduce the
scaling of this step.43

The assumption of an orthogonal AO basis set goes hand-in-
hand with the NDDO approximation, as the neglected three-
and four-center two-electron integrals can be shown to be small
in this basis.44 The error is, however, much larger for the one-
electron part of the Fock matrix,45 as discussed later in this
chapter.
It is worth noting that most SE methods with an origin in the

NDDO formalism are fitted to reproduce the heats of
formation of molecules, rather than absolute energies

∑ ∑Δ = + − + Δ−H E E E H
A

A
A

Amol
f

mol
elec

mol
core core elec f

(11)

where ΔHA
f indicates the heat of atomization of element A at

298 K. This implies that thermal corrections are absorbed by
the parametrization. Therefore, in principle, appropriate
thermodynamical corrections should always be taken into
consideration when comparing results obtained using this class
of methods to those obtained via other approaches.
2.3. Modified Neglect of Diatomic Overlap (MNDO)

The MNDO method introduced by Dewar and Thiel46 has
formed the foundation of recent advances in SE methods with
great success, as will be detailed in the next section. MNDO
improves upon NDDO in two main respects: (i) the two-center
two-electron integrals are replaced by approximate integrals
derived from multipole interactions, and (ii) there are improved
core−core interaction terms in the one-electron operator.
To ease the implementation and increase the computational

efficiency, Dewar and Thiel introduced an SE model for the
two-center two-electron integrals in NDDO.47 Briefly
described, the integrals are approximated by the classical
interaction between the multipole moments of the two charge
distributions

∑ ∑ ∑μν λσ| ≃ M M( ) [ , ]
l l m

l m
A

l m
B

1 2

1 2
(12)

where ln is the order of the multipole moment and m describes
the orientation of the multipoles. Each multipole is in turn
approximated by a configuration of 2ln point charges, and the
Dewar−Sabelli−Klopman−Ohno approximation48 is used to
calculate the interaction between the point charges, ensuring
the correct behavior of the integral in the short- and long-range
limits. In the long-range limit, the integral converges to the
classical interaction, while in the short limit, the integral also
compensates for the missing electron correlation to some
degree. The overlaps required for the one-electron part of the
Fock matrix are still described by the overlap of Slater functions
in MNDO.
Using the NDDO theory as ansatz, the core−core repulsion

is too weak due to the unpolarizable core, and bond lengths

become too short. To account for this deficiency and also to
take the Pauli repulsion into account approximately, the
MNDO core−core repulsion energy is given by

α
α

= | + −
+ −

−E Z Z s s s s R

R

( )[1 exp( )

exp( )]
A B A A B B A AB

B AB

core core
(MNDO)

(13)

where αA and αB are empirical, element-specific parameters,
which must be obtained via fitting to reference data.

2.3.1. Extensions to the MNDO Method. Several
extensions and modifications to MNDO exist, and some of
the most successful ones are briefly detailed in this section.
The AM1 (Austin model 1) method18 developed in the

groups of Dewar and Stewart is a further refinement to MNDO.
Apart from being a complete reparametrization of MNDO,
AM1 also alleviates problems with short-range interactions by
adding up to four Gaussian functions to the core−core
repulsion term:

∑

∑

= +

−

+ −

− −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

E E
Z Z
R

K L R M

K L R M

( exp( ( ) ))

( exp( ( ) ))

A B

AB

i
A A AB A

i
B B AB B

core core
(AM1)

core core
(MNDO)

2

2

i i i

i i i
(14)

As a result, the number of fitting parameters is increased greatly
compared to the MNDO method. One of the major
improvements in AM1 was that hydrogen bonds were more
stable than predicted from MNDO, which generally describes
hydrogen bonds poorly.18,49

The PM3 (parametric method 3) method by Stewart19 is
essentially a reparametrization of AM1 using a different
parametrization strategy and only two Gaussian functions to
correct the core−core repulsion. AM1 has also recently been
reparametrized using a more complete set of training data in a
model named RM1 (Recife model 1).50

Motivated by the availability of a steadily increasing amount
of reference data, the approach of the AM1 and PM3 models
was further refined by Stewart in the PM6 (parametric model
6) method.51 Besides using a much larger set of reference data
to fit the parameters, PM6 also introduced several improve-
ments in the core−core terms. Replacing the Gaussian core−
core corrections of AM1 and PM3, PM6 uses a core−core
correction term originally introduced by Voityuk and Rösch,52

which employs pairwise parameters rather than element-specific
parameters.
PM6 further uses different core−core repulsion potentials for

N−H, O−H, C−C, and Si−O pairs to correct for specific
weaknesses in the parametrization. Lastly, the PM6 method
also adds d-orbitals in the atomic basis to certain elements,
much like the MNDO/d method does.20

The most recent of the PMx models by Stewart is PM7,53

which further includes a dispersion correction54 and a
hydrogen-bond correction based on the H+ correction.55 In
addition, several semiempirical integrals are modified by
switching functions to enforce convergence to the classical
result at longer distances.
Several empirical correction schemes have been devised to

increase the accuracy of the core−core repulsion potential
further. The PDDG (pairwise distance directed Gaussian)
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modification by the Jorgensen group56 adds additional Gaussian
functions to the core−core repulsion term, while the PIF
(parametrized interaction functions) and MAIS (method
adapted for intermolecular studies) methods add longer-range
functions to increase the accuracy further in the case of
nonbonded interactions, such as hydrogen bonds.57,58

Clearly, the minimal valence-only basis set approximation
makes it difficult to describe interatomic polarization accurately.
Different approaches have been developed accordingly to
improve polarizability and interactions that rely on a proper
treatment of polarization; see section 6 for more details.
2.3.2. Orthogonalization-Corrected Methods. As men-

tioned previously, the NDDO-type methods solve the
Roothaan−Hall equations while assuming that the AO basis
is orthogonal. Although this approximation is justified by the
NDDO approximations in the two-electron part of the Fock
matrix, it may give rise to more severe errors arising from the
one-electron part.45 The MSINDO method and the family of
orthogonalization-corrected methods (OMx) seek to correct
this by applying an approximate orthogonalization correction to
the one-electron part of the Fock matrix.21,59 Briefly, MSINDO
and OMx employ an expansion of the explicit Löwdin
orthogonalization to the second order

=λ − −h S hS1/2 1/2 (15)

= − ′ + ′ + − ′ + ′ +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠S S h S S1 1

2
3
8

... 1 1
2

3
8

...2 2

(16)

where h is the one-electron part of the Fock matrix and S′ is the
overlap matrix with zeroed diagonal elements. From this ansatz,
a semiempirical orthogonalization correction Δλh is derived

= + Δλ λh h h (17)

such that λh can be assembled approximately without
performing any explicit orthogonalization at all. In the OM1
method, only one- and two-center terms are included in the
correction, while three-center terms are included in OM2
additionally. OM3 also includes up to three-center terms but
omits certain small terms. The OMx methods also introduce a
few other modifications to the MNDO integrals, such as the
addition of a Pauli-repulsion term, an effective core potential
(ECP), and scaling of certain integrals by a Klopman−Ohno
term.21

2.4. Limitations of NDDO/MNDO

2.4.1. Limitations Due to the Hartree−Fock Origin.
Since HF is a mean-field theory, effects due to dynamical
electron correlation are not described. Most prominent is the
lack of dispersion interactions in HF, which is inherited in the
SE methods derived from HF. In contrast to DFTB, which aims
to derive its parameters from “first-principles” DFT, the
NDDO/MNDO class of SE methods involve parameters that
can be adjusted to accommodate dynamical correlation effects
in an approximate way. The MNDO type of SE methods use a
Slater-type basis set, but the two-center two-electron integrals
are calculated using the SE multipole approximations via the
Dewar−Sabelli−Klopman−Ohno approximation.46 These in-
tegrals are shallower at shorter range compared to the
corresponding analytical integrals, and this can be viewed as
inclusion of some correlation effect. While this approach adds
some flexibility not present in HF, it is however clear that
simply adjusting parameters is not adequate for a proper

treatment of dispersion interactions. Several dispersion
correction schemes are discussed later in this review.

2.4.2. Limitations Due to Parametrization Data. The
large number of parameters in NDDO/MNDO semiempirical
methods are determined by fitting to collections of empirical
data. A prominent property to which the parameters are fitted is
the experimental gas-phase heat of formation at 298 K, first and
foremost because these data are relatively abundant.
For instance, the original MNDO method used about 100

data points, while PM3 used 800, and PM6 used 9000 data
points. This seems adequate for methods that describe only a
few common elements (e.g., H, C, N, and O). For methods
aiming to general applicability, however, larger amounts of data
are required for the parameter optimization to reach a well-
defined global optimum, especially if diatomic (pairwise)
parameters are present in the model. The assembly and
thorough validation of such large data sets remain a bottleneck.
For instance, PM6 and PM7 are parametrized for 70 elements,
each with 10−20 parameters, so the need for more data to fit
diatomic parameters is dire.
The transferability of a parameter set is in part dictated by

the training data. The PM7 method was fitted using the S22
data set60,61 to increase the amount of data that pertains to
nonbonded effects. This practice has not been the norm,
however, because the calculations necessary to obtain such data
sets have only recently become feasible.
Stewart suggested two strategies to overcome the mentioned

problems: (i) experimental data should be combined with data
from high-accuracy theoretical calculations (e.g., CCSD(T)/
CBS), which could greatly increase the amount of diatomic
data, and (ii) a scheme that involves calculating the parametric
Hessian should be used to check convergence in the parameter
space.53

2.4.3. Limitations Due to Minimal Basis Set Approx-
imations. The minimal, valence-only basis set used in NDDO/
MNDO methods is required for the fastest possible
calculations, but it is also the main reason that molecules
appear less polarizable in these theories. Intermolecular
polarization is underestimated by 25%,62 which in turn leads
to a systematic underbinding of noncovalent interactions (see
section 7.2 for examples.)
Some work has been put into SE methods with extended AO

basis sets, such as the SINDO1 and PMO family of
methods.63,64 These methods have shown a substantial increase
in accuracy for polar bonding, such as in hydrogen bonds, as
well as for isotropic molecular polarizabilities.65−67 It has also
been noted that d-functions might play a non-negligible role in
bonding for certain chemical substitutes where the d-orbital
contributes to the occupied MOs, such as nitro groups.68

However, simply increasing the AO basis comes at the cost of
lower computational throughput. Other approaches to increase
the amount of intermolecular polarization involve adding an
auxiliary polarizing density separate from the AO basis. Such
approaches have shown promising results and are discussed in
more detail in section 6.
It has been shown for the water dimer that a careful

optimization of the 1s orbital exponent has a crucial impact on
the description of hydrogen bonds. While too compact 1s
functions actually prevent hydrogen bonds to form at all, less
compact 1s functions are able to yield correct hydrogen-
bonding geometries.68

At shorter range, Pauli repulsion is also not described
properly. This is in part due to the lack of basis functions, but
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even more so due to the integral and orthogonality
approximations in the NDDO/MNDO methods. Additionally,
the inner-shell electrons are neglected completely. The effects
of missing Pauli repulsion and the missing (unpolarizable)
inner-shell electrons must be compensated for to a large extent
by careful tuning of the core−core repulsion terms, as discussed
in section 2.3.1 above.
2.4.4. Limitations Due to Orthogonal Basis and

Integral Approximations. The error caused by the neglect
of the three- and four-center integrals in the two-electron part
of the NDDO/MNDO Fock operator in the ZDO approx-
imation is reduced in the orthogonal basis somewhat, because
these integrals are small in this basis set and much smaller than
the effects of orthogonality.44 The error due to orthogonality in
the one-electron part can be reduced by orthogonality
corrections to some degree, as seen in the OMx methods.21

The orthogonality error is short-ranged in nature, and the
most prominent negative effect is the large underestimation of
rotational barriers, which is ascribed to the lack of Pauli
repulsion largely.45 While this can be alleviated empirically by
functional forms of the core−core repulsion to some extent,
this practice also introduces a substantial number of new
parameters. In light of the limited data available for para-
metrization, such corrections might reduce the transferability of
the developed models. Appropriate orthogonality corrections
seem to be recommendable for future developments in this
regard.

3. DFTB THEORY
Similar to the NDDO/MNDO methods, DFTB calculations
run 2−3 orders of magnitude faster than standard DFT-GGA
approaches. In addition to the use of a minimal AO basis set
and the treatment of exclusively valence electrons, such high
computational efficiency results from integral approximations
that allow the AO Hamiltonian matrix elements to be
determined beforehand, once for all, so that they do not have
to be computed during a molecular calculation. The Taylor
expansion as described below does not pose a crucial
approximation,69,70 being merely a formulation to cast the
DFT total energy in a form suitable for the subsequent DFTB
approximations.
Several recent reviews have already focused on the DFTB

formalism,23,24 benchmark, performance, and known prob-
lems,24 as well as on its unique values in applications to
complex biological problems.25 In the following, we first
summarize the aspects of the methodology that are relevant to
the description of noncovalent interactions. Then, we discuss
how approximations made in the underlying DFTB methods
impact the description of noncovalent interactions. More
detailed benchmarks and further extensions are discussed in
later sections.
3.1. DFTB Energy Expressions

To derive the DFTB models from DFT, a reference density ρ0
is chosen as the superposition of neutral atom densities ρ0 =
∑Aρ0

A, and the DFT total energy is written in terms of density
deviations δρ from this reference. Expanding the exchange−
correlation energy with respect to these density deviations,71,72

the total energy can be written as

ρ ρ ρ δρ ρ δρ ρ δρ= + + +
+ ···

E E E E E[ ] [ ] [ , ] [ ,( ) ] [ ,( ) ]0
0

1
0

2
0

2 3
0

3

(18)

The DFTB models are classified as DFTB1, DFTB2 (also
referred to as SCC-DFTB),73 and DFTB3, due to the
respective highest orders in the density deviations δρ
considered. Several approximations to the integrals are applied,
and the resulting approximate energy reads
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(19)

where the indices A and B denote atoms, μ and ν denote AOs,
and i denotes MOs with occupation numbers ni. The individual
terms play different roles in the description of noncovalent
interactions, which will be explained in the following.

∑ρ =E V[ ] 1
2 AB

AB
0

0
rep

(20)

E0[ρ0] consists of the DFT double-counting terms (see p 147
of ref 74), and it only depends on the reference density.
Therefore, it covers not only a Coulomb interaction (core−
core repulsion) like in the NDDO SE methods but also the
difference of electron−electron and core−core Coulomb
interactions, plus the difference of exchange−correlation energy
and the integrated exchange−correlation potential. It takes the
form of a short-ranged function with exponential decay for any
GGA functional. In practice, the pairwise functions VAB

rep depend
only on distances of nearest-neighbor bonding interactions,
while they vanish in the noncovalent region. Therefore, these
potentials play a crucial role for all of the covalent-bonding
properties, e.g., atomization and reaction energies, bond
lengths, and vibrational frequencies, but they do not affect
nonbonding properties in any major way24,75 (also see section
8.4). The parametrization as short-ranged two-body potentials,
being determined by fitting to ab initio or experimental data,
has three consequences: (i) possible long-range contributions
are missing as well as (ii) multicenter contributions, which is
discussed below in more detail. (iii) Further, the repulsive
potentials VAB

rep also compensate for errors arising from
approximations of E1, E2, and E3 through the fitting procedure.

∑ ∑ ∑ ∑ρ δρ ψ ψ= ⟨ | ̂ | ⟩ =
μ ν

μ ν μν
∈ ∈

E H n C C H[ , ]
i

i i
iAB A B

i i i
1

0 0
0

(21)

This is a first-order term in the density due to the Kohn−Sham
orbitals {ψi}. Note that the Hamiltonian involves the zeroth-
order density; therefore, only first-order terms in the density
appear in the Coulomb and exchange−correlation integrals.
The main approximations involved here are the two-center
approximation for the Hamiltonian matrix elements

μ ν μ ρ ρ ν= ⟨ | ̂ | ⟩ = ⟨ | ̂ + | ⟩μνH H H[ ]A B0
0 0 0 (22)

(μ ∈ A and ν ∈ B) and, importantly, the use of a minimal
Slater-type AO basis set {μ}. The basis functions are obtained
from a DFT calculation involving an external confining
potential during the DFTB parametrization procedure, to
avoid an overly diffuse character of orbitals that occurs in free
atoms, which would be inappropriate for the description of
electron density in covalent bonds (between two atoms).
Unfortunately, this leads to a less accurate description of the
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electron density at longer distances from the atom centers,
affecting the description of noncovalent interactions.

∑ρ δρ γ= Δ ΔE q q[ ,( ) ] 1
2 AB

A B AB
h2

0
2

(23)

In the second-order term, the deviations δρ from the reference
density are approximated in terms of charge density
monopoles,22,73 which in turn are represented by atomic
point charges obtained from the Mulliken population analysis.
The integral in the calculation of charge−charge interactions is
substituted by an analytical function γAB

h (see the next
subsection for additional discussions), which converges to 1/
RAB for large distances of atoms A and B carrying the point
charges, and it accounts for the deviation from 1/RAB for short
interatomic distances properly. For the on-site electron
repulsion (i.e., for γAA

h ), a Hubbard parameter UA related to
the atomic hardness is involved and can be obtained from a
DFT calculation of an isolated atom.

∑ρ δρ = Δ Δ ΓE q q[ ,( ) ] 1
3

( )
AB

A B AB
3

0
3 2

(24)

If an anion shall be described rather than a neutral atom, the
atomic electron density is expected to be more diffuse. In the
DFTB framework, without including any diffuse basis functions
explicitly, this phenomenon may be taken into account by
considering UA to be a function of atomic charge. The
corresponding energy contribution appears in the third-order
term E3, in which ΓAB depends on the charge derivative of the
Hubbard parameter.72

3.2. Limitations of DFTB for Noncovalent Interactions
3.2.1. Limitations Due to the DFT-GGA Origin. DFTB is

derived from DFT, and its present parametrization uses the
PBE exchange−correlation functional.76 Therefore, DFTB
models inherit the limitations of GGA in general77−79 and
those of PBE in particular. We discuss the limitations relevant
to the discussion of noncovalent interactions briefly.
First, there is the delocalization error. In HF, the exact

exchange functional compensates for the electron self-
interactions (SI) stemming from the mean-field Hartree term
exactly, but this is not the case in DFT because approximate
exchange functionals are used. Thus, the electron−electron
repulsion is overestimated, and so is the delocalization of
electron density in extended systems. DFTB inherits this
problem, and a recent analysis80 indicated that the first-order
term of the DFTB Taylor expansion is free of SI, while the
second-order terms (quadratic in density, or atom charges) are
responsible for the deviation from the “straight-line” behavior.77

The delocalization error manifests itself in conjugated organic
molecules in particular, but also in hydrogen-bonded
complexes, as demonstrated, for example, with vibrational
frequency shifts of CO in strongly hydrogen-bonded
complexes.81 DFT-PBE, as well as DFTB (parametrized on
the basis of PBE), yields a red shift of the same magnitude upon
hydrogen-bonding, amounting to as much as 80 cm−1 in
strongly hydrogen-bonded complexes. This value is over-
estimated grossly compared to higher-level calculations due to
the overestimated charge transfer, which is caused by the
delocalization error.
Second, there is the issue of van der Waals (vdW)

interactions. Usually, only dispersion energy is discussed in
this context, representing the attractive part of the vdW
interactions. In fact, both Pauli repulsion and dispersion

contributions carry significant errors with DFT-GGA, as
discussed in detail previously.82,83 DFT yields the true
ground-state electron density in principle; thus, the exact
DFT functional would be able to describe vdW interactions,
and this is the basis for the search of new vdW functionals. In
practice, however, popular approximate (LDA or GGA)
functionals exhibit an exponential decay of interaction potential
with distance, so they cannot account for the 1/R6-like
dependence of dispersion, by construction. As discused in
detail in ref 82 (see also references therein), the commonly
used exchange functionals (e.g., PW91, PBE) underestimate the
short-range Pauli repulsion and bind vdW dimers already at the
exchange-only level, while the Becke exchange functionals
overestimate repulsion.
For DFTB, this has two consequences: (i) an empirical

dispersion contribution has to be added,82 and (ii) the Pauli
repulsion is underestimated due to both the use of PBE and the
application of a confined minimal basis set (see below). The
practical impact is that DFTB tends to describe soft matter with
too high a density. For discussion of possible solutions, see
section 5.

3.2.2. Limitations Due to Integral Approximations.
The zeroth-order contributions in eq 20 decay exponentially
with interatomic distance within the DFT-GGA framework.82

On the basis of a correct exchange−correlation functional, they
could contain long-range interactions like Pauli repulsion and
dispersion interactions due to the Exc[ρ0] − ∫ vxcρ0 term. Since
this is omitted by describing eq 20 with short-range repulsive
interactions truncated between the first- and second-nearest
neighbor distances, the long-range contributions have to be
included by an additional correction term, as described below.
In addition, the treatment of the zeroth- (eq 20) and first-

order (eq 21) terms is based on a two-center approximation;
therefore, the multicenter nature of these contributions is
neglected. The DFTB integral approximations have previously
been analyzed using density functional expansion methods.84

While the expansion itself does not imply a major
approximation, the neglect of multicenter contributions in the
zeroth- and first-order terms do so. The errors introduced have
to be compensated by an appropriate choice of the repulsive
potentials. Those neglected three-center, four-center, and
higher-order many-body contributions can be important for
dense materials85 and possibly also for a higher accuracy in
bonding interactions.24,84 For noncovalent interactions, three-
body interactions can be included in the dispersion corrections,
as discussed below, and they seem to be important for an
accurate treatment of larger systems.
The second-order contributions in eq 23 involve several

integral approximations and are essential to the description of
noncovalent interactions. (i) The differential charge densities
δρ are approximated by monopole terms; i.e., the dipole,
quadrupole, and higher contributions are neglected. This affects
all noncovalent properties for which orbital resolution plays a
significant role, such as interactions involving lone pairs. (ii)
The charge monopoles are represented by point charges
obtained from a Mulliken analysis, leading to inaccurate
molecular dipole moments. This may be improved by
application of more sophisticated charge analysis schemes like
the empirical CMn model.86−88 Furthermore, since the
interaction of electron densities is modeled by point charges,
subtle effects like the halogen bonding due to the presence of a
σ-hole are not treated (see section 5). (iii) The atom-centered
point charges interact according to the Coulomb law (1/R) for
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large distances, and the function γ models the deviation from
the 1/R behavior due to the overlap of electron densities and
exchange−correlation effects at short distances. For vanishing
R, i.e., the interactions on one atom, the function converges to a
certain value U, which is related to the chemical hardness of the
respective atom. Thus, the deviation from 1/R at short
distances, which depends on the “size of the atom”, is modeled
by the chemical hardness of the atom, which was proposed to
be inversely proportional to the atom size.89,90 This relation is a
good approximation for many main-group elements, but it fails
for hydrogen. For this reason, a modification of γ was suggested
to be used for interactions involving a hydrogen atom.91,92 This
modified function γh introduces a new parameter, which was
fitted to reproduce the interaction energy of the water dimer.
The application of γh constructed in this way yields substantially
more accurate hydrogen-bonding energies than the original
DFTB2 model.92,93 (iv) As discussed in section 6, the inclusion
of some of the on-site exchange-like integrals, which are
neglected in standard DFTB models, was shown to improve the
description of hydrogen bonding.94 Formally, these integrals
appear in the second-order energy contribution.
3.2.3. Limitations Due to the Minimal Basis Set. In

DFTB, a minimal basis set is used for computational efficiency.
Although a part of the basis set effect (e.g., larger size of an
anion) is captured via the third-order term in DFTB3, the use
of a minimal basis set may impact the treatment of noncovalent
interactions significantly. Specifically, we have the following
considerations.
First, for the treatment of hydrogen bonds, which are

prevalent in biomolecules and aqueous solutions, the
calculation is known to be sensitive to the quality of basis set
due to at least two considerations: (i) molecular multipoles
(dipole, quadrupole) are crucial to the description of the
electrostatic component, but the accuracy is limited with small
basis sets, and (ii) the sizable basis set superposition error
(BSSE) leads to largely overestimated binding energies. With
DFTB, BSSE does not occur because the matrix elements Hμν

0

in the first-order term are precalculated. Thus, the integrals that
describe the interaction of two atoms A and B (Hμν

0 ) are
unaffected by the basis functions of any other atom C. Further,
the second-order terms, which are responsible for the
electrostatic interactions, are not basis-set dependent. Thus, it
is possible to obtain good accuracy in hydrogen bonding with
DFTB despite the use of a minimal basis set, as long as the
Mulliken charges represent the charge distribution properly and
γAB
h is tuned well.
For interactions that involve highly polarizable moieties,

however, an additional challenge is the adequate description of
polarizability, which tends to be underestimated with minimal
basis sets. This is best demonstrated in a planar molecule.
While the in-plane polarizability is qualitatively correct, the out-
of-plane polarizability vanishes with a minimal basis set. The
reason is that only one p-function in the out-of-plane
orientation is located on every second-row atom, which is
insufficient to represent electron density that is asymmetric in
the out-of-plane direction; thus, an adequate description of out-
of-plane polarization requires additional s- or d-functions.
Obviously, this limitation greatly affects intermolecular
interactions for which polarization is important. For instance,
DFTB performed poorly for the description of charged
complexes in the benchmark set by Grimme.95 As discussed
in section 6 further, one possible strategy to improve the
description while avoiding larger basis sets is to apply an

auxiliary polarizing basis set and compute the resulting
polarization response.
The use of a minimal basis set impacts the description of

short-range Pauli repulsion also. In particular, we note that the
parametrizations of DFTB models involve confining potentials
in atomic calculations. The confining potential modifies the
electron density at distances relevant to noncovalent inter-
actions and therefore the description of Pauli repulsion at these
distances. The general trend is an underestimated Pauli
repulsion and therefore underestimated intermolecular dis-
tances. For example, the older “mio” parameter set22,73

consistent with DFTB2 uses a more strongly confined AO
basis than the newer “3OB” set75 consistent with DFTB3.
Consequently, the predicted intermolecular distances tend to
be shorter at the DFTB2/mio level than at DFTB3/3OB.

4. COMPARISON OF NDDO/MNDO AND DFTB
MODELS

The NDDO/MNDO and DFTB models share many common
approximations: the use of a minimal valence basis set, use of
(two-center) integral approximations, and being the descent
from HF or DFT as approximate theories with their respective
limitations. Nevertheless, there are also important differences,
which we summarize in the following.
With the density matrix Pμν = ∑iCμiCνi* in the AO basis set

{χμ}, the ground-state density may be written as

∑ρ χ χ= *
μν

μν μ νP
(25)

Representing the DFTB reference density ρ0 by the zeroth-
order density matrix Pμν

0 , the differential density may be
expressed as

∑δρ δ χ χ= *
μν

μν μ νP
(26)

with δPμν = Pμν − Pμν
0 .

With these expressions, the DFTB matrix elements (with μ ∈
A, ν ∈ B) can be written as91

∑ δ μν λσ μ δ ν= + ⟨ | ⟩ + ⟨ | | ⟩μν μν
λσ

μνH H P v( )0
xc

(27)

where δvxc is the functional derivative of the exchange−
correlation energy with respect to the electron density. In
DFTB, the terms in the parentheses are combined in the γ
function rather than evaluated individually; the above
separation serves merely the purpose of comparison with the
NDDO/MNDO approaches.
The NDDO/MNDO Hamiltonian, on the other hand, can

be written as

∑ μν λσ μλ νσ= + ⟨ | ⟩ + ⟨ | ⟩μν μν
λσ

μνH h P ( )
(28)

Several differences are noteworthy. (1) Hμν
0 and hμν in the

matrix elements in eqs 27 and 28 are different quantities. While
hμν represents one-electron terms only, Hμν

0 contains also the
electron−electron (e−e) interaction for the reference density.
Therefore, DFTB provides a very accurate account of the e−e
interactions for systems with small charge transfer between
atoms, while NDDO/MNDO approximates the e−e inter-
actions from the beginning. These e−e interactions are
contained in the two-electron contributions, which are the
last two terms in the respective equations. While these terms
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look similar in NDDO/MNDO and DFTB formally, there are
two important differences between the treatments: (i) DFTB
treats only the difference density on this level, while NDDO/
MNDO covers the complete e−e interaction with these terms.
Thus, a better accuracy in cases of small charge transfer may be
expected with DFTB, in principle. (ii) The two-electron terms
are subject to a monopole approximation in DFTB, while
NDDO/MNDO applies a distributed charge approximation
(eq 12), so that higher multipoles are included. Indeed, it was
shown that DFTB performs like a point-charge model for large
distances where the overlap vanishes,69,96 while NDDO/
MNDO may cover multipole effects in principle. (2) While
the derivation from approximate methods leads to some
common limitations (like the missing dispersion interaction),
HF and DFT-GGA show deficient behavior with opposite
trends for other properties. For instance, HF overestimates
band gaps, while DFT-GGA underestimates them. This and
other problems can be related to deviations from the correct
“straight-line” behavior of the dependence of energy on excess
charge, leading to a delocalization error in DFT-GGA and a
localization error in HF.77 This may affect the description of
large molecular complexes in which charge transfer is involved.
Both methods miss the description of dispersion interactions,
and this is usually resolved by the addition of a damped
empirical dispersion term. The damping functions, however,
have slightly different meanings in HF and DFT because DFT
includes correlation effects in the density-overlapping region
partly, while HF does not. (3) The DFTB formalism involves
an overlap matrix, while standard NDDO/MNDO methods do
not. An exception is the OMx class of methods, which
introduce the effects of nonorthonormality. The nonorthonor-
mality is important for Pauli repulsion,97 and this can be shown
using two AOs in a molecule as an example: Let us consider
two AOs that couple and split energetically to form a pair of a
bonding and an antibonding MO. In an orthogonal method, the
orbital energies split symmetrically, while a nonorthogonal
method yields a larger positive shift of the antibonding orbital
and a smaller negative shift of the bonding orbital. If both
orbitals are doubly occupied, which is the case relevant for vdW
interactions, the larger energy shift of the antibonding orbital
leads to a larger repulsion. The standard NDDO/MNDO
schemes miss this effect and therefore tend to underestimate
Pauli repulsion further.21,45

5. EMPIRICAL POST-SCF CORRECTION SCHEMES

5.1. Dispersion Corrections

A crucial deficiency in the SE approaches described in the
previous sections is their origin in theories that lack a
description of dynamical electron correlation. Dispersion is a
long-range, nonlocal correlation effect, which means that HF
(being a mean-field theory) and standard semilocal and hybrid
density functionals (e.g., PBE) do not describe such effects. For
this reason, DFTB- and NDDO-based methods are unable to
describe dispersion interactions properly.
While the effects of dispersion interactions are much smaller

than, for example, hydrogen bond interactions and ionic and
covalent bonds, they are ubiquitous in nature. Dispersion forces
are the dominant forces in a variety of situations, such as π−π
stacking of aromatic molecules, binding between lipids, and
binding to graphene. Even in very polarized systems, such as
bulk water, it is well-known that an accurate description of

dispersion is crucial,98,99 and it also plays a major role in
binding to halogen atoms.100

In what follows, we highlight several recent approaches to
augment SE methods such that they describe dispersion
interactions in a cost-effective manner. To avoid costly
additions to the QM calculations, these are post-SCF in nature.
Further, they do not depend on the electron density, but rather
on atom coordinates, in similar fashion to molecular mechanics
(MM). Besides the fast evaluation of energy, the MM-like
nature also allows the gradients to be low in complexity and
evaluated quickly.
Commonly, this class of dispersion corrections builds on

various interpretations of the London dispersion energy
between two atoms, derived from second-order perturbation
theory,101

α α= − +E
I I

I I R
3
2

1A B

A B
A B

AB
London 6

(29)

where IA and IB are the ionization potentials of atoms A and B,
and αA and αB are the polarizabilities of the respective atoms.
To include the dispersion in SE and other QM methods,
several authors have adopted an empirical expression consisting
of an R−6 term that is dampened at short distances
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R

( ) 1

A B
AB

AB
disp 6,AB 6

(30)

where f(RAB) is a damping function that removes the otherwise
unphysical dispersion energy at short ranges, and C6,AB is a
diatomic constant calculated from atomic polarizabilities via the
Slater−Kirkwood relations. This approach was first added to
DFTB2 by Elstner and co-workers82 and allowed for a correct
description of nucleic acid base stacking, which is impossible to
achieve with the uncorrected DFTB2 due to the lack of
dispersion.
Several very similar dispersion corrections have been

developed by other groups: Clark and co-workers developed
such a dispersion correction for NDDO methods and
demonstrated the importance of dispersion for small
complexes, such as the benzene dimer and the methane−
ethane dimer;68,102 the atomic polarizabilities in the C6
coefficients were solved in a variational fashion. Hillier and
co-workers adopted the dispersion correction for AM1 and
PM3 and showed a great improvement in the description of
DNA systems103 and also sulfur-containing molecules.104

Likewise, in the OMx-D method by Thiel and co-workers, a
dispersion correction is added to the OMx family of methods.
For OM3-D, the root-mean-square deviation (RMSD) of the
interaction energy is reduced from 5.4 to 1.7 kcal/mol for a set
of 145 complexes of small molecules, and similar improvements
are seen for OM1-D and OM2-D.105 Zhenchkov and co-
workers developed a Lennard-Jones-type potential that uses the
parameters of the UFF force field, and they saw similar
improvements to interactions between H2 and bulk graphene
and polycyclic aromatic hydrocarbons for DFTB.106

Perhaps the most widely adopted dispersion-correction
scheme for SE methods is the family of dispersion corrections
by Grimme. The first- and second-generation D and D2
corrections use an expression similar to eq 30, scaled by a
factor, s6, close to unity.107,108 In the most recent development,
the third-generation D3 correction, also a R−8 term is included,
and the coordination number of each atom is taken into
account.109 The constants are calculated from atomic polar-
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izabilities obtained with time-dependent DFT, but the values of
scaling factors and the limits of the switching functions are free
parameters that must be fitted for the specific QM method to
which the D3 correction is added.
Some additional work has been put into the functional form

of the short-range damping function of the D3 method.110 In
the original formulation, the dispersion energy vanishes at Rab =
0 using the “zero-damping” function introduced by Jurecǩa and
co-workers54 A more physically motivated damping function is
proposed by Becke and Johnson; at Rab →0, it converges to a
finite value that corresponds to the total dispersion energy of
the atom pair.111−113

Similar to the two-body D3 term, a three-body dispersion
term has been developed by Grimme and co-workers based on
the Axilrod−Teller−Muto dispersion term114,115 derived from a
third-order perturbation theory

∑
θ θ θ
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+
< <

E f R

C
R R R
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d ABC
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3
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Some recent results suggest that three-body interactions are
required for accurate treatment of larger systems, such as the L7
data sets, but they are generally negligible for calculations with
less than 10 atoms.95,116 D3 parameters have been published for
around 100 elements, and the free parameters in the D3 model
have been fitted for many DFT functionals and SE methods.
For example, DFTB3 without dispersion corrections exhibits an
RMSD of 3.0 kcal/mol for the dimerization energies in the S66
data set, while this error can be reduced to 1.1 kcal/mol by
including the D3 correction.117 For larger systems, the effects
are even more dramatic: for a number of water clusters,118 the
RMSD in total binding energy is reduced from 14.2 to 2.0 kcal/
mol by including the D3 correction, and the RMSD for the L7
data set can be reduced from 15.9 to 2.3 kcal/mol.117

The D3 correction has been benchmarked thoroughly for SE
methods and has been implemented in several QM programs. It
seems unrivaled in both adoption and widespread use currently
and is thus generally recommendable for all studies at the SE,
DFT, or HF levels of theory.
A more recent development by Petraglia and co-workers is

the dDsM dispersion correction.119 Here, an expression similar
to eq 30 is used, but the values of C6,AB depend on the Mulliken
charges of the molecule. This in turn introduces a direct
dependence on the underlying electron density, although the
dDsM correction is still added as a post-SCF correction using
the converged Mulliken charges, as it was shown that the effects
of self-consistency were negligible.120 Since the Mulliken
charges are robust for small and minimal basis sets, the method
seems especially attractive for SE methods. dDsM was
parametrized for DFTB3 and PM6 and showed encouraging
improvement over the D3 correction for dissociation energies
and stacking configurations of aromatic biomolecules. However,
as the value of C6,AB depends on the Mulliken charges, the
gradient has an electronic contribution, and only an
approximate gradient that neglects this contribution has been
published currently, although the error seems small.
As discussed earlier in this review, the effects of Pauli

repulsion are underestimated in SE methods, primarily due to
the use of a minimal basis set. While this affects covalent
bonding (e.g., rotational barriers are underestimated), it also
affects noncovalent interactions. The effect of dispersion

corrections is a stronger attractive potential, which accentuates
the lack of Pauli repulsion at shorter distances to some degree.
Řezać ̌ and Hobza introduced a repulsive term between
hydrogen atoms, to obtain a description of binding between
hydrocarbons in the D3H4 correction that is a balance between
the strictly attractive D3 potential and missing Pauli
repulsion.121

5.2. Hydrogen Bond Corrections

As discussed earlier in this review, the lack of polarizing
functions in a valence-only AO basis set causes the
intermolecular polarization to be underestimated. A direct
consequence is that the strength of an intermolecular
interaction between polar functional groups is underestimated.
During the past decade, a number of post-SCF hydrogen-
bonding corrections have been proposed to alleviate this
shortcoming of SE (NDDO) methods.
Some recent developments are the H, H2, H2X, H+ H4, and

H4X corrections.55,121−126 These are essentially MM terms that
depend on hydrogen-bonding distances and important bond
angles. In general, these take the form

=E cf fhb DHA damp (32)

where c is a scaling factor, f DHA is a function that takes into
account the structure of the donor−hydrogen−acceptor
complex, and fdamp is a damping function that enforces a
correct behavior in the long-range and short-range limits. Most
commonly, these are combined with an empirical dispersion
correction, such as D3; see the previous section.
The parameters of these combined dispersion and hydrogen-

bond corrections are fitted to reproduce dissociation energies
obtained from high-level QM calculations.127 A subtle
consequence of this is that NDDO/MNDO methods that are
postcorrected with a hydrogen-bond term are no longer an
approximation to the standard enthalpy of formation, an
important realization for certain thermochemical calcula-
tions.128 This is not an issue for those NDDO/MNDO
methods that include the hydrogen-bond term during method
development and parametrization, such as PM7.53

The first- and second-generation of hydrogen bond
corrections122,123 use functional forms that do not have a
continuous second derivative; therefore they may be problem-
atic for the simulation of processes such as proton transfer, and
further, they may hinder the convergence of geometry
optimizations. Another problem with these corrections is that
even though they are additive and of post-SCF nature, they still
depend on the partial charges of the atoms involved formally.
Consequently, the SCF energy is no longer a variational
minimum. Although the error is small in most cases, this
becomes a problem for geometry optimizations because the
point of vanishing force no longer coincides with the minimum
of energy.53

The third-generation hydrogen-bonding H+ correction55

uses a functional form that has removed the dependence on
partial charges, thus allowing for smooth proton transfers, and
the H4 correction121 further removes problems with certain
linear conformations that were present in H+.121,125 These
hydrogen bond corrections are comparable in accuracy for
model dimer systems, such as the S22 and S66 data sets. When
used in conjunction with D3, the interaction energies of
complexes involving one hydrogen bond are predicted with an
SE method typically within an RMSD of 1 kcal/mol compared
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to CCSD(T)/CBS, while the RMSD is typically around 0.5
kcal/mol for dispersion-dominated complexes.121,125

For the binding free energies in a test set of 30 large host−
guest complexes, Sure and Grimme found little difference
between the accuracy of four different hydrogen-bonding
corrections using hydrogen-bond- and dispersion-corrected
PM6.116 For a set of nine complexes that involve ionic
interactions, the RMSD of 9 kcal/mol with uncorrected PM6
only improves to 6 kcal/mol with PM6-D3H4, and the RMSD
of 4 kcal/mol with DFTB-D3 even increases slightly to 5 kcal/
mol with DFTB3-D3H4.117

In an extensive review of PMx, DFT, and SAPT methods,
Gilson and co-workers compared the accuracy of PM6-DH+,
PM6-DH2, PM6-DH2X, and PM7 on seven data sets.129 In
most cases, no consistent differences in accuracy were found
among the PMx-based methods. For complexes involving a
charged moiety, PM7 was found to be 0.2−0.5 kcal/mol more
accurate. However, some inconsistencies were revealed in the
treatment of halogen bonds. Large errors around 10 kcal/mol
were found for complexes involving an HF molecule with all
methods, and also the binding between bromobenzene and
nitrogen gave errors of similar size for the PM6-based methods.
For short halogen bonds, the X-correction was found to
increase the accuracy substantially;124 This correction is
discussed in more detail in sections 5.3 and 7.2.4.
While hydrogen bond corrections to SE methods improve

the accuracy of dimerization energies greatly, they do not solve
the underlying problem of missing polarization, as they do not
modify the underlying wave function. This means also that
cooperative effects are not taken into account explicitly. For
example, for a set of 15 water clusters containing 6−17 water
molecules,118 the DFTB3-D3 model exhibits a remarkably low
RMSD of total interaction energies of only 2.0 kcal/mol,
compared to a CCSD(T)/aug-cc-pVTZ reference. However,
this RMSD increases to 23.9 kcal/mol with DFTB3-D3H4,117

demonstrating that great care has to be taken whenever
methods created from gas-phase models are used to simulate
the condensed phase.
In short, the accuracy of dispersion- and hydrogen-bond-

corrected SE methods for dissociation energies of dimer
complexes is very close to that of DFT with modestly sized
basis sets.95,116,117 The accuracy is unclear, however, for larger
systems where cooperative effects are crucial, and great care
needs to be taken when using hydrogen-bonding corrections.
This is also the reason why this strategy has never been adopted
for DFTB widely. Initial tests showed that binding energies of
dimers can be improved quite substantially indeed.22 Still, the
additional potential is not very transferable and is usually fitted
for weak hydrogen bonds with relatively long hydrogen
bonding distances. For strong hydrogen bonds and in particular
when cooperative bonding effects are present, an additive
potential is no longer sufficient. An analysis of hydrogen
bonding showed that the problem is rather electrostatic in
nature, leading to the modification of the γ-function83,91 as
described above in section 3.2.2. Note that Clark an co-workers
performed a similar analysis for the NDDO type of methods.68

5.3. Halogen Bond Correction

Halogen bonds are noncovalent interactions between an
electron donor and a halogen atom covalently bound to an
electron acceptor. Compared to the hydrogen atom in a
hydrogen bond, the electron density around a halogen atom is
much more anisotropic, and a positively charged region exists

along the covalent bonding axis of the halogen atom, the so-
called σ-hole. This region interacts with the lone pair of the
electron donor, forming the halogen bond. Riley and Hobza
used symmetry-adapted perturbation theory to show that this
interaction accounts for approximately half of the halogen bond
energy, while the rest of the interaction energy is mostly due to
dispersion interaction.100 Halogen bonds are badly reproduced
by minimal basis set SE methods, which systematically
overestimate the interactions. Řezać ̌ and Hobza have devised
the halogen bond “X-correction” term for PM6, which is
combined with Grimme’s D2 dispersion corrections to yield the
D2X correction.124 The halogen bond correction adds a
repulsive potential to alleviate the overestimated interaction
energy

= −E a bRexp( )ABX (33)

where a and b are empirically fitted parameters. For a small data
set, the mean error in interaction energies for PM6-D2X was
0.4 kcal/mol. The X-correction was recently merged with the
more recent D3H4 correction, yielding the D3H4X correc-
tion.126

Kubillus and co-workers have recently derived a more refined
halogen bond correction, much similar in spirit to the X-
correction by Hobza for use with dispersion-corrected
DFTB3130

= − −E c c R dexp( ( ) )AB AB
c

X 1 2
3 (34)

where c1, c2, and c3 are universal parameters for the model and
dAB is a pair-specific parameter. Furthermore, a screening
function is applied to ensure that the artificial σ-hole is switched
off at covalent-bonding distances. Protein−ligand binding
energies were found to be similar to those obtained with
DFT using modest basis sets, and only minor deviations in
halogen-bonding geometries were observed. As discussed in
section 7.2.4, these X-corrections improve the description of
halogen bonds by SE methods substantially, leading to errors
on the order of merely ∼1 kcal/mol compared to high-level ab
initio calculations.
5.4. Empirically Corrected Small-Basis-Set Methods

Pioneered by the Grimme group, empirical corrections have
also been applied to ab initio methods with small but highly
specialized basis sets. In terms of accuracy and computational
cost, the resulting methods lie somewhere in between
conventional ab initio methods and the SE methods that are
the focus of this review. While SE methods are 100−1000 times
faster than DFT and HF with reasonably sized basis sets, these
methods are 10−50 times faster.95 These methods are defined
by the addition of several empirical corrections, such as a
dispersion corrections, and additional corrections for limita-
tions related to the finite basis set. To maximize accuracy, the
involved empirical parameters are fitted only for the specific
method and basis set.
In the HF-3c method (HF with three corrections), the

minimal basis set MINIX is used. The HF energy is augmented
by the D3 dispersion correction using the Becke−Johnson
damping and, additionally, by the gCP (geometrical counter-
poise) and the SRB (short-range bonding) corrections.131 gCP
is a pairwise correction for BSSE, which only depends on the
nuclear coordinates.132 In a similar, pairwise fashion, SRB
corrects for the overestimation of bond lengths with small basis
sets.131 This empirical approach contains a total of only nine
parameters, and it retains an accuracy close to DFT with large
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basis sets while the computational cost is low owing to the
minimal basis set. HF-3c has been refined further into the HF-
3cv method, which involves a valence-only basis set with an
ECP, causing only a minor decrease in accuracy.95

Most recently, the ideas of the corrected HF methods have
been adopted for DFT with a double-ζ basis set. In the PBEh-
3c method, a slighty reparametrized version of the PBE0
functional is used with the Ahlrichs-type def2-SV(P) basis set,
with an ECP for heavier atoms, and the D3 and gCP
corrections are applied together.133 For noncovalent inter-
actions, PBEh-3c was found comparable in accuracy to DFT
with medium-sized and large basis sets and vastly improved
compared to DFT with similarly sized basis sets.

6. QUANTUM MECHANICAL EXTENSIONS TO
SEMIEMPIRICAL METHODS

Although the empirical corrections described in the previous
section alleviate some limitations of popular SE models, they
are not coupled with the electronic structure of the molecule;
therefore, their transferability to more complex systems is not
warranted. For example, we have recently observed117 that the
empirical hydrogen-bonding correction at the DFTB3 level,
while valuable for small water clusters, leads to substantially
overestimated binding energy of larger water clusters. There-
fore, it is worth pursuing extension of SE methods such that the
electronic structure is affected (possibly modified) by non-
covalent interactions explicitly.
6.1. Electrostatics
Electrostatic interactions make up a major contribution to
noncovalent interactions between many molecules. To ensure
an accurate description of electrostatics at all distances, it is
important that multipole moments of molecules are described
well. Along this line, it is worth noting that the two-electron
integrals in NDDO/MNDO methods are evaluated on the
basis of multipole models of the AOs (e.g., see eq 12); thus, the
angular distribution of atomic charge densities is maintained for
interactions at all distances. In DFTB, short-range effects are
described by both Hμν

0 terms (eq 21) and the second-order
term (eq 23), while long-range effects are solely described by
second/third-order terms (eqs 23 and 24). In the latter, the
atomic charge distributions are approximated in the current
implementation by monopoles (Mulliken charges); thus, the
angular dependence of charge distribution is lost. Conse-
quently, while the angular dependence of hydrogen-bonding
interactions is properly described at the DFTB3 level around
equilibrium distances, larger errors occur at longer distan-
ces96,134 (see Figure 1). To what degree such an error impacts
key properties in the condensed-phase remains to be analyzed
thoroughly; dynamical properties of hydrogen-bonded systems
are likely to be affected.
To alleviate the errors associated with the monopole

approximation, York and co-workeres have developed a QM
force field model (referred to as modified divide-and-conquer,
mDC).29,135 Here, the monomer units (e.g., individual water
molecules or amino acids) are treated with DFTB3/3OB
(although other QM methods can also be used), while the
interactions between them are treated with a parametrized
multipolar charge model complemented by Lennard-Jones
interactions
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Here, qlm is the atomic multipole moment on atom A, plm is a
multipolar potential at atom A due to the multipoles on all of
the other (B ≠ A) atoms,
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and Clm(r) are real regular solid harmonics.
The mDC model is similar in spirit to the Xpol model of Gao

and co-workers28 in terms of the fragmentation philosophy,
although the current Xpol implementation treats the
monomer−monomer electrostatic interactions at a QM/MM
level using point charges for one of the monomers. The mDC
model has been parametrized for water and biomolecules and
also implemented for simulations with periodic boundary
conditions using the multipolar particle−mesh Ewald meth-
od.96,134 The results obtained from simulations of bulk water
under different conditions, protein−ligand interactions, and
molecular crystals suggest that the mDC model is a promising
approach that warrants continuing developments. In a separate
line of work,136 the density variations in the DFTB framework
(ΔqA from eq 19 onward) have been extended to include
higher multipolar contributions, although no complete
implementation and parametrization of such a multipolar
model has yet been reported.
The Mulliken treatment of two-electron integrals, which sets

every different ia l over lap of atomic orbi ta ls as
ϕ ϕ ϕ ϕ≈ | | + | |μ ν μν μ νS [ ]1

2
2 2 , also leads to the neglect of certain

on-site contributions due to the orthogonality of AOs centered
on the same atom. Another piece of improvement of DFTB94

was motivated by this realization, having derived an on-site
correction that includes exchange-like one-center two-electron
integrals (μν|μν) with μ, ν ∈ A and μ ≠ ν. The effect of
including these integrals on the energy is that the variation of
off-diagonal elements of the dual density matrix connecting

Figure 1. Effect of multipoles on hydrogen-bonding interactions at
different distances. Although the angular dependence of the water−
amide interaction is described by DFTB3 at short distance correctly,
the description reduces to that of an MM force field at longer distances
due to the use of charge monopoles in the second-order term.
Reproduced from ref 134. Copyright 2014 American Chemical
Society.
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orbitals ϕμ and ϕν residing on the same atom is now
considered. The standard DFTB model only involves the
variation of diagonal elements of the dual density matrix (i.e.,
the Mulliken populations). The tests performed on water
clusters indicate that the on-site integral corrections improve
the hydrogen-bonding interactions substantially indeed, with-
out the need for any special modification of γ for HX pairs91 as
discussed in section 3.2. Moreover, the on-site-corrected
DFTB3 (without modified γ) appears to treat water−hydroxide
interactions better than other DFTB models. So, while
DFTB3/3OB overbinds the clusters (OH)−(H2O)n (n = 1−
4) by 6−8 kcal/mol, the error is reduced to 1−2 kcal/mol with
the on-site correction. Since the repulsive potentials were not
reoptimized after the inclusion of the new on-site integrals, the
robustness and transferability of the on-site DFTB model
remain to be explored systematically.
6.2. Polarization and van der Waals Interactions

A major limitation of SE methods is the use of a minimal basis
set, which leads to underestimated van der Waals interactions
and polarization, typically. It is possible to alleviate this
limitation by augmenting the basis with, for example, p
functions on the hydrogen atoms. Indeed, this was done in
the SINDO1 method63 and the PMO suite of methods by Gao
and Truhlar and their co-workers.64,66,67 This was emphasized
by Clark and co-workers137 as being seminal for the treatment
of polarizability in organic molecules. Hydrogen-bonding
geometries and energies were observed to improve in
SINDO165 and PMO,66 and the PMO2 method further
reduced errors in molecular polarizabilities by 80%.67 Also,
DFTB2 was augmented with p-orbitals on hydrogen with
similar improvements in energetics and geometries.22,138

From the computational perspective, including p functions
on hydrogen atoms can be costly; for biomolecules, this
increases the size of the basis set by a factor of roughly 2, which
leads to an increase of computational cost of nearly an order of
magnitude, due to the N( )36 scaling for standard implementa-
tions. Moreover, including p functions on hydrogen may also
lead to an imbalance in the basis set. In previous studies,22,63 for
example, the contribution from the p-orbitals needed to be
truncated beyond a certain distance. These considerations
ignited a search for alternative approaches to improve the
polarization.
One approach is based on the principle of chemical potential

equalization (CPE), in which the SE density [ρSE(r)] is
augmented by an additional, polarizable response den-
sity139−141

∑ρ ρ δρ ρ φ= + = + cr r r r( ) ( ) ( ) ( )
i

i iSE/CPE SE CPE SE
CPE

(38)

where the CPE basis functions φi
CPE(r) are, for example, p-type

Gaussian functions. The expansion coefficients ci are solved by
a variational minimization of the total energy

ρ= +E E E q c[ ] [ , ]SE/CPE SE CPE (39)

where

= · · + · ·E q c c M q c N c[ , ] 1
2CPE

T T
(40)

Here q indicates QM partial charges and M and N represent
the interactions between the QM/CPE and CPE/CPE charge
distributions, respectively. The simplest model invokes

Coulombic interactions in M and N, and short-range effects
(e.g., kinetic energy contribution) are approximated by
employing a distance-dependent scaling function. Since the
CPE and SE SCF equations are solved in a sequential fashion,
the increase in computational cost is rather modest.
The CPE approach has been combined with the MNDO/d

method141,142 and, more recently, with the DFTB269 and
DFTB3 methods87 to improve the molecular polarizability.
Errors in the isotropic molecular polarizability were reduced
substantially, although any further improvements in the
anisotropy likely require larger CPE basis sets. In the latest
work by Christensen and co-workers,117 the CPE approach was
coupled with the DFTB3/3OB method for the description of
noncovalent interactions. It will be shown in section 7 that it
was possible to improve the molecular polarizability and
intermolecular interactions simultaneously, with a modest
number of parameters. As expected, the impact of CPE is
most significant for interactions that involve polar and charged
molecules. Moreover, it was observed that the CPE model is
substantially more transferable among molecules of different
sizes and charge states compared to pure MM corrections to SE
methods. For example, the overstabilization of large water
clusters observed for empirical hydrogen-bonding corrections
does not occur with the DFTB3/CPE model.
Notably, for the CPE model to be sufficiently flexible for

molecules of different charge states, it was found crucial to
allow the exponent of the CPE basis functions (ζi) to vary as a
function of the atomic partial charge (ΔqA). An analysis of the
charge-dependence of atomic polarizabilities led Giese and
York141 to propose an exponential dependence model

ζ = Δ∈ z B qexp( )i A A A A (41)

where zA (not nuclear charge) and BA are element-dependent
parameters.
A related approach is SCP-NDDO, in which the NDDO

energy is augmented by an additional, self-consistent polarizing
(SCP) contribution143,144

= + Δ−E E ESCP NDDO NDDO SCP (42)

where ΔESCP depends on a multipolar polarization density
matrix
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There are both additional polarization and dispersion
contributions; the polarization density matrix is solved self-
consistently together with the NDDO density matrix (Pλσ),
while the dispersion contribution is included in a post-SCF
fashion. SCP-NDDO has been mainly parametrized for
water,143,144 with PM3 serving as the reference method that
provided the starting parameters; an additional p-type function
is also included for hydrogen. The SCP-PM3 model was shown
to provide a much improved description for both water clusters
(with an RMSD of interaction energies of 0.19 kcal/mol
relative to the MP2/CBS estimates for n = 2−6 and 8) and bulk
water (see section 8.4), compared to PM3. It is interesting to
note that a similar SCP approach has been introduced to
improve DFT methods as well.145
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7. BENCHMARK CALCULATIONS
In this section, we review some of the recent advances in the
data sets for the benchmarking and validation of quantum
chemical methods for the prediction of noncovalent
interactions. Many of these sets were developed for calibrating
ab initio/DFT methods, although they have also recently been
used to benchmark SE methods. First, we detail the common
strategies for calculating accurate interaction energies briefly
and then we summarize a number of the most useful and
accurate data sets.
7.1. Standard Test Sets for Molecules

Often touted as the “gold standard” of computational
chemistry, the coupled cluster method with single, double,
and perturbative triple excitations, CCSD(T), in the complete
basis set limit (CBS) has become the go-to method for very
accurate calculations of interaction energies, and the only
notable shortcomings are essentially systems where multi-
reference and relativistic effects are pronounced.146,147 Here, we
detail briefly the CCSD(T)/CBS approach used to generate
some of the most recent and most accurate data sets currently
available. We refer the reader to the reviews in refs 148 and 149
for more information.
Noncovalent interactions are most frequently evaluated by

calculating the dissociation energy between two or more
individual molecules in a cluster. For example, the dissociation
energy of the dimer complex AB consisting of the molecules A
and B can be calculated as

Δ = − +E E E E( )AB A Bd (44)

where EAB, EA, and EB are the calculated energies of the
complex and the two monomers, respectively. The same
formula can be generalized to molecular clusters of three or
more molecules.150

Accurate estimates of these energies can be done by using
extrapolation techniques: these approaches exploit the fact that
the remaining correlation energy beyond MP2 converges quite
rapidly.151 Thus, the CCSD(T)/CBS energy can be approxi-
mated as the sum of the MP2/CBS energy and a small
CCSD(T) correction

≈ + Δ −E E ECCSD(T)
CBS

MP2
CBS

CCSD(T)
small basis

(45)

Δ = −− − −E E ECCSD(T)
small basis

CCSD(T)
small basis

MP2
small basis

(46)

where EMP2
CBS is the MP2 energy extrapolated to the CBS limit,

and ECCSD(T)
small−basis and EMP2

small−basis are the CCSD(T) and MP2
energies evaluated with a smaller basis set. Extrapolation
schemes such as that by Halkier and co-workers can be used to
extrapolate the MP2 energy to the CBS limit.152 Řezać ̌ and co-
workers recommended using at least aug-cc-pVDZ as the small
basis set and preferably aug-cc-pVTZ and aug-cc-pVQZ to
extrapolate the MP2 energy to the CBS limit, and the Boys−
Bernardi counterpoise correction153 should be used to remove
any BSSE.154 For dimer interaction energies calculated using eq
45, the error is estimated to be around 1%, and such energies
are thus appropriate as validation and benchmark data for SE
methods.146

We noted recently that a high accuracy of an SE method in
the gas-phase does not necessarily guarantee the transferability
of the method to the condensed phase.117 For this reason, it is
necessary to create data sets containing larger molecular
clusters, such as trimers, host−guest complexes, and water

clusters. In addition, a treatment such as eq 45 is trivial for
smaller molecules, but the steep scaling of the CCSD(T)
correction becomes prohibitive for large complexes quickly.
The use of localized molecular orbitals (LMOs) with cutoffs in
coupled cluster methods have led to methods with greatly
reduced scaling compared to canonical coupled clusters, and
these methods are very attractive for use in the study of large
molecular assemblies. For instance, the DLPNO-CCSD(T)
method155 has recently been applied to the L7 data set, which
contains complexes with up to 112 atoms.95 We expect these
LMO methods to constitute the basis of future data sets with
larger molecular assemblies.

7.1.1. Common Data Sets for Biological Nonbonded
Interaction. Several data sets have been created to model
noncovalent interactions in biomolecules. One of the first data
sets of CCSD(T)/CBS quality was the S22 set created by
Hobza and co-workers in 2006.60 S22 contains CCSD(T)/
CBS-extrapolated interaction energies for 22 dimer complexes
with a range of organic molecules that mimic biologically
relevant interactions, such as pairs of amino acid side chains
and of DNA bases. S22 has been updated with more accurate
interaction energies61,156 and extended into the S26 data set,157

and dissociation curves have also been published.158,159 The
S66 data set also by Hobza and co-workers contains 66 dimers
of organic molecules and is more balanced in terms of different
interaction motifs than S22.160 Dissociation curves and
interaction energies for angularly displaced conformations
have been published for S66.154 In a similar fashion, Hobza
and co-workers have created data sets for dimer complexes with
ionic bonds121 and the X40x10 set that contains halogenated
molecules.126 The A24 data set, which also includes relativistic
effects and coupled-cluster energies with up to quadruple
excitations, is an attempt to assess the errors introduced by the
CCSD(T) level of theory and nonrelativistic Hamiltonians.146

For the 24 dimers in the A24 set, the error in CCSD(T)
compared to CCSDT(Q) was found to be 0.95% of the total
interaction energy, while relativistic effects accounted for 0.14%
of the total interaction energy.
Two data sets by other groups, similar to the sets mentioned

already, are those by Mintz and Parks, consisting of small
organic dimers containing divalent sulfur,161 and the I9x8 set by
Christensen and co-workers, containing interactions between
ionic side chain analogues.117 Sherill and co-workers have
established the HSG database,162 which considers intermolec-
ular contacts for fragments taken from the crystal structure of
indinavir bound to the HIV-II protease. Also, the performance
of various correlated methods for describing noncovalent
interactions was examined carefully.163,164 Together with the
sets mentioned earlier, these extend the space of benchmark
data sets to cover virtually all interactions found in organic
biomolecules.

7.1.2. Water Clusters. As water has been notoriously
difficult to model due to the complex electronic structure of its
hydrogen bonding and the non-negligible role of cooperative
effects, several groups have created collections of water clusters
of various sizes. These are some of the most recent ones: the
set of water clusters by Truhlar and co-workers,118 with 15
water clusters ranging from 6 to 17 molecules; the WATER27
set by Goddard and co-workers,165 with 27 clusters of up to 20
water molecules, of which 6 clusters contain a hydronium ion
and 7 contain a hydroxide ion; and the water clusters by Shields
and co-workers, consisting of 38 clusters with 2−10 water
molecules.166
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7.1.3. Supersets. Some of the work by Hobza and co-
workers is collected in the Benchmark Energy and Geometry
Database (BEGDB) for molecular clusters and complex
molecular systems.127 Similar collections or “supersets” of
nonbonded interactions have been put together by other
groups. For instance, Friesner and co-workers collected a total
of 2027 CCSD(T)-quality interaction energies from the
literature into a set used to parametrize their B3LYP-MM
model.167 The GMTKN30 superset by Goerigk and Grimme
collects 30 data sets of general main-group thermochemistry,
kinetics, and noncovalent interactions and contains S22 and
WATER27 along with a number of additional data sets that
probe noncovalent interactions.168 Zhao and Truhlar assembled
a database for general ground-state properties, such as
thermochemistry, barrier heights, noncovalent interaction
energies, and spectroscopy.169 A subset of this database,
named NCIE53, contains the interaction energies of 53 dimers
that model noncovalent interactions in biomolecules.
7.1.4. Large Complexes. The data sets mentioned so far

consist of small model dimers, and it is therefore difficult to
assess the role of many-body interactions and cooperative
effects in the noncovalent bonding. Řezać ̌ and co-workers have
created the 3B-69 set consisting of 69 trimer structures for
which the three-body energy, defined as the difference between
the total energy of the trimer and the sum of the individual

monomer energies and the two-body energies, is extrapolated
to the CCSD(T)/CBS limit.
The L7 data set by Hobza and co-workers seeks to model

systems where large dispersion forces are dominant, such as
circumcoronenes, alkanes, and stacked base pairs, and contains
complexes with up to 112 atoms.170 Extrapolated DLPNO-
CCSD(T)/CBS interaction energies have recently been
calculated by Grimme and co-workers.95 Other data sets for
large, supramolecular assemblies have been created: The S12L
set by Grimme and co-workers and its recent extension, S30L,
are models of large host molecules that bind a smaller ligand
molecule.116,171 For these data sets, the experimental binding
free energies have been back-corrected to theoretical binding
energies and have been used to benchmark the applicability of a
number of DFT functionals and SE methods for such
calculations.

7.1.5. Molecular Crystals. While the data sets already
mentioned in this section are based on a gas-phase type of
interaction, molecular crystals can be used to simulate
condensed-phase calculations. Since the “gold standard”
CCSD(T) treatments as suggested in eq 45 are currently not
affordable for obtaining electronic lattice energies routinely,
experimental sublimation enthalpies are back-calculated by
careful subtraction of thermal and zero-points effects evaluated
at the dispersion-corrected DFT level.

Table 1. Calculated Interaction Energies Are Compared to “Gold Standard” CCSD(T) Binding Energies for 10 Methods Using
8 Different Data Sets, Which All Probe Different Types of Interactionsa

S22 S66 S66 (disp)c L7

method RMSD MSD RMSD MSD RMSD MSD RMSD MSD

DFTB3b 4.1 3.4 3.0 2.7 3.4 3.1 15.9 14.1
DFTB3-D3b 1.5 0.7 1.1 0.4 0.6 −0.4 2.3 −1.4
DFTB3-D3H4b 1.2 0.5 0.9 0.3 0.5 0.3 2.6 0.8
DFTB3/CPE(q)-D3b 1.1 0.5 0.6 0.0 0.7 −0.3 2.1 −0.6
PM6b 4.2 3.4 3.0 2.7 2.8 2.6 12.8 10.9
PM6-D3H4b 0.8 0.4 0.6 0.2 0.4 0.1 3.4 −1.1
OM2 3.7 3.1 2.9 2.6 3.2 3.1 16.1 14.0
OM2-D3 1.4 0.9 1.1 0.6 0.4 0.1 2.6 0.6
B3LYP/6-31G(d) 3.7 1.6 2.7 1.3 4.0 3.8 18.7 15.6
B3LYP-D3/6-31G(d) 2.9 −2.4 2.3 −2.1 1.6 −1.5 7.9 −7.5
B3LYP/def2-QZVP 5.0 3.7 3.8 3.2 5.4 5.2 22.7 20.1
B3LYP-D3/def2-QZVP 0.6 −0.3 0.4 −0.3 0.2 −0.2 3.2 −3.0

S66 (pol)d C15e I9 large water

method RMSD MSD RMSD MSD RMSD MSD RMSD MSD

DFTB3b 2.9 2.6 6.0 4.8 5.6 4.7 14.2 11.1
DFTB3-D3b 1.8 1.3 5.0 3.6 3.9 2.6 2.0 −1.4
DFTB3-D3H4b 1.0 −0.2 4.1 2.2 4.7 2.7 23.9 −20.3
DFTB3/CPE(q)-D3b 0.6 0.1 1.5 0.6 1.7 0.5 3.0 −1.9
PM6b 3.8 3.2 4.6 4.3 9.1 8.5 34.8 27.9
PM6-D3H4b 0.6 0.0 1.5 0.8 6.0 5.6 11.0 8.9
OM2 3.0 2.9 3.2 2.9 (5.7)f (6.1)f 26.0 20.4
OM2-D3 1.9 1.7 2.3 1.9 (4.1)f (4.6)f 14.0 10.9
B3LYP/6-31G(d) 1.4 −1.2 3.5 −3.2 10.0 −8.7 53.0 −44.8
B3LYP-D3/6-31G(d) 3.3 −3.2 5.2 −5.0 12.8 −12.0 72.5 −60.4
B3LYP/def2-QZVP 1.6 1.4 1.0 0.9 1.3 1.2 10.5 6.7
B3LYP-D3/def2-QZVP 0.7 −0.6 1.0 −0.9 2.3 −2.1 9.7 −8.9

aThe root-mean-squared deviation (RMSD) and the mean signed deviation (MSD) between the calculated and reference energies are given in units
of kcal/mol. A positive MSD value implies a tendency to the underbinding of complexes. bDFTB and PM6 values from ref 117. cOnly the
“dispersion” subset of S66 is considered here. dOnly the “polar” subset of S66 is considered here. e“C15” refers to the set of 15 charged hydrogen-
bonding complexes from ref 121. fDue to lack of OM2 parameters for sulfur, three complexes are left out of the OM2 and OM2-D3 statistics for the
I9 set.
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For instance, Ortero-de-la Roza and Johnson constructed the
C21 data set, which contains the geometries and sublimation
enthalpies for 21 molecular crystals.172 C21 has been expanded
by Reilly and Tkatchenko in the X23 data set.173 The chemical
diversity of C21 and X23 is much like that of the S66 and S22
sets and includes dispersion-dominated, hydrogen-bonded, and
mixed-type molecular crystals. Similarly, the ICE10 data set,
consisting of 10 ice polymorphs, has been created by Grimme
and co-workers.174 Despite the inaccuracies introduced by the
combined experimental and theoretical approach to calculate
interaction energies, X23 and ICE10 currently serve as rigorous
benchmarks for interaction energies in solids and the
condensed phase.175

7.2. Benchmark of Popular SE-QM Methods

In this section, we summarize the benchmarks of some of the
most recent SE methods mentioned above, by comparison to
high-level CCSD(T) calculations carried out on the data sets in
the previous section. Additionally, we compare the accuracy of
the ever-popular DFT functional B3LYP176,177 with the
essentially converged basis set def2-QZVP,178 as well as with
the more modestly sized 6-31G(d)179 basis set. More
computational details are presented in section 7.3.
A number of data sets are discussed in section 7.1, which all

probe different types of noncovalent interactions and thus
provide insight into the specific shortcomings and strengths of
the methods we are benchmarking. We focus on the following
data sets.
General performance: For a general overview of each method,

the S22 and S66 sets60,160 are used, which probe a variety of
dispersion and polar interactions, such as hydrogen bonding.
Nonpolar interactions: The L7 set170 and the dispersion

dominated subset of S66 probe the accuracy of describing
dispersion-type interactions.
Polar interactions: The polar-interaction subset of S66, the

data set of 15 charged hydrogen-bonded complexes by Hobza
and co-workers121 (referred to as “C15” hereafter), and the I9
set,117 which models ionic side-chain interactions, are used to
probe the accuracy of strong polar interactions. Furthermore, a
set of water clusters by Truhlar and co-wokers118 (referred to as
“large water” hereafter) are used to elucidate cooperative
bonding effects. These systems pose a challenge to the balanced
description of polar and nonpolar intermolecular forces, as well
as cooperative binding effects.
Halogen bonds: The X40 set180 is used to assess the accuracy

of binding to halogenated molecules.
The accuracy of interaction energy estimates for the data sets

mentioned here is presented in Table 1, while the results for
the halogen bonds in X40 are presented separately in Table 2.
A graphical overview of the data sets considered is shown in
Figure 2, and an overview of the accuracy of selected methods
is shown in Figure 3.
7.2.1. General Performance. For the S22 and S66 data

sets, the error in the binding energy for the uncorrected SE
methods DFTB3, PM6, and OM2 are comparable, with
RMSDs of 3.7−4.1 kcal/mol for S22 and of 2.9−3.0 kcal/
mol for S66, with respect to the CCSD(T)/CBS reference. In
all cases, the mean signed deviations imply a systematic
underbinding of around 3 kcal/mol for the uncorrected
methods. The addition of the two-body correction D3 to
DFTB3 and OM2 decreases the RMSD for the S22 data set to
1.5 and 1.4 kcal/mol for the two methods, respectively, while
the RMSD for S66 is 1.1 kcal/mol with both methods.

For DFTB3 and PM6, we show the effect of adding the
combined dispersion and hydrogen-bond correction, D3H4.
For DFTB3-D3H4, this correction yields a decrease of RMSD
by 0.2−0.3 kcal/mol, compared to solely using the D3
correction. Especially in the case of PM6-D3H4, the RMSD
values of 0.8 and 0.6 kcal/mol for the S22 and S66 sets,
respectively, are the lowest of any of the corrected SE methods
presented. The DFTB3/CPE(q)-D3 method is close to PM6-
D3H4 with an RMSD of 1.1 and 0.6 kcal/mol for S22 and S66,
respectively.
For reference, we also calculate the interaction energies with

B3LYP and dispersion-corrected B3LYP-D3 using the large,
essentially converged def2-QZVP basis set. With no dispersion
correction, the errors are quite large, at 5.0 and 3.8 kcal/mol for
the S22 and S66 sets, respectively. A dramatic increase in
accuracy is observed with the dispersion correction: RMSD is
reduced to 0.6 and 0.4 kcal/mol, respectively.
Thus, it is quite apparent that a large portion of the errors

observed here can be attributed to the lack of dispersion, and
the two-body D3 dispersion correction is indeed very effective
at correcting for dispersion, despite its mechanical post-SCF
character.

7.2.2. Nonpolar Interactions. To probe nonpolar
interactions more closely, we look at the dispersion-dominated
subset of S66 (S66 disp) and the L7 set. The complexes in
consideration here lack any substantial binding between polar
molecular groups and are thus dominated by dispersion forces
completely, and any error in predicted interaction energy can
be attributed to the intrinsic lack of dispersion in the method
used.
In all cases, uncorrected methods exhibit quite large errors in

the range of 2.8−5.4 kcal/mol for S66 disp. In contrast, all
methods that are augmented with the D3 dispersion correction
display very good agreement with the CCSD(T)/CBS
references, with RMSD values in the range of 0.4−0.7 kcal/
mol for S66 disp. B3LYP-D3, in comparison, is slightly closer to
the reference, with RMSD of only 0.2 kcal/mol for S66 disp.
For the large complexes in the L7 set, the errors are found to be
larger compared to those for S66, in the range of 12.8−22.7
kcal/mol. Remarkably, RMSD is reduced to as little as 2.1−3.2
kcal/mol for all methods when the D3 dispersion correction is
applied. Apparently, the error is quite small and only a few
tenths of a kcal/mol larger than that of dispersion-corrected

Table 2. Performance of Tested SE Methods as Well as
Representative DFT Methods for the Halogen-Bonded
Complexes in the X40 Set (complexes 13−26)a

method RMSD MSD

PM6-D3H4 2.1 −0.9
PM6-D3H4X 0.5 +0.3
DFTB3/3OB/D3 3.7 −3.3
DFTB3/3OB/D3Xb 0.6 +0.1

B3LYP/def2-SVP 0.6 +0.4
B3LYP/def2-SVP/D3 1.9 −1.8
B3LYP/def2-QZVP 2.1 +2.2
B3LYP/def2-QZVP/D3 0.3 −0.1

aRoot-mean-squared deviation (RMSD) and mean signed deviation
(MSD) are in kcal/mol. bCalculations performed for complexes 13−
24 only because the X corrections were not parametrized for sulfur−X
contacts, which are involved in complexes 25 and 26.
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DFT with a large basis set, across all dispersion-corrected SE
methods.
7.2.3. Polar Interactions. Some stronger noncovalent

interactions often encountered in biomolecules are hydrogen
bonds, charged hydrogen bonds, and ionic bonds. To assess
these three categories of polar binding, we look at the polar
subset of the S66 data set (S66 pol), the C15 set, and the I9 set.
Typical interaction energies for complexes in these data sets are
10, 20, and 120 kcal/mol, respectively. We note that dispersion
only makes a small contribution in these data sets; for example,
the typical magnitude of the D3 dispersion contribution is only
1−2 kcal/mol.
For S66 pol, the methods DFTB3/3OB, PM6, and OM2

with no corrections yield comparable RMSD values of ca. 3
kcal/mol. In the case of the C15 set featuring charged motifs,
the RMSD values are 6.0, 4.6, and 3.2 kcal/mol for the three
methods, respectively. In the case of DFTB3, the large RMSD
is dominated by complexes with hydrogen bonds to the
nitrogen lone pair of a methylamine molecule, a previously
reported shortcoming of DFTB3/3OB.117 In the cases of PM6

and OM2, there are no similar large outliers, and OM2-D3
exhibits a relatively small error for C15, corresponding roughly
to double the RMSD value with B3LYP-D3. The D3H4
correction is capable of reducing the PM6-D3H4 RMSD to 1.5
kcal/mol, only 0.5 kcal/mol higher than the RMSD of B3LYP-
D3. D3H4 does not solve the nitrogen-related problem of
DFTB3 completely, however, and the RMSD for DFTB3-
D3H4 is 4.1 kcal/mol. The DFTB3/CPE(q)-D3 method, on
the other hand, was parametrized with this problem in mind
and seems to work well; the RMSD values for the S66 pol
subset and the C15 set are among the lowest observed.
The ionic bonds in the I9 set are substantially stronger than

those in C15. For DFTB3 and OM2, the RMSD interaction
energies are comparable, at 5.6 and 5.7 kcal/mol, respectively,
while these values for DFTB3-D3 and OM2-D3 are 3.9 and 4.1
kcal/mol, respectively. Note that OM2 does not have
parameters for sulfur, so three complexes are left out of the
statistics for I9 and OM2. For PM6, however, the RMSD for I9
is 9.1 kcal/mol, and all of the complexes are predicted to bind
rather weakly, especially those complexes involving methyl
acetate. Adding the D3H4 correction to PM6 gives a moderate
decrease in RMSD to 6.0 kcal/mol. However, adding the D3H4
correction to DFTB3 actually increases the RMSD by 0.8 kcal/
mol compared to DFTB3-D3. DFTB3/CPE-D3, by contrast,
gives a small RMSD of 1.7 kcal/mol, almost comparable to
B3LYP with a large basis set.
Another important view of polar interactions in larger

systems is gained from looking at systems that are condensed-
phase-like, such as large water clusters, which feature substantial
polar interactions, non-negligible dispersion forces, and
strongly cooperative hydrogen bonding.
Here we focus on the set of large water clusters by Truhlar

and co-workers.118 It is apparent that no method without
dispersion correction can predict the binding energy of the
large water clusters properly. Indeed, the RMSD values for
DFTB3, PM6, and OM2 are quite large, and underbinding in
the range of 14−35 kcal/mol is observed. Adding the D3
dispersion correction brings the RMSD for DFTB3-D3 and
OM2-D3 down to 2.0 and 14.0 kcal/mol, respectively.
While OM2 and DFTB3 have comparable accuracy on small

dimers, such as those in the S22 and S66 data sets, it is apparent
that this does not necessarily guarantee good performance in
the condensed phase. The situation is illustrated for DFTB3-
D3H4 even better: while the RMSD for DFTB3-D3 is 2.0 kcal/
mol, this actually increases to 23.9 kcal/mol for DFTB3-D3H4
due to strong overbinding. Interestingly, PM6-D3H4 under-
estimates the binding with an RMSD of 11.0 kcal/mol. We
speculate that this is primarily due to the lack of cooperativity

Figure 2. Representative systems from the data sets discussed in Tables 1 and 2. The data sets are discussed in detail in section 7.1.

Figure 3. Root-mean-squared deviation (RMSD) of the binding
energy for seven different data sets is shown for five selected
semiempirical methods involving the empirical corrections D3 and
D3H4. Results obtained with B3LYP/def2-QZVP/D3 are shown for
reference.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00584
Chem. Rev. 2016, 116, 5301−5337

5317



in the H4 correction, which is entirely mechanical in nature and
parametrized on small, gas-phase model systems.
In contrast, the DFTB3/CPE(q)-D3 method scales well, by

design, with an RMSD of 3.0 kcal/mol for large water clusters.
In comparison, B3LYP with no correction predicts under-
binding with an RMSD of 10.5 kcal/mol. Adding a dispersion
correction for B3LYP-D3 leaves the RMSD practically
unchanged at 9.7 kcal/mol, though, but the complexes are
overbound instead.
For comparison, we also computed the binding energies with

the B3LYP functional using the modestly sized 6-31G(d) basis
set. In all the data sets presented so far, the binding energy is
overestimated strongly due to a substantial BSSE. Adding the
D3 dispersion correction only adds further to the systematic
overbinding, and in general, we actually find that the errors
(RMSD and MSD) of interaction energy are smaller for
dispersion-corrected SE methods than for B3LYP/6-31G(d).
However, adding the D3 dispersion correction to B3LYP with
the def2-QZVP basis set leads to errors that are roughly half
that of the dispersion-corrected SE methods. These observa-
tions are in line with our recent results obtained with the PBE
functional.117 For the large water clusters, B3LYP-D3 has an
RMSD of interaction energy of ca. 10 kcal/mol, but we note
that other dispersion-corrected functionals, such as RPBE-D3,
revPBE-D3, or BLYP-D3, might provide a better description of
strong hydrogen bonding.
In short, the discussion of water cluster results illustrates the

need for considering not only gas-phase dimers but also
systems representative of the condensed phase, for which SE
methods are often applied. Generally, models parametrized for
gas-phase model systems cannot be assumed to be transferable
to molecular systems in the condensed phase.
7.2.4. Halogen Bonds. As described in section 5.3, due to

their electronegativity, halogen atoms attract the electron
density in molecules, inducing a negative electric field in the
surroundings. However, a halogen atom, usually iodine or
bromine in an organic molecule, may feature a somewhat
anisotropic electron density distribution, and the region of
positive electric potential on its surface is then called a σ-
hole.181 The σ-hole may interact attractively with an electro-
negative atom or group (see Figure 4), and this is the nature of
halogen bonding (X-bonding).182,183

Apart from the electrostatic interaction, dispersion also
makes important contributions. This is due to the large

polarizabilities of the atoms in contact, the halogen and the
negatively charged partner. Heavier halogens exhibit stronger
X-bonds, and X-bonding in general is somewhat tunable.184 A
dedicated review of X-bonding may be found in another
contribution to this issue.185

The σ-hole can only be described with QM as long as a basis
set larger than minimal is used. Since SE methods rely on the
application of (sub)minimal basis sets, they fail to render the σ-
hole on the halogen atom, and thus they cannot capture X-
bonding. Specifically with PM6, noncovalent interactions are
too attractive because of underestimated repulsion. The
problem was rather intriguing because the PM6 interaction
energies in minimum-energy structures were in rather good
agreement with ab initio references; as soon as the distance
dependence of interaction energies was analyzed, however, the
qualitatively wrong description of the interaction was
unraveled.126 As summarized in section 5.3, an additional
repulsive contribution was proposed in the exponential form a
exp[−bR]124 and was later reparametrized.186 The situation
with DFTB is similar to that with the NDDO-based methods
like PM6: halogen bonds are overbound strongly in DFTB due
to the missing residual Pauli repulsion. In analogy to PM6, the
recent parametrization of DFTB3/3OB for halogens130 was
complemented with an additional repulsive contribution in the
form of a exp[−b(R − dij)

c] for each pair of atoms i, j
constituting a halogen bond. (We note that ways to describe X-
bonding in MM force fields were proposed also. An elegant
possibility is to introduce a virtual atom close to the halogen
atom, which makes it possible to capture the anisotropy of the
electric field correctly, provided the parametrization is properly
done.187−189)
The performance of corrected PM6 and DFTB3 is assessed

and compared to DFT in Table 2. As for the full-DFT
approaches, the B3LYP calculations performed with a
quadruple-ζ basis set and a dispersion correction agree perfectly
with the CCSD(T)/CBS reference. The remaining B3LYP
results illustrate the problems of DFT calculations in general:
the overbinding due to BSSE whenever a smaller basis set is
used (e.g., double-ζ) and the underbinding due to the missing
dispersion interaction whenever the method is uncorrected for
this failure. The small deviations obtained with dispersion-
uncorrected B3LYP/def2-SVP are a consequence of a
fortuitous cancellation of these errors. Coming to the tested
SE methods, both PM6-D3H4 and DFTB3/3OB/D3 overbind
the X-bonded complexes if they are uncorrected for X-bonding.
With all relevant corrections applied, i.e., those for dispersion,
H-bonding, and X-bonding, the accuracy of PM6-D3H4X is
very close to that of DFT-D, a much more computationally
costly approach.186 Much the same, the description of X-
bonding with DFTB3 is improved largely upon application of
an X-bonding correction DFTB3/3OB/D3X. The interaction
energies of X-bonded complexes in the X40 set are obtained
with an RMSD of less than 1.0 kcal/mol with both PM6-
D3H4X and DFTB3/3OB/D3X. It may be generalized that
these corrected SE models provide results of a similar or better
quality than DFT methods with double-ζ basis sets. This is true
even for chemically difficult systems, such as the very strong
halogen bonds of fluorinated compounds.
Regarding the angular dependence of X-bonding, see also

another review in this issue.185 The X-bonding is an interaction
with a clear directionality: the σ-hole always points in the
direction of a lone pair of the interaction partner, as seen in the
case of the F3C−Br···OCH2 complex in Figure 4, which

Figure 4. Halogen bond in the complex F3C−Br···OCH2. The
electrostatic potential on the surface of the molecules is color-coded
(red, negative; blue, positive). The light blue cap on the bromine atom
is the σ-hole. Note the nonlinear orientation of the molecules, such
that the σ-hole can point directly at one of the lone pairs of the
formaldehyde oxygen atom.
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adopts a nonlinear Br−O−C geometry in the minimum-energy
structure. The energy landscape along the angular degree of
freedom is very flat, however. The performance of the
empirically corrected methods for this effect does not seem
to be investigated yet, and additionally, the benchmark sets
available to-date concentrate on the distance dependence of the
interaction energy rather than on any angular dependence.
7.3. Computational Methodology

For calculations not involving halogen atoms, B3LYP and PM6
calculations were carried out in Gaussian 09,190 and OM2
calculations were carried out in the MNDO99 program.46 For
B3LYP-D3 and OM2-D3, the dispersion corrections were
calculated using the Becke−Johnson damping function (D3-
BJ). For the OM2-D3 calculations, the two-body D3 dispersion
correction was calculated in the DFTD3 program supplied by
Grimme and co-workers109,110 with the parameters from ref 95,
while Gaussian 09 was used to calculate B3LYP-D3-corrected
energies using the default parameters implemented in Gaussian
09. B3LYP calculations were carried out using the def2-QZVP
basis set, for which the D3 parameters have been parametrized,
and with the smaller 6-31G(d). The counterpoise correction
was not used in any calculations. Although no new DFTB3
calculations are carried out on complexes not involving halogen
atoms, it is worth mentioning that all presented DFTB3
calculations (including those with the various corrections) use
the 3OB parameter set,75 as well as the hydrogen γXH-
correction.
The calculations of X-bonded complexes were performed

with TurboMole 7191,192 (B3LYP), Mopac 2012193 (PM6), and
DFTB+ 194 (DFTB3). As for the DFT calculations, the D3
correction was used in conjuction with D3-BJ and the
functional-specific parameters implemented in the TurboMole
package. The DFTB3 calculations involved the 3OB parameter
set as well as the D3-BJ and X corrections, as described in ref
130. The same methods and programs were used for the
calculation of the potential energy surface (PES) of alanine
dipeptide and alanine tetrapeptide in sections 8.2.1 and 8.2.2,
respectively. TurboMole was used for calculations on the small
peptides with aromatic side chains in section 8.2.3 as well as for
RI-MP2 calculations in section 8.2.2. The metadynamics QM/
MM simulations in section 8.2.4 were performed with a recent
DFTB3 implementation195 in Gromacs 5,196 which involves the
D3-BJ correction.

8. APPLICATIONS

8.1. Nucleic Acids

8.1.1. Nucleobases. Historically, the extension of DFTB2
accounting for the dispersion interaction was first applied to
describe both H-bonded and stacked DNA base pairs;82 these
kinds of contacts between DNA bases are depicted in Figure 5.
H-bonded nucleobase pairs were shown to be described well
with most QM methods;197 SE methods capture H-bonding
qualitatively, while underestimating the interaction energy as
discussed earlier in this review. Upon application of the
dispersion correction, a balanced description of H-bonding and
stacking interaction was achieved: the RMSD for H-bonded
base pairs was 1.1 kcal/mol over the considered set of 26
complexes, and all of the stacked base pairs were overbound
slightly by 1.5 kcal/mol systematically. The dependence of
interaction energies on the twist angle was reproduced well for
the stacked pairs. A recent systematic study suggested that the
interaction energies of both H-bonded and stacked nucleobase

pairs are underestimated by a larger margin of ca. 5 kcal/mol,
however.198 This is likely due to the use of an improved ab
initio reference compared to the initial work by Elstner and co-
workers in 2001. The performance of SE methods for these
very strongly H-bonded complexes thus needs to be
investigated further, considering the newer corrections
discussed in previous sections.
The corrected DFTB2-D method was further used to

characterize the interactions in the complex of a molecule
intercalating into a double-stranded DNA oligomer.199 The
obtained interaction energies agreed with the ab initio
reference, indicating that the (dominant) dispersion contribu-
tion was accounted for properly. Also, DFTB2-D was used to
prune many-body contributions to the complex interaction
between several base pairs and the intercalator molecule. They
were found to be negligible, however, providing justification for
the application of a pairwise additive method like an MM force
field. Still, a modified force field was required in order to
compensate for the missing description of a charge-transfer
interaction, which was large in the case of cationic intercalators.

8.1.2. Carbohydrates. Apart from the nucleobases and the
phosphate groups, the ribose or deoxyribose moiety is the
remaining component of nucleic acids. Application of SE
methods to carbohydrates has a long tradition, as exemplified
by a study of the stereochemistry of glucopyranosides in
solution,200 which used the method perturbation configuration
interaction using localized orbitals (PCILO)201 with an implicit
solvent model. The current computational state of the art to
describe the isomerism of monosaccharides was reviewed,202

and it was stated that the failure of commonly used SE
methodsMNDO, AM1, and PM3to capture dispersion
interaction makes them unable to reproduce relative energies of
carbohydrate conformations; the different sugar ring con-
formations for an example of guanine deoxyribonucleoside are
shown in Figure 6. Much like in the case of peptide
conformation (see below), modern MM force fields, which
incorporate the dispersion explicitly, can often provide a better
description of noncovalent interactions in carbohydrates,
outperforming the more computationally costly SE methods.

Figure 5. A DNA base pair step in the B-DNA configuration, viewed
from the major groove. Major noncovalent interactions highlighted are
hydrogen bonds (gray shaded lines) and dispersion contacts (orange
arrows).

Figure 6. Relevant conformations of the sugar ring of guanine
deoxyribonucleoside: the two energy minima (Min1 and Min2) as well
as the lower-energy transition state (TS).
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Although MM force fields may come into trouble as well, in
particular for anomeric effects,203 it was concluded that they
were still the method of choice, especially for MD studies, in
particular MM3, GROMOS, and the dedicated GLYCAM06.204

A similar conclusion was arrived at in a study of the three-
dimensional structure of a glycosaminoglycan,205 which applied
an MM force field as well as two QM/MM setups involving SE
methods. The calculated properties were compared with
experimental references (vicinal couplings, nuclear Overhauser
enhancements and glycosidic linkage geometries). Among the
QM/MM approaches, PM3-CARB1 (carbohydrate-specific
parametrization of PM3)206 complemented with the TIP3P
MM water model and DFTB2-D/TIP3P showed the best
performance for a few of the monitored structural aspects.
However, the fully classical MM approach GLYCAM06/TIP3P
provided the best overall result, with the most accurate
description of monosaccharide puckering, three-dimensional
structure, and solvent interactions.
Barnett and Naidoo considered the quality of reproduction

of ring pucker to assess the accuracy of several SE methods
(with QM/MM approaches) for the description of carbohy-
drate structure.207 Among AM1, PM3, PM3CARB-1, and
DFTB2, DFTB2 provided a free energy surface that was
different from the NDDO methods (AM1, PM3, and
PM3CARB-1), while it was similar to the surface yielded by
ab initio methods. In their further work, a new method was
proposed to cut polar glycosidic bonds in QM/MM
simulations, such that complex glycans could be simulated
with sufficient accuracy with this simple link atom hybrid
saccharide (SLASH) method.208 Also developed was a new SE
reparametrization, AM1/d-CB1, which provides means to
simulate glycosylation reactions more accurately.209

York and co-workers revisited the pertaining problem of SE
methods, the unsatisfactory description of sugar pucker,
concentrating on sugars that occur in nucleic acids.210 As a
benchmark, the gas-phase two-dimensional PES along the
puckering coordinates was generated with an ab initio method.
Then, the considered NDDO and DFTB2 were corrected by
means of an empirical correction in the form of B-splines.
Much like the other recent empirical corrections for SE
methods, this was fitted to the difference between the ab initio
reference and the particular uncorrected method. The corrected
SE methods reproduce the reference energy profiles, including
the transition state observed in the ab initio data, and are
expected to perform well in QM/MM simulations of nucleic
acids.
8.1.3. Outlook. In short, for the treatment of nucleic acid

systems, dispersion-corrected SE methods such as DFTB2-D
already provide rather reliable descriptions for many
applications. For carbohydrates, however, current SE methods
remain qualitative in nature and require empirical corrections to
improve the description of the underlying PES. At a more
fundamental level, this suggests that a better description of
Pauli repulsion is crucial. Other issues worth further tests for a
reliable description of nucleic acids in general include the
description of the highly charged phosphate group and its
interaction with water and ions.

8.2. Peptides and Proteins

Noncovalent interactions, such as hydrogen bonding and
dispersion, are important to the conformational properties of
peptides and proteins. Therefore, a balanced treatment of

bonded (torsional) and nonbonded interactions is needed for a
reliable description of these systems.

8.2.1. Alanine Dipeptide in Vacuo. The so-called alanine
dipeptide or dialanine (CH3CO−NHCH(CH3)CO−NHCH3,
referred to as “AD” hereafter) is one of the smallest molecules
featuring a peptide-like pair of (φ, ψ) angles, and as such, it has
been the subject of computational chemistry studies for 25
years.211−213 It was suggested to involve the main principles of
protein backbone conformation214,215 while representing a
merely two-dimensional problem, and thus, AD is an ideal
molecule to show and analyze the performance of protein
simulation methods.
In the gas phase, the PES of AD exhibits six stationary points,

on the levels of B3LYP/6-31G* and MP2/6-31G*.216 The
three lowest-energy conformers possess intramolecular H-
bonds (see Figure 7, top). The conformers C7

ax and C7
eq contain

a seven-membered ring created by the H-bond, and they differ
in the orientation of the alanine side chain (methyl group),
which is perpendicular to the ring in C7

ax and it is in the plane of
the ring in C7

eq. In C5
ext, a weak H-bond is formed between the

amino hydrogen and the carboxyl oxygen of the central alanine,
forming a five-membered ring. These conformations are visible
clearly on the PES of AD (Figure 8) as well as on the free
energy surface obtained with DFTB3/3OB (section 8.2.4). The
higher-energy conformers contain no H-bonds. These are the
β-turn-like conformation, β2, as well as the right- and left-
handed α-helical conformations, α and αL.
In a study of SE performance to describe the AD molecule,22

these six (meta)stable structures were considered as starting
structures for energy minimizations with the DFTB2, AM1, and
PM3 methods. Both AM1 and PM3 produced distorted
structures of C5

ext, where the intramolecular H-bond dis-
appeared. The energy of α-helical structures is too low
compared to the H-bonded ones. This was explained by the
underestimated strength of H-bonds in C5

ext and C7, leading to
too weak stabilization of C5

ext and C7 compared to α. β2 was not
a stationary point on the DFTB2, AM1, and PM3 PESs. It was
shown that AM1 and HF calculations with a double-ζ basis set
do not predict turn structures to be stable conformers.217 Also,
AM1 and PM3 did not reproduce the energy ranking and
structures of secondary structural motifs.218,219 On the other

Figure 7. Considered gas-phase structures of alanine dipeptide. The
relative conformational energies were obtained with dispersion-
corrected PM6 and DFTB3, as well as with RI-MP2 for reference.
Prior to that, the geometries were optimized on the DFT level BLYP/
def2-TZVP/D3. (*) The structure α is not a stationary point on the
BLYP/D3 PES; therefore, the geometry was obtained with restrained
minimization to keep the dihedrals φ and ψ fixed.
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hand, DFTB2 seemed to describe the structure of AD reliably
and the energetics semiquantitatively. Secondary structural
motives, like β-sheets, helices, and turn structures, were
predicted as stable conformers, in agreement with B3LYP
results.
To assess the performance of up-to-date corrected SE

methods, the φ−ψ space of AD was scanned with both PM6-
D3H4 and DFTB3/3OB/D3; all of the degrees of freedom
except φ and ψ were subject to optimization on the DFT level
B3LYP/def2-TZVP. The resulting energy maps are shown in
Figure 8, together with the BLYP/def2-QZVP/D3 energies for
reference. The features of the DFT PES are reproduced by the
SE methods in general. C7

eq is the global minimum, and there is
a clear minimum at C7

ax; however, it is visibly deeper than in the
reference. The barrier between C7

eq and C7
ax is only slightly

lower with both SE methods. Interestingly, while DFTB3/
3OB/D3 reproduces the local minimum at C5

ext, PM3-D3H4
fails to do so. The resolution of this study (6° for both φ and
ψ) does not make it possible to locate any other (metastable)
minima, but still it illustrates well how the SE methods describe
the peptide bond: the main features are reproduced well, and
DFTB3/3OB/D3 provides even details like the C5

ext minimum.
8.2.2. Longer Peptides in Vacuo. Alanine oligopeptides

are a traditional benchmark or showcase for computational
methods. The energetics of these larger molecules may already
involve a competition among H-bonding, dispersion, and steric
strain. Looking for applications of SE models, we found the
study “Stability of α-helical structure of poly(L-alanine)”, dating
back to 1973,220 although the applied “semiempirical” energy
function was actually an MM force field. Up-to-date research,
on the other hand, keeps reporting constantly on peptides that
are inherently difficult to describe with computational
chemistry. As an example, Rizzo and co-workers have
investigated a heptapeptide (Ace-Phe-Ala5-Lys-H) for which
“experiment and theory struggle to agree”.221 This peptide
turned out to be also a “validation challenge” for DFT
methods.222 Since there are four confomers very close in
energy, high accuracy is needed to reproduce their ranking.
While this particular molecule is definitely an extreme case,
peptides represent this kind of challenge in general: there
always seem to be several conformations with rather similar
energies, and since different kinds of covalent and noncovalent

interactions play different roles in the individual conformations,
all of them need to be described quite accurately.
This led to conformational ensembles of simple peptides

being used to test the performance of various QM methods,
including SE methods. Friesner and co-workers compiled a set
of 10 conformations of alanine tetrapeptide in the gas phase,
complemented with a dimer of AD in a β-sheet arrangement.223

With the primary purpose of testing various force fields, this set
contains various structures that range from extended to
compact. Importantly, these involve different numbers of
intramolecular hydrogen bonds, arranged in sequences of
several C5

ext and C7
eq pseudocycles (i.e., “rings” composed of five

or seven atoms that are closed by a H-bond). This work
formulated how the number of intramolecular H-bonds drives
the structure of peptides in the gas phase: because of one more
hydrogen bond in the same molecule, a 310-helix would be
favored over an α-helix in the gas phase, generally. The number
of H-bonds is maximized in a periodic conformation built from
C7
eq pseudocycles, which features one additional H-bond in

comparison with the 310-helix.
Here, we use the set of alanine tetrapeptide structures to

illustrate the performance of the recently corrected SE
methods, PM6-D3H4 and DFTB3/3OB-D3. Three additional
conformers are considered: α- and 310-helical as well as a
sequence of three C7

eq pseudocycles (note that α does not
represent a stationary point on the PES). All of the structures
are reoptimized with the same method as used in the original
work (HF/6-31G**),223 and the energies are obtained on the
level RI-MP2/aug-cc-pVQZ; the use of the large basis set is
expected to minimize BSSE, which would be difficult to
eliminate for conformers involving intramolecular H-bonds
otherwise. The resulting relative energies are shown in Figure 9;
the RMSD of relative energies over this set of 13 conformers
are 2.9 and 1.4 kcal/mol for PM6-D3H4 and DFTB3/3OB-D3,
respectively.
For even longer peptides, the work by Elstner and co-

workers on oligopeptide conformations was reviewed earlier.224

A conformational study of peptides Ace-Alan-Nme (n = 1−20)
considered important secondary structural elements: α-helix,
310-helix, and C5

ext.218 Energy minimizations were performed
with DFTB2, AM1, and full DFT (B3LYP/6-31G*, for n ≤
11). DFTB2 energies and geometries agreed well with B3LYP
for n ≤ 11, making it possible to extrapolate for n = 11, 14, 17,

Figure 8. Potential energy surface of AD in the space of dihedral angles φ and ψ: (left) BLYP/def2-QZVP/D3 (reference), (center) PM6-D3H4,
(right) DFTB3/3OB/D3. Energies from single-point calculations performed with the respective methods on structures obtained from restrained
optimization on the B3LYP/def2-TZVP level.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00584
Chem. Rev. 2016, 116, 5301−5337

5321



and 20. α-Helical structures relaxed to 310 for shorter helices (n
< 8), while the α-helix remained stable in the center of longer
chains with the termini assuming a 310 conformation. As stated
above, the domination of 310-helix over α, in the gas phase, was
likely the effect of one more H-bond in the 310-helix. The
situation was expected to change when the peptide is immersed
in a polar solvent with competing H-bond donors and
acceptors; dispersion was also shown to be important in this
context, favoring the more compact α form over the 310-
helix.225

The following work focused on model peptides with up to
eight glycines or alanines, and DFTB2, AM1, and PM3 results
were compared to ab initio references.219 DFTB2 under-
estimated energy differences between conformers consistently,
while pilot calculations with an ab initio method corrected for
the BSSE hinted that the comparison may actually be more
favorable for DFTB2. The energy ranking of the conformers
was in accordance with the B3LYP results. Dipole moments
were only slightly underestimated relative to the B3LYP/6-
31G* values, meaning that the electrostatic interaction of the
peptide with other molecules could be described well. The
structures of the various conformers were reproduced reliably,
and all of the considered secondary structure elements
corresponded to stationary points on the DFTB2 PES (except
for one, high-energy structure). There were also failures, most
notably concerning the overestimated pyramidalization at the
nitrogen atom of glycine. It was commented that even various
ab initio methods disagreed with each other and that the PES
was extremely flat, such that a tiny deviation of energy led to a
sizable deviation of the pyramidalization angle.
Also considered in this study were the SE methods AM1 and

PM3, and their description of extended, helical, and turn
conformations was rather troublesome. Many of the important
secondary structure elements were predicted to be either
distorted or intrinsically unstable. This indicates that AM1 and
PM3 render a wrong topology of the PES at these conformers.
The turn structures were especially problematic, and the
extended structures were distorted. There were further
difficulties with 310- and α-helices: PM3 tended to unwind
helices by virtue of breaking the intramolecular H-bonds. AM1,
favoring bifurcated H-bonds, predicted helices that were
halfway in between the 310- and α-conformation. Thus, AM1
and PM3 were not recommended for peptide applications.

Dedicated to the SE methods was the study of secondary
structure elements of peptides by Thiel and co-workers.226 In
addition to the calculations with then established AM1 and
PM3, as well as ab initio reference methods, the methods OM1
and OM2 were employed. The set of molecules considered
included AD, triglycine and trialanine in β-turn structure, the
tetraalanine set by Friesner’s group,223 and oligoalanine series
up to Ace-(Ala)6-Nme. The calculated geometries and relative
stabilities of the conformers were improved by OM1/2 with
respect to AM1 and PM3 considerably, although there were still
certain deviations from ab initio data in some cases. DFTB2
was tested on this set of molecules by Thiel and co-workers as
well,33 and it performed better than AM1 and OM2 for relative
energies of conformers and backbone dihedral angles, while the
H-bond lengths deviated from the reference with all of the SE
methods by some margin; the numerical data are reprinted in
Table 3. (We are unaware of any similar study that has
performed the benchmark with the up-to-date, corrected SE
methods discussed in this review.)

8.2.3. Aromatic Side Chains. The stability of peptide
conformation is often determined by intramolecular non-
covalent interactions, mainly hydrogen bonds, when present,
and the dispersion energy, in peptides containing aromatic
amino acid residues. Here, the paradigmatic class of model
compounds are isolated (gas-phase) di- and tripeptides
containing an aromatic side chain (of Phe, Trp, or Tyr).
Noncovalent interactions between the aromatic side chain and
a peptide bond play a crucial role, and the description of
dispersive interactions is vital.
The groups of Hobza and de Vries combined their efforts to

investigate the PES of the Phe-Gly-Gly tripeptide in the gas
phase by means of QM and statistical thermodynamics
calculation and by IR/UV double-resonance spectroscopy.227

The PES featured more than 1000 minima; thus, an efficient
energy-screening strategy was required before high-level
correlated ab initio calculations could be performed. To this
account, the computations started with an MD/quenching
simulation using DFTB2-D, which yielded a set of correct
lowest-energy conformers, an achievement that was missed by
simulations based on MM force fields. The most stable
conformers involved H-bonds as well as electrostatic and
dispersion interactions between the phenyl ring and the
carboxy group or the Gly−Gly peptide bond. This illustrated
the need for a balanced description of the various kinds of
noncovalent interactions, a rather difficult task that can be
solved with an application of empirically corrected DFTB or
other SE methods.
A following study of Trp-Gly and Trp-Gly-Gly peptides

confirmed these findings.228 The obtained conformer structures
were assigned to the previously measured IR spectra. The
combination of DFTB2-D MD/quenching simulations with

Figure 9. Energies of the conformers of alanine tetrapeptide obtained
with the considered SE methods as well as on the ab initio level RI-
MP2/aug-cc-pVQZ. Conformers 1−10 are those considered by
Friesner and co-workers, while 11, 12, and 13 are the α- and 310-
helical conformations and the sequence of three C7

eq pseudocycles,
respectively. Following the work of Friesner and colleagues, the MP2
energy of conformer 3 was set to zero arbitrarily, and the PM6 and
DFTB3 energies were shifted to minimize the root-mean-squared
deviation from the MP2 data.

Table 3. Performance of Selected SE Methods for the
Energies and Structures of Peptides in the Set Considered by
Thiel and Co-Workers226 a

AM1 OM2 DFTB2/mio

relative energies (kcal/mol) 2.0 1.7 1.1
backbone H-bond lengths (Å) 0.22 0.34 0.26
backbone dihedral angles (deg) 17 12 9

aPresented are mean unsigned deviations from the respective
references; data are taken from ref 33.
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high-level correlated ab initio QM calculations proved to be a
valuable and efficient tool to sample the conformational space
of small peptides. Also, it was shown that the ranking of
conformers differed on the free energy surface from the ranking
on the PES, pointing out the importance of free energy analysis
(via, for example, thermal corrections from statistical
thermodynamics). Interestingly, the need of performing
thermal corrections was emphasized in a recent study of the
Tyr-Gly dipeptide.229 While the most stable conformer was a
folded and H-bonded one at 0 K, thermal corrections at 400 K
made non-H-bonded conformers more stable. This finding was
in accordance with spectroscopic results, which did not find any
H-bonded conformers.
Hobza and co-workers then compiled their reference data on

small peptides in a benchmark database;230 included were
peptides Trp-Gly, Trp-Gly-Gly, Phe-Gly-Gly, Gly-Gly-Phe, and
Gly-Phe-Ala. These test cases proved to be sensitive, such that
few methods yielded satisfactory accuracy. Standard MM force
fields failed here, which was possibly linked to the use of fixed
atomic charges (independent of conformation). It was
emphasized again how important it was to have a QM method
at hand that was both reliable and efficient, such that an initial
screening of the conformation space could be performed.
Ideally, that would be an SE method such as DFTB, and
DFTB2-D was used again here. This database did not include
any interactions between two aromatic amino acid side chains,
and this was included in a following study of the Phe-Gly-Phe
peptide.231 DFTB2-D yielded geometries of the conformers
with small deviations from the CCSD(T)/CBS reference, and
the method was recommended for application to this kind of
interaction.
NDDO methods have been applied in studies of small

peptides as well, also involving empirical corrections for
dispersion and other noncovalent interactions. The study of
the complex conformational space of the Trp-Ser peptide
involved dispersion-corrected PM3.232 Although this method
showed relatively large errors in relative energies of conformers,
the lowest-energy conformer was still predicted correctly. The
NDDO method was determined to be only useful for the
purpose of crude initial screening of favorable conformers,
which shall be later treated with more reliable QM methods.
On the other hand, the application of PM6-DH to a large group
of various molecules and complexes, which included the above-
mentioned set of structures of small peptides,122 led to a much
more favorable appraisal of the SE method. Chemical accuracy
(error below 1 kcal/mol) was achieved as soon as geometry
optimization was performed. The accuracy in terms of error
was comparable to that obtained at the considerably more
expensive MP2/cc-pVTZ level.
As an illustration, we apply the two most recently corrected

SE methods to study the conformational energies of small
peptides published in the BEGDB and compare the results to
the available high-level ab initio data [CCSD(T)/CBS]. The
RMS deviation is 1.6 and 1.2 kcal/mol with PM6-D3H4 and
DFTB3/3OB/D3, respectively (see Table 4). The results
illustrate how these methods can be useful to describe the
interactions of bulky aromatic side chains with each other as
well as with the peptide bonds.
8.2.4. Alanine Dipeptide in Aqueous Solution.

Solvation plays a crucial role in the stability of the different
peptide conformations. For example, with a reaction field
model at the level HF/6-31G*, the α-conformation was
stabilized with respect to C7

eq significantly, even though α was

still not a minimum on the PES.233 Both the α and polyproline-
II (PPII) conformers became stationary points on the PES as
soon as explicit water molecules were included in the quantum
system.234 This observation was in accordance with available
Raman, vibrational circular dichroism, and Raman optical
activity spectra. Free energy calculations performed with
empirical MM force fields also found stable (and dominant)
α and PPII conformers in solution.235 DFTB was also shown to
describe the changes of the PES upon solvation, namely the
stabilization of α due to favorable dipole−solvent interac-
tion.236

As for AD itself, the effect of water on its conformation was
characterized with NMR,237 and a large amount of work was
aimed to show the difference in conformation between the gas
phase and aqueous solution. Experimental reports agreed that
PPII dominates in alanine oligopeptides238,239 and other small
model peptides.240 Other relevant conformations were α and
the extended conformation β (or C5

ext).
An early study compared the structure of AD yielded by

various MM force fields and by DFTB-based QM/MM,241 and
the solvated AD was also used as an example application in the
presentation of DFTB-QM/MM in the Amber package242 as
well as just recently in Gromacs.195 The states α and PPII-β
dominate both with MM and with QM/MM. While up-to-date
MM force fields predicted PPII as the most favored
conformation, in agreement with the above-mentioned
experimental reports, QM/MM simulations with DFTB2 or
DFTB3 showed a reversed trend. Obviously, the small
difference in the depth of the PPII-β and α basins (less than
1 kcal/mol) makes it very difficult to get the conformational
equilibrium right.
Unlike the small difference of the depth of minima, the

height of the barrier between them was markedly different: ca.
1.5 kcal/mol with QM/MM, while it was higher with the
considered MM force fields (ca. 2.5 kcal/mol with Amber and
more than 3.5 kcal/mol with CHARMM).195 The barrier
between PPII and β seems to be either overestimed by force
fields or underestimated by DFTB. If the former is true, then
this may be possibly an effect of the harmonic character of the
MM force fields, as noted earlier.242 On the other hand, as
discussed in sections 2.4.3, 3.2.3, and 5.1, the use of a minimal
basis set in DFTB leads to underestimated Pauli repulsion and
thus to underestimated rotational barriers.
A comprehensive QM/MM study of solvated AD considered

a number of SE methods (MNDO, AM1, PM3, RM1, PDDG/
MNDO, PDDG/PM3, and DFTB2) plugged in a QM/MM
scheme.243 Investigated were their abilities to predict the
structural ensemble of AD in aqueous solution. Free energy
surfaces were obtained from replica-exchange MD simulations,

Table 4. RMSD from CCSD(T)/CBS Data of Relative
Energies of Various Conformers of Five Different Small
Peptides, Obtained with Two Representative SE Methods
Involving Empirical Corrections for Noncovalent
Interactions (kcal/mol)

peptide PM6-D3H4 DFTB3/3OB/D3

Trp-Gly 1.4 0.9
Trp-Gly-Gly 2.0 1.8
Gly-Gly-Phe 1.5 0.9
Gly-Phe-Ala 0.7 0.9
Phe-Gly-Gly 2.2 1.2
whole set 1.6 1.2
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and results were compared to both experiment and classical
MM simulations with the Amber ff99SB force field. The Amber
force field was able to outperform the SE methods (except for
RM1), in much the same way as mentioned above for the case
of DFTB2. The QM/MM interactions between the AD
molecule and water were reported to differ little between the
QM/MM simulations performed with different QM methods,
and it was concluded that the differences came from the QM
description of the interactions within the AD molecule. The
good performance of RM1 may have stemmed from its way of
parametrization biased toward biological molecules.
A new QM/MM implementation in Gromacs makes it

possible to perform simulations with the newest incarnation of
DFTB, namely, DFTB3 with the 3OB parameter set and the
D3 dispersion correction.195 Well-tempered metadynamics
simulations of AD both in the gas phase and in aqueous
solution were performed with this software, and the resulting
free energies are shown in Figure 10. The gas-phase free
energies match the PES closely, with C7

eq being the global
minimum, separated from C5

ext by a low barrier, while the two
paths from C7

eq to C7
ax cross higher barriers. For AD in aqueous

solution, the QM/MM simulation yields the α-helical and the
PPII+β basins as similarly deep dominant minima and a
secondary minimum in the left-handed α-helical conformation.
It may be difficult to interpret these findings in terms of the

performance of the applied SE method, however. The structural
preferences of AD stem from a competition and compensation
of noncovalent interactions (i) within the AD molecule, (ii)
between AD and the surrounding water, and (iii) within the
bulk water. These interactions are described with very different
models: (i) with the SE method, (ii) with the applied QM/MM
Hamiltonian, and (iii) with the water MM force field. Further
investigation of these relations is desirable.
Larger peptides were also simulated with DFTB-based QM/

MM schemes. The presentation of the QM/MM implementa-
tion with DFTB in CHARMM included MD simulations of
penta- and octaalanine peptides in aqueous solution.244 The
310-conformation was unstable and converted to α rather
quickly; the α-helix itself was observed to be stable. The
termini, however, exhibited a 310-like conformation, and all of
these observations were in accordance with NMR spectroscopy
reports.
A divide-and-conquer QM/MM implementation of DFTB2

was applied to simulate crambin, a 46-residue protein, in water
over 350 ps, a remarkably long time span for QM-based

calculations in 2000.245 It was observed that α-helices
transformed to a 310-conformation unless an empirical
dispersion correction was switched on. Using the complete
QM/MM method including dispersion correction, geometrical
details were reproduced better than with any MM force field.
Another point that showed the usefulness of a QM/MM
approach was the significant charge transfer between the N-
and C-termini, a feature that cannot be predicted even with a
polarizable MM force field.
Finally, we note that DFTB2/MM has also been used to

explore conformational properties of non-natural peptides, such
as β-peptides.246 As summarized in ref 25, the DFTB2 model
was found to give rather reliable structures as compared to
B3LYP calculations, and DFTB2/MM simulations were
valuable for validating MM models for these non-natural
peptides.246,247

8.2.5. Outlook. We have reviewed the performance of SE
methods for the description of peptides and proteins,
attempting to isolate the various features of protein structure.
AD served to benchmark the description of backbone degrees
of freedom, and it became evident that SE methods do fine
here, with DFTB being slightly superior to PM6. Small
improvements remain desirable for the description of rotational
barriers, and it seems that this can be achieved by correcting for
the underestimated Pauli repulsion.
Longer alanine-based peptides have also been used to

manifest the strength of intrabackbone H-bonding and the
trade-off between H-bonding and steric strain, which gives rise
to secondary structure preferences. Much the same as for AD,
the SE description of PES for the larger peptides is reasonable,
and it is worth mentioning the generally encouraging
performance of DFTB3/3OB/D3.
The noncovalent interactions between side chains and the

backbone, as well as those between various side chains, are
determinant for a higher level of structural arrangements of
proteins. These electrostatic and dispersion interactions are
described well with contemporary corrected SE methods, as
demonstrated by the examples of small peptides with aromatic
side chains. We note that the performance of corrected SE
methods in this context was also reviewed briefly in a recent
work.248

The situation appears less clear when SE methods are
combined with MM models to describe peptides and proteins
in solution. Due to interactions with solvent molecules, many
peptide/protein conformations are close in energy; thus, a well-

Figure 10. Free energy maps of alanine dipeptide obtained from well-tempered metadynamics simulations performed with DFTB3/3OB/D3: (left)
AD in a vacuum (Helmholtz function) and (right) AD in aqueous solution simulated with QM/MM using TIP3P water (Gibbs function). The color
codes the free energy, ΔF or ΔG, in kcal/mol.
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balanced treatment of various noncovalent interactions
becomes even more important. Therefore, it is equally
important to calibrate QM/MM interactions carefully.249

In the long run, the problem of protein folding requires
extraordinarily efficient computational approaches, and SE
methods may prove to be a valuable alternative to empirical
force fields. Accordingly, Wollacott and Merz proposed new,
SE-based scoring functions to rank unfolded and folded
structures correctly, using a large decoy set containing the
native protein structure. They showed that these scoring
functions can distinguish decoys from the native structure with
sufficient accuracy.250 Here, the enthalpy contribution to the
folding free energy was obtained with PM3 or AM1. The
folding problem was also presented as a showcase application of
an efficient PM6-DH+ implementation.26

8.3. Scoring Functions for Molecular Docking

All of the various scoring functions (SFs) used in computer-
aided drug design to evaluate drug candidates rely on a rapid
and accurate evaluation of intermolecular interactions between
the drug and the receptor. Therefore, the SF must be able to
describe all relevant types of noncovalent interactions,251 such
as dispersion, hydrogen bonding,252 and halogen bonding.253

Application of calibrated SE methods is a good way to meet
these conditions.254 For recent dedicated reviews on the
application of SE methods in ligand scoring, refer to refs
255−257.
The possibility of applying a QM method in the framework

of an SF was investigated by Vasilyev and Bliznyuk in 2004.258

They applied an efficient implementation of AM1/COSMO to
estimate the binding energies for a series of RNA···theophyl-
line-analog complexes, and the approach was found useful,
although preliminary. Another SE study of ligand−protein
interactions aimed to reproduce experimental binding en-
thalpies of several complexes using PM3.259 The results from
calculations agreed well with the experiment, with an error of
up to 2 kcal/mol. A different idea was exploited in a docking
study in which PM6-based atomic charges instead of empirical
charges were used in the SF; the scoring results improved
markedly.260

In 2005, Raha and Merz developed an SE-based SF,
QMScore,261 which involves the standard AM1 method with
a force-field dispersion correction and an implicit solvation
model (Poisson-Boltzmann). Their showcase was the study of
zinc ion-mediated ligand binding to protein.262 In what
followed, different variations of the SE setup (AM1 or PM3)
were validated on ca. 200 noncovalently bound complexes, and
QMScore was shown to outperform other SFs.261 The AM1-
based SF complemented with a QM/MM scheme was applied
further to metalloprotein−ligand complexes with a fair
performance.263 The pairwise additivity of the protein−ligand
interaction energy was investigated on the binding of indinavir
to the HIV-II protease (PR).264 The sum of the pairwise
interaction energies accumulated more than 95% of the total
interaction energy with both the PM6-DH2 SE method and the
M06-L density functional used as a reference; the contribution
of the three-body interactions was negligible, amounting to
1.4% and 3.8%, with PM6-DH2 and M06-L, respectively. The
basic principle of pairwise additivity is considered generally and
utilized in fragment-based drug design approaches in particular.
The SE-based scoring has been developed further by Hobza

and co-workers, who have complemented the SE-based SF with
advanced empirical corrections to the SE methods.265 Much

like the previous work by Merz and co-workers,266,267 the SF by
Hobza and co-workers relies on a phenomenological, idealized
decomposition of the process of binding, which in turn leads to
the approximation of binding free energy by the sum of several
contributions with a clear physical meaning. These individual
contributions are the gas-phase interaction energy, the
solvation/desolvation free energy, the change of the conforma-
tional free energies of the protein and ligand, and the entropy
change upon binding. The values of the contributions and their
comparison may provide additional insight into the nature of
the protein−ligand binding. Unlike the case of an empirical SF,
none of the contributions are fitted, for example, to
experimental data in any way. The idea is to use the most
accurate methods for the respective terms, however, in such a
way that they are balanced with the other terms, in terms of
both accuracy and computational cost. Still, two of the terms in
the SF, the protein deformation energy and the binding
entropy, would need prohibitively long calculation times to be
evaluated accurately, and thus, they are evaluated largely
approximately. Consequently, the SF shall provide merely
relative values of the binding free energy, and the goal is a
(linear) correlation of the score with the real, experimental
binding free energy.
The gas-phase interaction energy is calculated using

geometries obtained with SE energy minimization in the
solution phase, and its magnitude is usually the largest among
all of the contributions to the SF, amounting to as much as
several hundred kcal/mol (for charged ligands). It is, however,
compensated for largely by the change of solvation free energies
upon binding. Consequently, even small deviations may lead to
large deviations in the final score, and special care is needed
here. The gas-phase interaction energy is calculated with a
corrected PM6 methodmost recently, PM6-D3H4Xwhich
was shown to be the most accurate among SE methods,
outperforming even the costly ab initio MP2 method.
The first application was a study of a series of inhibitors of

HIV-1 protease, which were docked with UCSF DOCK and
rescored by the SF based on PM6-DH2, which covers both
dispersion and H-bonding reliably.265 The rescoring brought on
significantly improved results, distinguishing between correct
binding poses and non-native ones and also improving the
relative strength of binding of the inhibitors. This dramatic
improvement supports the rescoring based on an SE method as
a tool for drug design that is valuable and computationally
inexpensive at the same time; this is particularly important
when diverse types of ligands (neutral/charged) need to be
evaluated.268,269

Although the main motivation to use an SE method in the
scoring may be the improved accuracy with respect to empirical
schemes, there are also situations in which any empirical
scheme would come into trouble for principal reasons: (i)
There is a chemical element (or binding situation) that is
difficult to parametrize in MM. (ii) A covalent bond is formed
between the receptor and the ligand. (iii) Another process that
cannot be described with MM takes place; an example is a
halogen bond due to the presence of a σ-hole. In any of these
cases, the application of an SE-based SF is clearly superior.
The study of inactivation of Schistosoma mansoni cysteine

peptidase by vinyl sulfone inhibitors may serve as an example of
case ii.270 Here, the SF and the docking procedure were
extended to describe covalent binding of ligands; there are two
additional features: (a) quantum chemical energy minimization
is involved to describe any breakage and formation of covalent
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bonds and (b) a new term is added to the noncovalent
contribution to SF to describe the free energy difference
between the covalent and noncovalent complexes. In other
words, the development concerns both the computation of SF
(in b) and a protocol to evaluate and design the inhibitors that
exhibit covalent bonding and a conserved binding mode (in a).
For case iii, a typical example is the study of ligands that form

halogen bonds with the receptor. The study of halogenated
inhibitors of protein kinase CK2 showed an MM-based SF to
fail due to its inability to describe halogen bonding.271 The
application of empirical corrections to PM6-DH2 (yielding
PM6-DH2X) led to correct geometries of the complexes as well
as quantitative correlation of the obtained score with the
inhibition constants. A following study aimed to quantify how
halogenations of a ligand modulatespossibly, increasesthe
strength of binding to aldose reductase.272 A series of inhibitors
was tested, and the factors that determine the strength of the
halogen bond were identified as being (a) the bromine−iodine
substitution and (b) the fluorination of the aromatic ring of the
inhibitor in various positions. An SE method was used also to
perform free energy calculations designed to explain the role of
the halogen bond in the ligand binding. Some of the proposed
substitions caused an increase of the interaction energy, which
led to a decrease of IC50 of as much as an order of magnitude.
Related is the approach based on the AM1 calculation of

local property fields, which then replace an MM force field in
the description of the interaction with the receptor.273 A
showcase application on two classes of ligands brought new
insights that could not have been obtained with a method based
on an MM force field.
In ligand docking and scoring studies, it is valuable to

combine SE methods with computational approaches of
miscellaneous sorts. To illustrate such possibilities, some
other applications are mentioned below.
It was investigated how the conformational and desolvation

free energies are affected if only a single conformer of a flexible
inhibitor of HIV protease was considered.269 To provide
reference data, sufficient sampling was guaranteed by means of
extensive MD simulation (using an MM force field). The error
caused by the limited treatment of ligand flexibility amounted
to ca. 5% of the total range of the scores. It was concluded that
an approach restricted to a single conformer represents a
reasonable, viable compromise between accuracy and computa-
tional efficiency.
The PM6-DH+ method was coupled with the COSMO

implicit solvation model to rescore a set of docked guest
complexes in a cucurbit[7]uril host.274 Coupled with the
mining minima (MM2) algorithm, the method reproduced
experimental binding energies; also shown was that the SE
method was superior to an MM model.
In a study of protein−ligand complexes containing three

different proteins,275 a few corrected SE methods (AM1, RM1,
and PM6) were combined with an MD/MM-GB/PBSA setup.
These methods yielded binding affinities that correlated well
with the experiment; still, an improved treatment would be
desirable for some terms other than interaction energies, such
as entropic contributions. The SE scoring was computationally
efficient, causing only a modest increase of total computational
time as compared to MM-based scoring.
Other studies used binding poses generated by standard

docking approaches and rescored them with the PM6-DH2
method. The application to a vitamin D receptor showed a
good correlation with experiment,276 a study of InhA inhibitors

was able to retrieve bioactive conformations,277 and the binding
affinities of specifically binding and nonspecific DNA sequences
to the zinc-finger protein were distinguished.278

The recent study of pyrazolo[1,5-a]pyrimidine inhibitors of
cyclin-dependent kinase 2 involved a double-layer SE/MM as
well as triple-layer QM/SE/MM approaches,186 aiming to
describe the innermost part of the complex on an even more
accurate level, DFT-D. A ligand-building protocol provided a
good correlation with experimental inhibition constants, while a
docking protocol did not. It was concluded that the former
approach is preferable whenever the chemical changes of
ligands are small, because no dramatic change of the binding
mode may be expected upon such a modification.
Finally, the work on searching for ligand binding sites on the

surface of a protein molecule constitutes another interesting
application of SE methods.279 Molecular orbitals of the protein
obtained with AM1 were sorted according to their spatial
delocalization, and this was considered as a basis for the
identification of a possible binding site.

8.4. Bulk Water Properties

Water is arguably the most important solvent in chemistry and
biology.280 Therefore, many models have been developed for
bulk water at both classical (MM)1,281−283 and quantum
mechanical levels. Since water properties depend on the
interplay of hydrogen-bonding, polarization, and van der
Waals interactions, many QM models in fact do a rather
poor job describing bulk water. For example, it was well-
documented that popular GGA functionals such as BLYP do
not capture water structures at the ambient conditions and that
including empirical dispersion is crucial.98,99,284 At the SE level,
it is thus not surprising that most models in their original form
do not describe water properties well. For example, the
coordination number of the first solvation shell in water at
ambient conditions is described by several standard SE models
poorly: while the experimental value is 4.5−4.7, PM3144 gives a
value of ∼2.75, PM6144 a value of ∼7.79, DFTB2285,286

(without the modified γ for HX) a value of ∼8.4, and DFTB3/
3OB249 a value of 5.6. Many factors may contribute to the
errors of these methods. For example, the lack of a reliable
treatment of dispersion in the standard SE methods (and
popular DFT methods) is an important limitation. The
underestimated polarization is likely important also; the average
molecular dipole moment in liquid water has been
estimated287−289 to be in the range 2.5−3 D, while PM3,
PM6, and DFTB3/3OB give values of 1.9, 2.3, and 2.4 D,
respectively. The heat of vaporization is also underestimated by
these SE methods grossly, by 2−5 kcal/mol. These methods
also tend to overestimate diffusion constants; the value is 0.78,
1.28, and 0.44 Å2/ps with PM3, PM6, and DFTB3/3OB,
respectively, compared to the experimental value of 0.23 Å2/ps.
Motivated by these observations, several revised SE models

have been developed for bulk water. Monard and co-workers290

applied PM3-PIF57 and PM3-MAIS58 to study bulk water using
a divide-and-conquer implementation and found major
improvement over PM3. The SCP-NDDO method144 dis-
cussed in section 6.2 improves the polarization of PM3 and also
includes a post-SCF dispersion contribution. The performance
of the model for water is satisfactory for both bulk water and
also the air/water interface under ambient conditions. Han and
co-workers parametrized the XP3P model291 in the Xpol
framework using the MNDO-based PMO methodology;64,66,67

a set of diffusion p functions is added on the hydrogen atoms
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and a damped dispersion model is included. XP3P was shown
to give reliable properties for bulk water over a fairly broad set
of temperatures, with a density maximum at ca. −25 °C. An
advantage of XP3P over the popular MM models is that it
handles the dipole derivative of water with respect to OH
stretch properly, and this property is likely important to a
flexible water model. In the same vein, the mDC model by York
and co-workers96 also shows impressive performance for bulk
water over a range of temperatures and exhibits good structural
(radial distribution functions), thermodynamic (heat of vapor-
ization, heat capacity, and compressibility), and dynamical
(diffusion) properties; the temperature of density maximum is
also rather close to the experimental value. The only quantity
slightly underestimated is the dielectric constant, which was 48
as compared to the experimental value of 78 at 298 K. This may
reflect the underestimated polarizability of the DFTB3/3OB
model.87,117

In addition, there are several other models based on
somewhat brute-force or ad hoc modifications of SE models
by adjusting parameters to fit experimental bulk properties or
ab initio data directly. We would consider them along the line
of “specific reaction parameters” pioneered by Rossi and
Truhlar.292 These include the modified PM3 model for
studying proton transfer in bulk water by Thiel and co-
workers,293 the modified DFTB2 model by Roethlisberger and
co-workers,294 the modified DFTB3/3OB model by two of
us,249 and the modified PM6 model by Van Voorhis and co-
workers.295 The parametrizations were done either by reverse
Monte Carlo296,297 to fit experimental observables (e.g., radial
distribution function) or by force-matching298,299 to ab initio
calculations of fairly large water clusters. Encouraging results
are obtained almost by construction in these methods, which
make them useful in very specific applications; in other words,
at least in the near future, considering the potential increase in
computational cost associated with a more robust integral
approximation, the DFTB3 framework discussed here remains
attractive. Transferability of these empirically modified
parameters, however, is not apparent. For example, we modified
the O−H repulsive potential in DFTB3/3OB to improve the
structural properties of bulk water under ambient conditions.249

Rather modest changes, on the order of kBT, were required to
improve the radial distribution functions substantially; this
improvement also was transferable to solvated proton and
hydroxide in water clusters and in bulk water to some degree.
The hydroxide ion, however, remains oversolvated in the
bulk,249,300 and the heat of vaporization of bulk water remains
underestimated substantially. This exercise suggested that more
transferable improvements of SE models require physical
modifications of the underlying electronic Hamiltonian, as
discussed in section 6.

8.5. Metal−Ligand Interactions

Metal−ligand interactions are tremendously important in
chemistry and biology. In many cases, there are significant
changes in the electronic structure of the metal ion upon
complexation, especially when transition-metal ions are
involved. Therefore, metal−ligand interactions often fall out
of the scope of “noncovalent interactions”, representing a topic
that warrants a thorough discussions in its own right indeed.
Nevertheless, we briefly comment on several recent studies that
highlight both the value and limitation of SE methods for the
treatment of metal−ligand interactions, limiting most of the
discussions to our own recent research.

According to a recent survey,301,302 the most prevalent metal
ions in enzymes include Mg2+, Ca2+, Mn2+, Fe2+, and Zn2+;
other ions include cobalt and copper, while Na+ and K+ are rich
in the cellular milieu. Thus, for biological applications, treating
the ligation of these ions is of particular importance. As for
NDDO methods, PM3 and PM6 have been parametrized for
quite a few metal ions by Stewart,51,303 and by Merz and co-
workers for several ions.304,305 At the DFTB level, Na+, K+, and
Ca2+ have been parametrized within the framework of DFTB3/
3OB.130 In general, structural properties such as metal−ligand
distances are described well, especially for charge-neutral
ligands, while binding energies may have errors on the order
of a few to 10 kcal/mol.130,304,305 Other than these para-
metrizations, however, we are not aware of any extensive and
systematic benchmark for these ion parameters. A recent
study306 attempted to conduct a comparative study of Na+, K+,
and Ca2+ binding to proteins by force fields (both the
nonpolarizable CHARMM36 force field and the polarizable
Drude force field),2 DFTB3/3OB, and a collection of DFT
methods. MD simulations for 30 cation-selective proteins with
high-resolution X-ray structures were carried out to generate
active site models, and the binding energy of the metal ions was
characterized. Rather large errors were observed with the
nonpolarizable force field, especially for Ca2+, while DFTB3/
3OB and the Drude force field provided largely comparative
descriptions for the binding energies, usually within 10%
compared to DFT calculations with a decent basis set. Notably,
DFTB3/3OB was able to capture qualitatively the polarization
and charge transfer effects that may propagate to the second
coordination shell of the metal ion; these effects are particularly
evident for Ca2+, suggesting that a QM treatment might be
more important for divalent ions.
For additional “simple” divalent ions like Mg2+ and Zn2+,

which do not adopt open shells, many SE methods, such as
AM1, PM3, and PM6, have been parametrized; Zn2+ contains
valence d electrons, and thus, MNDO(d)20 has been
parametrized. In the DFTB framework, both DFTB2307,308

and DFTB3309 have been parametrized for Mg2+ and Zn2+. Cai
and co-workers307 found that magnesium−ligand lengths
computed from AM1303,310 and PM3, MNDO, and MNDO/
d303 deviate by ca. 0.1 Å on average in comparison to B3LYP/6-
311++G** for small Mg complexes. The AM1/d parameters311

for magnesium provided a clear improvement in accuracy
compared to AM1 by incorporating d orbitals. For zinc,312 the
mean absolute deviations (MAD) of metal−ligand distances
with AM1,313 PM3 and PM3(ZnB),305 MNDO/d,314 and
PM651 are larger than 0.05 Å with respect to CCSD(T) values
for small zinc-containing molecules. With the latest para-
metrization of DFTB3/3OB,309 the structural properties are
described very well as compared to B3LYP/aug-cc-pVTZ; the
MAD of metal−ligand distances, for example, is in the range of
0.01−0.02 Å for a fairly broad set of Mg2+ and Zn2+ containing
molecules relevant to biochemistry. In terms of metal−ligand
interaction energies, the MAD in comparison to high-level ab
initio or DFT calculations (e.g., G3B3 for Mg2+ and B3LYP/
aug-cc-pVTZ for Zn2+) is in the range of 3−5 kcal/mol, which
corresponds to a low percentile of the ligand binding energies
typically. It is worth noting that single-point energy calculations
at the DFTB3/3OB structures usually lead to much smaller
deviations from the G3B3 or B3LYP calculations, with MAD on
the order of 1 kcal/mol, highlighting the high quality of the
DFTB3 structures again. The importance of a reliable treatment
of zinc sites to the description of enzyme catalysis is illustrated
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by our recent study of alkaline phosphatase,315,316 where we
showed that the previous AM1/d-PhoT/MM calculations317,318

likely led to incorrect transition states due to distortions of the
bimetallic zinc motif.
For transition metals that involve open shells, the treatment

of electron correlation is very important, and the development
of SE methods has been much limited, with only modest
success. MNDO(d),20 PM3(TM),319 and AM1* 320 represent
an NDDO/MNDO family of methods that have been
parametrized for a range of transition-metals ions; they are
most successful for structural properties, although AM1* has
also modest success in many ion−ligand interactions. The PM6
method, which has been recently updated and reparametrized
in PM7, has also shown an increased accuracy in the prediction
of structures and heats of formations compared to earlier
methods. McNamara and co-workers321,322 reported a specific
parametrization of PM3 for iron and observed encouraging
results for a series of biologically relevant compounds, such as
[4Fe−4S] cubanes; the reference, however, was B3LYP/6-
31G*, which is likely of limited accuracy for iron compounds.
In the framework of DFTB, Morokuma and co-workers

developed DFTB2 parameters for several first-row transition
metals, including Sc, Ti, Fe, Co, and Ni.323 It was shown that
this parametrization often provides adequate structural proper-
ties, although the energetics are less satisfactory; thus, DFTB2
was mainly recommended as the intermediate layer in ONIOM
calculations of organometallic and metalloenzyme applica-
tions.324 Recently, Bruschi and co-workers325 developed
DFTB2 parameters for copper, although their study focused
primarily on structural properties of small compounds, and a
limited benchmark was reported for energetic properties or
larger systems. In the context of materials science, DFTB2
parameters were developed for several transition metals (e.g.,
Ti, Zn and Fe) in applications that target metal oxides or
nanoparticles.326−328

In their latest work, Gaus and co-workers parametrized
DFTB3/3OB for copper329 in a spin-polarized frame-
work.330,331 To obtain a balanced treatment of Cu(I) and
Cu(II) species, it was found crucial to consider the Hubbard
parameter and its charge derivative to be functions of the
orbital angular momentum, thus allowing the 3d and 4s orbitals
to adopt different sizes and responses to the change of charge
state. In terms of comparison to PM6 and higher level ab initio
or DFT methods, the trends are similar: DFTB3/3OB tends to
give rather reliable structures, while larger errors are found in
the metal−ligand interaction energies; single-point energy
calculations at DFTB3 structures again recover the QM
reference values (B3LYP/aug-cc-pVTZ; see more discussions
in ref 329 regarding this choice of the reference method) with
MAD in the range of 1−3 kcal/mol. Another general trend is
that the errors in the ligand binding energy are larger for
charged (anionic) ligands. To what degree this is due to the
treatment of charge transfer or ligand polarization is an
interesting topic for future study. The limitation that DFTB3 is
parametrized using PBE as the “parent functional” is more
transparent for a number of Cu2+ compounds, for which the
proper description of exchange was shown to be crucial.332,333

Therefore, including a fraction of exact exchange in DFTB
seems an important direction to pursue. Nevertheless, the
DFTB3/3OB model was shown to be able to capture some
important features of Cu2+, such as Jahn−Teller distor-
tion.329,334

9. CONCLUDING REMARKS

In this contribution, we have reviewed semiempirical (SE)
quantum mechanical methods in terms of their basic
formulation, approximations, limitations, and application to
noncovalent interactions in various (bio)chemical systems. In
this “ab initio” era, SE methods are still of interest because they
can potentially find a niche in many soft-matter applications
where both the flexibility in electronic structure and the
conformational samplings are important. In other words, SE
methods are needed in applications for which ab initio QM
methods are too expensive while conventional classical force
fields are not adequate. Examples include molecular association,
charge transport, and chemical reactions in biological systems
or complex fluids such as room-temperature ionic liquids. Using
a quantum mechanical model is also essential to the
computation of many experimental observables, such as
vibrational spectra.
Due to the various approximations inherent in the standard

SE methods, they have limitations in the treatment of
noncovalent interactions, which make them unfit for highly
quantitative computational studies. As we discuss here,
however, various empirical corrections and formal extensions
of SE methods have improved the accuracy of popular NDDO/
MNDO and DFTB models for intermolecular interactions
dramatically. As a result, the applicability of SE methods to
condensed-phase problems has been enhanced substantially in
the recent years, and some examples are discussed here.
In terms of future directions, we emphasize several areas.

First, we note that the most empirical corrections and formal
extensions have been benchmarked and calibrated on relatively
small systems; this is due mostly to the difficulty of conducting
highly accurate QM calculations for much larger systems. Local
correlation methods or embedding methods might be valuable
in this context. In systems that resemble condensed phase more
closely, a different balance between polarization and exchange
repulsion may become important and should be taken into
consideration for the calibration of SE methods, which are most
useful for condensed-phase applications. Second, to describe
the structural properties of macromolecules properly, it is
important to balance the description of bonded and nonbonded
interactions. For example, although the various corrections have
improved the accuracy of SE methods for hydrogen-bonding
and dispersion, substantial errors are still often found for bond
rotations and steric interactions, leading to errors in the relative
(free) energies of different conformers and isomerization
barriers. Along this line, improving the description of Pauli
repulsion appears to be particularly important, especially for the
DFTB models. Finally, for SE methods to be competitive with
advanced classical force fields, it is important to make them
scale well with respect to system size and take full advantage of
modern computational hardware; efforts along the line of
fragmentation and extended Lagrangian molecular dynamics
seem particularly promising. Hybrid SE/MM simulations are
another approach for accessing larger systems and longer time
scales, and a careful calibration of SE−MM interactions using
condensed-phase systems is needed for reliable results. With
intense efforts from many groups on these fronts, to quote
Grimme and co-workers,95 “the future for low-cost quantum
chemical methods for investigating noncovalent interactions in
all of their aspects seems bright”.
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Universitaẗ Berlin in physics in 1993 and graduated with a Ph.D. in
theoretical physics from the University of Paderborn in 1998. After a
postdoctoral stay at Harvard University, he moved to the University of
Paderborn in 2000, where he finished his habilitation in 2003. Marcus
became a professor at Technische Universitaẗ Braunschweig in 2006,
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Quantum Chemical Benchmark Energy and Geometry Database for
Molecular Clusters and Complex Molecular Systems (www.begdb.-
com): A Users Manual and Examples. Collect. Czech. Chem. Commun.
2008, 73, 1261−1270.
(128) Jensen, J. H. Predicting Accurate Absolute Binding Energies in
Aqueous Solution: Thermodynamic Considerations for Electronic
Structure Methods. Phys. Chem. Chem. Phys. 2015, 17, 12441−12451.

(129) Li, A.; Muddana, H. S.; Gilson, M. K. Quantum Mechanical
Calculation of Noncovalent Interactions: A Large-Scale Evaluation of
PMx, DFT, and SAPT Approaches. J. Chem. Theory Comput. 2014, 10,
1563−1575.
(130) Kubillus, M.; Kubar,̌ T.; Gaus, M.; Řezać,̌ J.; Elstner, M.
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