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Excited States

A. Excitation energies of H2 molecule

In this exercise, you will calculate approximations to the excitation energies of the σgσ
∗
u and σ∗2

u excited
states of the H2 molecule using the Hartree-Fock method as well as the Kohn-Sham method with different
density functionals, and compare the results to full configuration interaction calculations.

The Hartree-Fock and Kohn-Sham calculations of an excited state will be performed using the variational
method, whereby the molecular orbitals are variationally optimized for the excited state. In practice, to
calculate the energy of an excited state you will (1) perform a ground state calculation to obtain the ground
state orbitals, (2) prepare the initial guess for the excited state calculation by promoting one or more electrons
from ground state occupied orbitals to unoccupied orbitals, and (3) use this initial guess with an SCF method
that can avoid variational collapse to the ground state in order to obtain an excited state solution. This
procedure is illustrated below for the case of a calculation with Hartree-Fock.

Ground state calculation

Create the H2 molecule with a bond length of 0.74 Å, and use the ORCA program to perform a ground
state calculation using unrestricted Hartree-Fock (UHF) and the 6-311G** basis set. The calculation will
generate a ‘.gbw’ file with the same base name as the input file, containing the optimized orbitals of the
ground state.

Preparing the initial guess and performing an excited state calculation

To perform a variational optimization of an excited state, you need to create a new ORCA input file:

!UHF 6-311G** MOREAD

%moinp "file_base_name.gbw"

%scf

rotate

{orb_i, orb_a, 90, spin_i, spin_a}

...

end

CNVDIIS false

LShift 1.5

end

The first two lines at the beginning of the file read the orbitals from the ground state calculation:

!UHF 6-311G** MOREAD

%moinp "file_base_name.gbw"

where file_base_name is the base name of the input file of the ground state calculation.

The second part of the file uses the rotate feature (subblock of %scf ... end) to prepare the initial
guess orbitals. The command:
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rotate

{orb_i, orb_a, 90, spin_i, spin_a}

...

end

swaps the molecular orbital with index orb_i in the spin channel spin_i with the molecular orbital
with index orb_a in the spin channel spin_a, effectively promoting an electron from orb_i with spin_i to
orb_a with spin_a. Keep in mind that ORCA starts counting molecular orbitals from index 0, and that
the indices of spin channels α and β are 0 and 1, respectively. The dots ‘...’ indicate that if the excita-
tion involves multiple electrons, multiple {orb_i, orb_a, 90, spin_i, spin_a} lines should be included,
one for each promoted electron. For example, for a double electron excitation, replace ‘...’ with a second
{orb_i, orb_a, 90, spin_i, spin_a} line for promotion of a second electron. Don’t forget to remove the
‘...’ in the input script if the excitation involves only one electron!

Excited state calculations are prone to variational collapse to the ground state. In order to avoid vari-
ational collapse during the SCF calculation, we use a technique called level shifting. You can read more
about level shifting in the ORCA manual or in, e.g., Saunders & Hillier, Int. J. of Quantum Chem. 7 699
(1973) and Carter-Fenk & Herbert J. Chem. Theory Comput. 16, 5082 (2020). In order to use level shifting
in ORCA, we set LShift 1.5 within the %scf ... end block (see input script above). We further need to
deactivate the DIIS procedure, which we do by setting %CNVDIIS false.

Calculating the σgσ
∗
u and σ∗2

u excited states with UHF

Now, you should be ready to calculate the excited states of the H2 molecule with UHF. Follow the procedure
outlined above to obtain approximations to the energies of the singlet σgσ

∗
u and σ∗2

u excited states within
Hartree-Fock with the 6-311G** basis set. The σgσ

∗
u excited state can be viewed as resulting from promotion

of one electron from the ground state HOMO σg orbital to the LUMO σ∗
u orbital in one spin channel, while

the σ∗2
u excited state results from HOMO→LUMO excitation in both spin channels.

Q1: Sketch molecular orbital diagrams for the ground state (σ2
g), and for the σgσ

∗
u and σ∗2

u excited states of
H2 using the values of the molecular orbital energies from the ORCA output files of the UHF calculations.
Include only the two lowest energy orbitals for each spin channel and specify the occupation of the orbitals.

Q2: Even if we use the unrestricted formalism, the calculation for the doubly excited σ∗2
u state of H2 at a

bond length of 0.74 Å provides a restricted, closed-shell solution (as can be confirmed by inspection of the
spin density). What is the spin multiplicity of the Hartree-Fock solution of the σ∗2

u state? What is the spin
multiplicity of the Hartree-Fock approximation of the σgσ

∗
u state?

Hint: Consider the (multideterminant) singlet and triplet wave functions of an open-shell system with two
electrons:

|1Ψ2
1⟩ =

1

2
[ψ1(1)ψ2(2) + ψ1(2)ψ2(1)] (α(1)β(2)− α(2)β(1))

|3Ψ2
1⟩ =

1

2
[ψ1(1)ψ2(2)− ψ1(2)ψ2(1)] (α(1)β(2) + α(2)β(1))

where ψ denotes a spatial orbital and α and β are the spin functions. Expand the two-electron Slater
determinant |ψ1ψ2⟩ (see Q4 of lab 3) and find the expression that relates the sum of |1Ψ2

1⟩ and |3Ψ2
1⟩ to

|ψ1ψ2⟩, ignoring orbital relaxation effects. What can you deduce?

Full configuration interaction calculations of the σgσ
∗
u and σ∗2

u excited states

Full configuration interaction (FCI) considers all possible electronic configurations that can be generated for
a given basis set. Therefore, it is the best possible calculation that can be done for the chosen basis set and
the results can be used to assess the quality of other methods.
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We can use the CASSCF module available in ORCA to carry out an FCI calculation. This is because a
CASSCF calculation for all electrons in the system and including all molecular orbitals available for the given
basis set in the complete active space (the selection of orbitals involved in the formation of configurations in
the linear expansion of the wave function) corresponds to full configuration interaction. To perform an FCI
calculation using the CASSCF module in ORCA, include the following in an input script:

!CASSCF 6-311G**

%casscf

nel #electrons

norb #orbitals

nroots #roots

mult spin_multiplicity

end

#electrons and #orbitals should be the total number of electrons and spatial molecular orbitals. Check
the output file of a previous UHF calculation with the 6-311G** basis set to know the total number of
orbitals for an FCI calculation of H2 with this basis set. Keep in mind that norb whould be the number
of spatial orbitals and not spin orbitals. For example, if there 24 spin orbitals in the calculation, norb
should be 12. #roots should be the number of roots (eigenvalues of the CI Hamiltonian matrix) to evaluate
in the FCI calculation and it should be big enough to include the ground, σgσ

∗
u and σ∗2

u states of H2.
Finally, spin_multiplicity should be the spin multiplicity of the wanted states. The ORCA output for
such calculation will report the energy and squared coefficient of the configurations that contribute the most
in the expansion of the wave function for each of the states corresponding to the lowest #roots of the CI
matrix. Here is an example, showing the information on the first root of an FCI calculation:

---------------------------------------------

CAS-SCF STATES FOR BLOCK 1 MULT= 1 NROOTS= 5

---------------------------------------------

ROOT 0: E= -1.1683321290 Eh

0.98207 [ 0]: 200000000000

0.00417 [ 14]: 010100000000

0.00358 [ 12]: 020000000000

The example above shows that the configuration where the lowest orbital (orbital 0) is doubly occupied
contributes by ∼ 98% in the expansion of the wave function of the lowest state found in the FCI calculation,
and that other configurations contribute by less than 0.5%.

Use the instructions above to perform an FCI calculation of the H2 molecule with the 6-311G** basis
set. Set up the calculation such to obtain the lowest 5 roots with singlet spin multiplicity. The first root
(ROOT 0) corresponds to the ground state. By looking at the composition of the other four roots in the
ORCA output file, identify which one corresponds to the σgσ

∗
u excited state and which one corresponds to

the σ∗2
u excited state.

Q3: Calculate the vertical excitation energies for the σgσ
∗
u and σ∗2

u excited states of H2 at a bond length of
0.74 Å using the total energies of the ground and excited states obtained from the UHF and FCI calculations.
How do the excitation energies calculated with Hartree-Fock compare to those obtained with FCI?

Q4: First, focus on the results obtained for the σ2
g → σ∗2

u excitation. What does the difference between the
total ground state energies obtained with FCI and with Hartree-Fock represent? And the difference between
the total FCI and Hartree-Fock energies of the σ∗2

u excited state? Compare the errors in the Hartree-Fock
energies of the ground and σ∗2

u states and comment on how they affect the vertical excitation energy.
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Q5: Now, analyse the σ2
g → σgσ

∗
u excitation. How does the error in the Hartree-Fock energy of the σgσ

∗
u

excited state compare to the error in the Hartree-Fock energy of the σ∗2
u state analysed in the previous

question? Can you explain the observed difference?

Hint: Refer to the conclusions of Q2.

Calculating the σgσ
∗
u and σ∗2

u excited states with UKS

Repeat the variational calculations of the ground state and of the σgσ
∗
u and σ∗2

u excited states of the H2

molecule at a bond length of 0.74 Å using the unrestricted Kohn-Sham method with the BLYP and B3LYP
exchange-correlation functionals (see lab 8 exercises) and the 6-311G** basis set.

Q6: Collect in a table the vertical excitation energies for the σgσ
∗
u and σ∗2

u states of H2 calculated with
FCI, Hartree-Fock and the Kohn-Sham method using BLYP and B3LYP. How do the Kohn-Sham excitation
energies compare to the Hartree-Fock and FCI results?

Q7: Can you describe what type of error(s) affect the Kohn-Sham total energies of the ground and excited
states (see lab 8)? Do such errors cancel in the calculation of the excitation energies? Is there a difference
between the BLYP and B3LYP errors, and, if yes, can you provide an explanation?

B. Configuration interaction of minimal basis H2 molecule

Consider the minimal basis description of the H2 molecule consisting of two 1s atomic orbitals, ϕ1 and ϕ2,
each localized on one H atom. In this basis, there are only two restricted molecular orbitals, the σg and σ∗

u

orbitals resulting from the symmetric and antisymmetric combination of ϕ1 and ϕ2. The (non-normalized)
restricted molecular orbitals are:

ψ1 ≡ σg = ϕ1 + ϕ2 (1)

ψ2 ≡ σ∗
u = ϕ1 − ϕ2 (2)

The restricted Hartree-Fock solution for the ground state is the Slater determinant |ψ1ψ1⟩. In addition, one
can form one doubly excited and four singly excited determinants.

As seen in the previous section, in the method of full configuration interaction (FCI), the wave function
of a state is given by a linear combination of all possible configurations. On the other hand, the linear
expansion can be simplified by including only configurations with the same spin and spatial symmetry
(configurations with different symmetry do not contribute to the expansion). The Hartree-Fock ground
state determinant |ψ1ψ1⟩ and the doubly excited determinant |ψ2ψ2⟩ have the same symmetry, but different
symmetry compared to all other possible determinants. Therefore, we can write the FCI wave functions for
the ground and doubly excited states of minimal basis H2 as:

|Φ0⟩ = c00 |ψ1ψ1⟩+ c01 |ψ2ψ2⟩ (3)

|Φ2⟩ = c20 |ψ1ψ1⟩+ c21 |ψ2ψ2⟩ (4)

Using the linear variational method, the expansion coefficients and the energies of the two states, can be
obtained as the eigenvectors and eigenvalues of the 2×2 FCI matrix:

H =

⟨ψ1ψ1|Ĥ|ψ1ψ1⟩ ⟨ψ1ψ1|Ĥ|ψ2ψ2⟩

⟨ψ2ψ2|Ĥ|ψ1ψ1⟩ ⟨ψ2ψ2|Ĥ|ψ2ψ2⟩

 (5)

The matrix elements can be obtained by using the rules for evaluating matrix elements between Slater
determinants, which you have learnt in the lectures about Slater determinants and the Hartree-Fock theory
in this course. ⟨ψ1ψ1|Ĥ|ψ1ψ1⟩ is the Hartree-Fock energy of the ground state, which is given by 2h11 + J11.
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Similarly, ⟨ψ2ψ2|Ĥ|ψ2ψ2⟩ is given by 2h22 + J22. Both off-diagonal elements are equal to K12. Therefore,
we can rewrite the 2×2 FCI matrix for minimal basis H2 in terms of one- and two-electron integrals as:

H =

2h11 + J11 K12

K12 2h22 + J22

 (6)

where h11 and h22 are the one-electron integrals giving the average kinetic and nuclear attraction energy of
an electron, while J11, J22 and K12 are the two-electron integrals giving the Coulomb repulsion and exchange
interaction between electrons, respectively.

Q8: Find the expression of the two eigenvalues of the FCI matrix of minimal basis H2 (equation 6) in terms
of one- and two-electron integrals.

Hint: You can use that the eigenvalues ω1 and ω2 of a 2×2 matrix:

O =

O11 O12

O21 O22


are:

ω1 =
1

2

[
O11 +O22 −

√
(O22 −O11)2 + 4O12O21

]
ω2 =

1

2

[
O11 +O22 +

√
(O22 −O11)2 + 4O12O21

]
Q9: The eigenvalues of the 2×2 FCI matrix of equations 6 represent the exact energies of the ground and
doubly excited states of the H2 molecule in the minimal basis. Use the expression of the eigenvalues derived
in question Q8 to show analytically what is the limit of the energy for the ground and doubly excited states
as H2 dissociates, i.e. as R → ∞, where R is the distance between the two H atoms. Can you provide a
physical interpretation of the result?

Hint: Use that when R→ ∞, the one-electron integrals tend to the energy of the isolated H atom, h11 = h22 →
E(H), and all two-electron integrals tend to the electron-electron Coulomb repulsion integral 1

2 (ϕ1ϕ1|ϕ1ϕ1).

Q10: Expand the FCI wave functions of the ground and doubly excited states of minimal basis H2 (equations
3 and 4) in terms of the atomic orbitals ϕ1 and ϕ2, and show that at R = ∞ the coefficients in the
expansions of the FCI wave functions are such that c01 = −c00 and c21 = c20.

Hint: First expand the Slater determinants in terms of molecular orbitals, and then expand the molecular
orbitals in terms of the atomic orbitals using equations 1 and 2). For simplicity, you can ignore the normal-
ization constants and the spin functions. In the expansion in terms of atomic orbitals, identify covalent and
ionic terms. Use the results of Q9 to deduce which terms should become zero as the bond is stretched for
the ground state and for the doubly excited state.

C. Excited state energy curves of H2 molecule

In this exercise, you will calculate the energy of the σgσ
∗
u and σ∗2

u excited states of H2 as a function of
the distance between the two H atoms using the Hartree-Fock method. You will analyse the shapes of the
calculated curves and the behavior for long distances as compared to the ground state energy curve, and
interpret the results based on the FCI treatment of the previous section.
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Calculating the energy curve of an excited state with ORCA

The recommended procedure for obtaining an excited state energy curve with the Hartree-Fock method
using ORCA is the following:

1. Perform a ground state calculation at the first geometry in the scan. For example, if the scan is from
R = 0.4 Å to 4.0 Å, the ground state calculation should be carried out at R = 0.4 Å.

2. Perform an excited state calculation at the same geometry using the ‘.gbw’ file generated in the ground
state calculation as input. This step corresponds to a single-point excited state calculation and can be
realized in the exact same way as done for the calculations of section A of this lab.

3. Using the ‘.gbw’ file generated in the excited state calculation of the previous step as input, set up the
calculation of the energy curve as illustrated below.

This is an example of ORCA input script to calculate the energy of the H2 molecule in an excited state
with UHF along a scan of the H2 bond length:

!UHF 6-311G** MOREAD

%moinp "file_base_name.gbw"

%scf

CNVDIIS false

CNVSOSCF false

SOSCFStart 1.0

LShift 1.5

end

%paras

R = start_geometry,end_geometry,#steps

end

%method

SwitchToSOSCF true

end

*xyz 0 1

H 0.0 0.0 0.0

H 0.0 0.0 {R}

*

This input script instructs ORCA to scan the bond length of H2, R, from the value specified by start_geometry
to the value specified by end_geometry in a number of steps corresponding to #steps and calculate the
energy with UHF and the 6-311G** basis set at each step. The first step will use the orbitals in the
‘file_base_name.gbw’ file provided as input, while at each successive step, the calculation will use the
orbitals optimized in the previous step as the initial guess. Since the optimized orbitals are already available
from the ‘.gbw’ at the first step, the first two commands in the %scf block disable the SCF procedure for
the first step. The %method block specifies that successive steps use a method that directly finds the orbital
rotations that optimize the orbitals, which is more robust than DIIS for excited state calculations at varying
geometries (you can find more information about this algorithm here Neese Chem. Phys. Lett 325, 93
(2000)).

UHF energy curve of the σgσ
∗
u excited state

Use the procedure described above to calculate the energy curve of the σgσ
∗
u excited state of H2 from R = 0.4

Å to 4.0 Å in 40 steps using UHF and the 6-311G** basis set.
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Q11: Is the minimum-energy bond length of the H2 molecule in the σgσ
∗
u excited state shorter, the same

or longer compared to the equilibrium bond length of the ground state (0.735 Å for Hartree-Fock with the
6-311G** basis set)? Is this result expected based on the character of the electronic excitation?

UHF energy curves of the σ2∗
u excited state

Use the procedure described above to calculate the energy curve of the σ2∗
u excited state of H2 from R = 0.4

Å to 4.0 Å in 40 steps using UHF and the 6-311G** basis set.

Q12: Describe the behavior of the Hartree-Fock energy of the σ2∗
u excited state as H2 is stretched. Does the

Hartree-Fock energy curve that you calculated have a minimum? Do you expect the Hartree-Fock energy to
underestimate, overestimate or be the same as the result from an FCI calculation at R = ∞?

Hint: You can use that for minimal basis H2 the energy of the doubly excited state is 2h22 + J22. What is
the limit of this expression as R→ ∞ and how does it compare to the limit of the FCI energy found in Q9?

As for the ground state (see lab 3 exercises), the Hartree-Fock calculations retain the symmetry of the
initial guess. For this reason, the UHF calculations for the σ2∗

u excited state converge to a restricted solution
with a wave function that is symmetric with respect to inversion around the center of the molecule. As
done for the ground state in lab 3, we can also break the symmetry of the initial guess for an excited state
calculation to drive the convergence towards a broken-symmetry solution.

In order to obtain a broken-symmetry solution for the σ2∗
u excited state of H2, perform first a ground

state calculation using the Brokensym functionality (see lab 3) at a bond length of 4.0 Å. Be careful, it should
be a bond length of 4.0 Å and not 0.4 Å! Why? If you don’t know, have a look at the lab 3 exercises. Then,
perform an excited state calculation using the ‘.gbw’ file from the broken-symmetry ground state calculation
specifying the following excitation:

%scf

rotate

{0, 1, 90.0, 0, 0}

end

CNVDIIS false

CNVSOSCF true

SOSCFStart 1.0

LShift 1.5

end

NB: We have specified only one excitation in the rotate ... end subblock, and not two, as done so far for
the σ2∗

u state. The reason for this will become apparent in a moment.

Q13: Visualize the spin α and spin β occupied orbitals of the excited state solution that you just calculated.
How do the orbitals appear? Are they localized on a single H atom or delocalized among both atoms? Do the
orbitals possess any symmetry with respect to inversion around the center of the molecule?

Finally, scan the energy from 4.0 to 0.8 Å using the ‘.gbw’ file generated in the previous calculation as
input and the following SCF parameters, which will use an even more robust SCF method to ensure that
the calculations converge to a broken-symmetry solution:

!UHF 6-311G** MOREAD NRSCF

%moinp "file_base_name.gbw"

%scf

CNVDIIS false

NRMaxIt 0

NRStart 1.0
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end

Q14: Plot in the same figure the energy curve that you just obtained for a broken-symmetry solution of the
doubly excited state with the energy curve obtained previously for the same state without symmetry breaking.
Does the energy curve of the broken-symmetry solution display a minimum? If yes, can you provide an
explanation? Does the energy curve of the broken-symmetry solution have the correct limit for R→ ∞?

Hint: For minimal basis H2, at R = ∞, the molecular orbitals of the broken-symmetry solution become equal
to the 1s atomic orbitals, ϕ1 and ϕ2, respectively. What is the energy of a Slater determinant formed by
these two orbitals and how does how does it compare to the FCI energy of the doubly excited state obtained
in the previous section?
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