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Variational Method

Only a few problems can be solved exactly analytically. This is true in Quantum Mechanics just as in
Classical Mechanics. The variational method is one of the two most commonly used approximate methods
in Quantum Chemistry. It is used in the Hartree-Fock approximation, the configuration interaction method
and density functional theory. But, before dealing with systems of many electrons, it is better to get to know
the method by applying it to simpler systems.

Given a time-independent Hamiltonian, H, with eigenstates |ϕn >

H|ϕn >= En|ϕn >

where n = 0 for the ground state, n = 1 for excited state, etc, then for any arbitrary state vector |ψ > in
the space spanned by the eigenstates, i.e.

|ψ >=
∑
n

cn|ϕn > ,

(|ψ > must satisfy the same boundary conditions as the |ϕn >’s). We have

< H >=
< ψ|H|ψ >
< ψ|ψ >

≥ E0 .

This says that the expectation value for the energy using the arbitrary state vector |ψ > can never be lower
than the true ground state energy E0. This is called the variational principle. It can be used to get an
estimate of E0 and |ϕ0 >.

‘Proof:’ We assume the eigenstates |ϕn > are normalized

< ϕk|ϕn >= δkn .

Substituting the above expansion of |ψ > into the expression for < H >, first the denominator and then the
numerator, gives

< ψ|ψ > =
∑
n

c∗n < ϕn|
∑
k

ck|ϕk >=
∑
n

∑
k

c∗nckδkn =
∑
n

|cn|2

< ψ|H|ψ > =
∑
n

c∗n < ϕn|H|
∑
k

ck|ϕk >

=
∑
n

∑
k

c∗nck < ϕn|H|ϕk >

=
∑
n

∑
k

c∗nckEkδnk

=
∑
n

|cn|2En = |c0|2E0 + |c1|2E1 + |c2|2E2 + . . .

≥ |c0|2E0 + |c1|2E0 + |c2|2E0 + · · · = E0

∑
n

|cn|2 .

(1)

The inequality follows from using E0 ≤ EN . Taking the ratio gives

< H > ≥
E0

∑
n |cn|2∑

n |cn|2
= E0

The equality < H >= E0 only holds when c1 = c2 = c3 · · · = 0 . Then |ψ >= |ϕ0 >, i.e., |ψ > is the true
ground state.
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The variational principle can be used to obtain an approximate ground state energy and wavefunction in
the following way: Choose a family of functions that satisfy the right boundary conditions and depend on
some parameter, α, for example,

ψα(x) = e−αx2

,

calculate < H >α and find the value of α, say α = αm, that minimizes < H >α. Then < H >αm
is an

estimate of the ground state |ϕ0 >. The family of functions < x|ψα > is called the trial functions and the
more flexible it is, the better the estimates will be.

Example: Harmonic Oscillator:

H = − ℏ2

2m

d2

dx2
+

1

2
mω2x2.

A. First choice of trial functions:

< x|ψα >= ψα(x) = e−αx2

(α > 0).

The normalizing denomenator is

< ψα|ψα >=

∫ ∞

−∞
dxe−2αx2

=

√
π

2α
.

The numerator is

< ψα|H|ψα >=

∫ ∞

−∞
dxe−αx2

[
− ℏ2

2m

d2

dx2
+
mω2

2
x2

]
e−αx2

.

Perform the derivative in the first term of the integrand

d2

dx2
e−αx2

=
d

dx

(
− 2αxe−αx2)

= −2αe−αx2

+ 4α2x2e−αx2

.

(2)

This gives

< ψα|H|ψα > =

∫ ∞

−∞
dx

[
ℏ22α
2m

+
(
− ℏ24α2

2m
+
mω2

2

)
x2

]
e−2αx2

=
ℏ2α
m

√
π

2α
+
(
− 2ℏ2α2

m
+
mω2

2

) 1

4α

√
π

2α︸ ︷︷ ︸∫ ∞
−∞ x2e−2αx2dx

=
(ℏ2α
2m

+
mω2

8α

)√ π

2α
.

(3)

Taking the ratio gives the expectation value of the energy as a function of α

< H > (α) =

(ℏ2α
2m + mω2

8α

)√
π
2x√

π
2α

=
ℏ2α
2m

+
mω2

8α
.
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Expectation value of the energy, < H >α, as function of the width of the Gaussian trial function, α, (solid
line) and its two contributions(dashed lines). The minimum represents the optimal value according to the

variational principle.

Now we need to minimize < H >α with respect to α. For any extremum we have

d

dα
< H >α

∣∣∣
α=αm

= 0

ℏ2

2m
− mω2

8α2
m

= 0 .

(4)

This gives an optimal value for α

α2
m =

m2ω2

4ℏ2

αm =
mω

2ℏ
.

(5)

This value of α indeed gives a minimum in < H >α. An estimate for the ground state energy can now be
obtained by using the optimal value α = αm

< H >αm
=

ℏ2

2m

(mω
2ℏ

)
+
mω2

8

( 2ℏ
mω

)
=

ℏω
2

=
1

2
ℏω .

(6)

Here we happen to get exactly the right ground state energy because the family of trial functions we chose,
ψα(x) = e−αx2

, includes the exact wave function.

B. Second choice of trial functions:

< x|ψα >=
1

x2 + α
(α > 0)

< ψα|ψα > =

∫ ∞

−∞

dx

(x2 + α)2
=

π

2α
√
α

< H >α =
ℏ2

4m

1

α
+

1

2
mω2α .

(7)

Minimizing with respect to α
d < H >α

dα

∣∣∣
α=αm

= 0

gives

αm =
1√
2

ℏ
mω
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and
< H >αm

=
1√
2
ℏω .

Here the estimate of the ground state energy is off by 20% of the ℏω quantum. Considering how different
the trial wave functions are from the true ground state wave function, this is perhaps a surprisingly good
estimate of the energy. It turns out that it is always much easier to get good estimates of the energy than
the wavefunction. This is because the energy extrema are insensitive to small changes in the wave function,
δ < H > /δψ = 0.

The quality of the approximation provided by the variational method is determined by how well the
chosen family of trial functions can mimic the true eigenfunction. Experience and intuition are important
in making a good choice of trial functions.

How about excited states?
Given an estimate of the ground state wave function, |ψα0

m
>, we can choose a family of basis vectors

|ψ′
α > that are orthogonal to the ground state, i.e. they satisfy

< ψα0
m
|ψ′

α >= 0.

Carrying out similar analysis as above, but now with c0 = 0, gives

< H >=
< ψ′|H|ψ′ >

< ψ′|ψ′ >
≥ E1 .

Example: Continuing with case A in the harmonic oscillator example, we can now choose

ψ′
α(x) = xe−αx2

as trial functions. These functions are odd, so they are guaranteed to be orthogonal to the ground state
wave function, which is even,

< ψα0
m
|ψ′

α >=

∫ ∞

−∞
dx xe−(α+α0

m)x2

= 0 .

Here we can use symmetry to choose a valid family of trial functions without having to know the exact
ground state wavefunction. After evaluating the numerator and denominator, we get

< H >α=
< ψ′

α|H|ψ′
α >

< ψ′
α|ψ′

α >
=

3ℏ2

2m
α+

3

8

mω2

α
.

Minimizing this expectation value of the energy with respect to α gives

< H >αm
=

3

2
ℏω .

Again, the variational calculation gives exactly the right value here, because we happened to choose a set of
trial functions that includes the true eigenfunction.

General variation of the trial function

It is possible to minimize the expectation value of the energy, < H >, without reference to any explicit
form of the trial wavefunction. We then need to minimize < H >=< ψ|H|ψ > / < ψ|ψ > with respect to
any arbitrary infinitesimal change in |ψ > rather than with respect to a parameter in a predefined form of the
trial function. Or, if we represent the trial function by its numerical values on a dense grid of the variable(s),
the value of the function at each point on the grid becomes a variational parameter. The expectation value
of the energy is an example of a functional. While a function is an operation where the input is a number
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and the output is a number, a functional has a function as input and the output is a number. An integral is
an example of a functional. Just like we find a minimum of a function by differentiating the function with
respect to the variable and setting the derivative to zero, a functional is minimized by making an arbitrary,
infinitesimal change to the input function and setting the change in the functional to zero. This is referred
to as calculus of variation. If we make an infinitesimal change in the function

|ψ > → |ψ > +|δψ >,

then the expectation value < H > will change by δ< H >, that is

< H > → < H > +δ< H > .

It is good to go through this general derivation of the variational principle for two reasons. One is to see
how the variational principle can be applied to excited states, not just to the ground state. The second is
to see this technique of finding the extremum of a functional with respect to a function because this is how
Hartree-Fock is derived, the central concept in computational chemistry.

An arbitrary, infinitesimal change |δψ > to the trial function |ψ >.

We will show now that if |ψ > is such that δ < H >= 0 for any infinitesimal change in the function,
|δψ >, then

H|ψ >=< H > |ψ >

i.e., |ψ > is an eigenvector of H with an eigenvalue < H >. Note that this is true for the excited states
as well as the ground state. Therefore, any extremum in < H > with respect to an arbitrary, infinitesimal
change in |ψ > is an eigenvalue of H.

‘Proof:’ By definition of < H > we have:

< H >< ψ|ψ >=< ψ|H|ψ >

for any |ψ >. After a small change in |ψ > to a state |ψ + δψ > this becomes(
< H > +δ< H >

)
< ψ + δψ|ψ + δψ >=< ψ + δψ|H|ψ + δψ > .

By making use of the fact that the integration, < · · · >, and the operator H are linear, we get(
< H > +δ< H >

)(
< ψ|ψ > + < δψ|ψ > + < ψ|δψ > + < δψ|δψ >

)
= < ψ|H|ψ > + < δψ|H|ψ > + < ψ|H|δψ > + < δψ|H|δψ >

(8)

The change δψ is infinitesimal so second order terms, such as < δψ|δψ > and < δψ|H|δψ > can be neglected,

< H >< ψ|ψ >+ δ< H >< ψ|ψ > + < H >
(
< δψ|ψ > + < ψ|δψ >

)
=< ψ|H|ψ > + < δψ|H|ψ > + < ψ|H|δψ >

δ< H > =
1

< ψ|ψ >
[(
< δψ|H|ψ > + < ψ|H|δψ >

)
− < H >

(
< δψ|ψ > + < ψ|δψ >

)]
.

(9)
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So, if δ< H >= 0 we get the condition

< δψ|H− < H > |ψ > + < ψ|H− < H > |δψ >= 0.

This is true for any infinitesimal |δψ >. In particular we can choose

|δψ >= δλ |χ >

with |χ > defined to be
|χ >≡ (H− < H >)|ψ > .

Using the fact that H is hermitian, H† = H, we can write

< ψ|(H− < H >) ≡< χ|.

The above condition then becomes
2δλ < χ|χ >= 0,

that is
< χ|χ >= 0.

When the modulus is zero, the vector itself must be zero, so |χ >= 0. By definition of |χ > this means

(H− < H >)|ψ >= 0

and
H|ψ >=< H > |ψ > .

So, |ψ > must be one of the eigenstates and it corresponds to eigenvalue < H >. This is not necessarily the
ground state. Any stationary function in the sense that an arbitrary change to the function does not change
the expectation value of the energy, is a solution to the Schrödinger equation. Note that a stationary point
is not necessarily a minimum, it can be a saddle point or maximum on the energy surface.
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