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Vibra&onal*modes*

Recall+Born+Oppenheimer+approxima(on:+
Since+nuclei+are+much+heavier+than+electrons+(more+than+a+thousand+(mes):+
+
1.++Fix+the+posi(on+of+the+nuclei+and+solve+for+the+distribu(on+of+the+electrons+
++++++using+for+example+HartreeIFock,+CI,+MP2+or+DFT.+
++++++Gives+energy+surface+E(R1,R2,+…)+where+R1+is+loca(on+of+nucleus+1,+etc.+
+
+
+
+
+
+
+
+
+
2.+++Let+nuclei+move+(classically+or+quantum+mechanically)+on+the+energy+surface+
++++++E(R1,R2,+…).+
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the spacing between electronic levels is in general much larger than that of vibrational levels. 



Poten(al+energy+func(on++
++++++++describing+the+stretching+of+a+covalent+bond++

Commonly+used+func(onal+form:+++The+Morse+poten(al+

the B-C molecule can be given some vibrational energy. The probability of an exchange
reaction depends on the system having enough kinetic energy to overcome the rise in
the potential energy as the three atoms get close together. A reaction can only occur if

the sum of the translational kinetic energy of the A atom approaching the B-C molecule
and the kinetic energy of the vibration of the B-C molecule is enough to overcome the

potential energy barrier, represented by the saddle point on the potential energy surface.
Depending on the shape of the potential energy surface, sometimes the translation may

be more effective in increasing the reaction probability, but sometimes the vibration is
more effective.

If we are dealing with a situation where the reactants have thermalized to a certain

bath temperature, then the translational kinetic energy is on average kT/2 per trans-
lational degree of freedom and the vibrational kinetic energy is kT/2 per vibrational

degree of freedom. A statistical theory of transition rates, the so-called transition state
theory, can then be used to estimate the rate of transitions. This will be the topic of

section II.

1c. The harmonic approximation

The atoms in molecules are constantly moving. The distance between any pair
of atoms and bond angles is constantly changing with time, although the average bond

length and bond angles are well defined and remain the same for long periods of time. At
room temperature, this motion is mostly small amplitude oscillations, so called molec-

ular vibration. Chemical reactions occur on a much longer time scale than vibration
(many orders of magnitude). Each degree of freedom of the molecule has on average
an energy of kBT where kB is the Boltsmann constant and T is the temperature. It

is important to understand vibrational motion of molecules for many reasons. Vibra-
tional motion is an important source and sink of kinetic energy in chemical reactions.

Also, by using infrared spectroscopy which probes the vibrational motion, one can learn
about molecular structure and the chemical composition of unknown samples. Sharp

peaks in the IR absorption can be associated with particular molecules, or fragments
of molecules. Each peak corresponds to a ‘vibrational mode’ of the molecule. In most
cases the vibrational modes can be well approximated by so-called ‘normal modes’ of

vibration.

1c.1 Vibration of a diatomic molecule

In a diatomic molecule, the vibrational motion corresponds to oscillations in the

bond length. The interaction potential function may, for example, be approximated by
a Morse potential

Ee(r) = D
(

e−2α(r−rb) − 2e−α(r−rb)
)
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D+is+the+well+depth+
rb+is+the+posi(on+of+the+minimum+(bond+length,+here+1.2)+
alpha+determines+the+curvature,+i.e.+the+s(ffness+of+the+bond++
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FIGURE 1. VISUALIZING THE MODEL POTENTIAL FOR THE MOLECULE IN VARIOUS WAYS: (a) DEFINITION OF
THE CARTESIAN COORDINATES xi AND INTERNAL COORDINATES rAB AND rBC, (b) TOTAL POTENTIAL ENERGY
PLOTTED AS A FUNCTION OF BOND LENGTHS rAB WITH rBC HELD CONSTANT, (c) A CONTOUR PLOT OF THE
POTENTIAL ENERGY SURFACE, (d) A THREE-DIMENSIONAL ROTATABLE PLOT OF THE POTENTIAL ENERGY
SURFACE.

The total potential energy is the sum of the two Morse potentials

( ) ( ) ( )V r r V r V rAB BC AB AB BC BC, = + (2)

In the Morse potential energy functions, the parameters dAB and dBC give the well
depth, bAB  and bBC the positions of  minimum energy for each bonded atomic pair (the
equilibrium bond lengths), and aAB and aBC the exponential decay length (see Figure
1b). The values of the parameters in the potential functions are chosen to be dAB = dBC

= 7.65 eV, bAB = bBC = 1.162 Å, and aAB = aBC =2.5 Å–1.

To visualize the atomic interaction potentials, the students generate a colored contour
plot (Figure 1c) and three-dimensional plot (Figure 1d) of the potential energy surface.



+++
Harmonic*approxima&on:***
*
++++++Thermal+energy+at+room+temperature+

is+only+,+kT=0.025+eV.+
++++++So,+a+second+order+Taylor+

approxima(on+to+the+poten(al+
energy+curve+(or+energy+surface)+is+
good+enough+in+the+region+that+has+
appreciable+sta(s(cal+weight.++

++++++

This form of the potential function often gives a good representation of the potential
energy of covalently bonded atoms. Under typical conditions - for reasonably strong
bonds and temperature near room temperature - the deviations of the bond length from

its optimal value is small, on the order of 0.1 or less. For such small displacements of
the atoms, the potential energy can often be well described by a harmonic oscillator

approximation. The appropriate harmonic approximation can be found by Taylor ex-
pansion the potential function about the minimum energy. Let x denote the deviation,

x = r − r0, from the optimal distance between the atoms. The Taylor expansion about
x = 0 is

Ee(x) = Ee(0) + xE ′

e(0) +
x2

2
E ′′

e (0) + h.o.t.

Since Ee(x) has a minimum at x = 0, E ′

e(0) = 0. Neglecting the higher order terms, we
have

Ee(x) − Ee(0) =
1

2
E ′′

e (0) x2 =
1

2
k x2

Here, k denotes the so called spring constant (the harmonic oscillator potential function

is applicable to a spring with stiffness given by the spring constant). The force acting
on the harmonic oscillator is

F (x) = −
d

dx
Ee(x) = −kx

The classical trajectory of a harmonic oscillator can be obtained from the equation of
motion (Newton’s second law)

F (x) = mẍ(t)

−kx(t) = mẍ(t)

ẍ(t) = −(k/m) x(t)

The notation ẍ(t) means second derivative of x with respect to t. This differential

equation has the general solution

x(t) = Asin(ωt) + Bcos(ωt)

where ω =
√

k/m. A and B are constants that need to be evaluated from the initial
conditions. Another way to write the general solution is

x(t) = Csin(ωt + φ)

The deviation of the bond length from the optimal value varies in a sinusoidal way in
time with frequency, ω.

Quantum mechanically, the harmonic oscillator has bound state energy levels spaced
apart by ∆E = !ω. The vibrational motion can be excited by the absorption of a quan-
tum of light, a photon, with energy ∆E = hν = !ω. The selection rule for vibrational
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Vibra(onal+mo(on+within+the+harmonic+approxima(on+

This form of the potential function often gives a good representation of the potential
energy of covalently bonded atoms. Under typical conditions - for reasonably strong
bonds and temperature near room temperature - the deviations of the bond length from
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Extend+to+polyatomic+molecules+

Simplest+case,+a+linear+triIatomic+molecule++
++++++++++++++++++++++++++++++with+atomic+mo(on+confined+to+a+line+(i.e.+no+bends)+

AB BCmA mB Cm
kk

Just+two+degrees+of+freedom,+distance+AIB+and+distance+BIC,++(rAB+and+rBC)+

Poten(al+energy+surface+formed+by+summing+up+two+Morse+poten(als,+one+for+each+bond+

5  /  V O L .  3 ,  N O .  4 I S S N  1 4 3 0 - 4 1 7 1
T H E  C H E M I C A L  E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r
©  1 9 9 8  S P R I N G E R - V E R L A G  N E W  Y O R K ,  I N C . S  1 4 3 0 - 4 1 7 1  ( 9 8 )  0 4 2 3 1 - 6

FIGURE 1. VISUALIZING THE MODEL POTENTIAL FOR THE MOLECULE IN VARIOUS WAYS: (a) DEFINITION OF
THE CARTESIAN COORDINATES xi AND INTERNAL COORDINATES rAB AND rBC, (b) TOTAL POTENTIAL ENERGY
PLOTTED AS A FUNCTION OF BOND LENGTHS rAB WITH rBC HELD CONSTANT, (c) A CONTOUR PLOT OF THE
POTENTIAL ENERGY SURFACE, (d) A THREE-DIMENSIONAL ROTATABLE PLOT OF THE POTENTIAL ENERGY
SURFACE.

The total potential energy is the sum of the two Morse potentials

( ) ( ) ( )V r r V r V rAB BC AB AB BC BC, = + (2)

In the Morse potential energy functions, the parameters dAB and dBC give the well
depth, bAB  and bBC the positions of  minimum energy for each bonded atomic pair (the
equilibrium bond lengths), and aAB and aBC the exponential decay length (see Figure
1b). The values of the parameters in the potential functions are chosen to be dAB = dBC

= 7.65 eV, bAB = bBC = 1.162 Å, and aAB = aBC =2.5 Å–1.

To visualize the atomic interaction potentials, the students generate a colored contour
plot (Figure 1c) and three-dimensional plot (Figure 1d) of the potential energy surface.
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The total potential energy is the sum of the two Morse potentials

( ) ( ) ( )V r r V r V rAB BC AB AB BC BC, = + (2)

In the Morse potential energy functions, the parameters dAB and dBC give the well
depth, bAB  and bBC the positions of  minimum energy for each bonded atomic pair (the
equilibrium bond lengths), and aAB and aBC the exponential decay length (see Figure
1b). The values of the parameters in the potential functions are chosen to be dAB = dBC

= 7.65 eV, bAB = bBC = 1.162 Å, and aAB = aBC =2.5 Å–1.

To visualize the atomic interaction potentials, the students generate a colored contour
plot (Figure 1c) and three-dimensional plot (Figure 1d) of the potential energy surface.



tion (a multidimensional harmonic oscillator). The solutions are called ‘normal modes’
and they give the characteristic frequencies which are the dominant features in typical
absorption spectra of polyatomic molecules. Let xA(t) be the displacement of atom A

at time t from the optimal, lowest potential energy position of the atom, and similarly
for xB(t) and xC(t). Analogous to the case of a diatomic molecule, a Taylor expansion

of the potential energy about the optimal configuration of the atoms gives

Ee(xA, xB, xC) =
kAB

2
(xB − xA)2 +

kBC

2
(xC − xB)2 (1)

if third order and higher terms are neglected. This is the harmonic approximation to

the full potential energy surface. The spring constants kAB and kBC are directly related
to the second derivative of the potential energy with respect to the distance between

atoms.
The equation of motion for each one of the atoms is

Fi = miẍi (2)

where i is A, B or C. Using the fact that the force is the negative derivative of the

potential energy, the three equations can be written as

−
∂V

∂xi

= miẍi (3)

where the partial derivative, ∂V
∂xi

, denotes differentiation with respect to xi while the

other variables are kept fixed. In the case of the linear, triatomic molecule the force on
each atom is



























∂V
∂xA

= −kAB(xB − xA)

∂V
∂xB

= kAB(xB − xA) − kBC(xC − xB)

∂V
∂xC

= kBC(xC − xB).

(4)

Inserting this form of the force into the equations of motion, and dividing by the mass
of the atom gives



























kAB

mA
(xB − xA) = ẍA

−kAB

mB
(xB − xA) +kBC

mB
(xC − xB) = ẍB

−kBC

mC
(xC − xB) = ẍC .

(5)
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Calculate+classical+dynamics+of+the+atoms+
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or

FIGURE 2. ILLUSTRATION AND ANALYSIS OF THE TIME EVOLUTION OF THE MOLECULE OVER A 250-fs TIME
INTERVAL SIMULATED BY THE VELOCITY VERLET ALGORITHM FOR INITIAL ATOMIC DISPLACEMENTS IN
ÅNGSTROMS: xA = – 0.18, xB = – 0.28, xC = 0.21. (a) THE TRAJECTORY SPECIFIED BY THE INTERNAL COORDINATE
PAIRS (rAB(t), rBC(t)) PLOTTED OVER THE CONTOUR PLOT OF THE POTENTIAL ENERGY SURFACE. INITIAL ATOMIC
POSITIONS APPEAR TO THE RIGHT OF THE CONTOUR PLOT. (b) THE SAME TRAJECTORY AS IN (a) ON A
LARGER SCALE. (c) THE VELOCITY OF ATOM A PLOTTED AS A FUNCTION OF SIMULATION TIME. (d) THE
FOURIER EXPANSION OF THE VELOCITY OF ATOM A OVER THE SIMULATED TIME INTERVAL. THE TWO LARGE
PEAKS INDICATE THE DOMINANT FREQUENCIES OF THE MOLECULAR DYNAMICS, WHICH CORRESPOND
APPROXIMATELY TO THE NORMAL MODES OF VIBRATIONAL MOTION SHIFTED DOWN IN FREQUENCY. THE
SMALLER PEAKS APPEAR AT SUMS OF THE DOMINANT PEAK FREQUENCIES, CORRESPONDING TO
COMBINATIONS OF NORMAL MODE MOTIONS.

coordinates can be defined so that the set of coupled equations (one for each atom)
separates into three independent equations, each with an analytical solution
corresponding to simple harmonic motion. These linear combinations of atomic
coordinates are called normal coordinates. Each normal coordinate describes a
collective motion or mode of the molecule during which all atoms vibrate in phase at
one frequency. The goal of the normal-mode analysis is to identify the normal
coordinates and frequencies of vibrational motion.

Example+trajectory+(very+large+amplitude!)+

Ini(al+posi(on++



Fourier+expansion+of+the+velocity+or+posi(on+of+the+atoms+

The+velocity+of+atom+A+in+the+trajectory+on+the+previous+slide+as+a+func(on+of+(me+

Fourier+expansion+of+the+velocity+of+atom+A+gives+
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coordinates can be defined so that the set of coupled equations (one for each atom)
separates into three independent equations, each with an analytical solution
corresponding to simple harmonic motion. These linear combinations of atomic
coordinates are called normal coordinates. Each normal coordinate describes a
collective motion or mode of the molecule during which all atoms vibrate in phase at
one frequency. The goal of the normal-mode analysis is to identify the normal
coordinates and frequencies of vibrational motion.

Two+main+peaks+(fundamentals).+
Also+smaller+peaks+that+
disappear+as+the+amplitude++
is+decreased+(overtones).+



Harmonic+approxima(on++

tion (a multidimensional harmonic oscillator). The solutions are called ‘normal modes’
and they give the characteristic frequencies which are the dominant features in typical
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(5)

10

tion (a multidimensional harmonic oscillator). The solutions are called ‘normal modes’
and they give the characteristic frequencies which are the dominant features in typical
absorption spectra of polyatomic molecules. Let xA(t) be the displacement of atom A

at time t from the optimal, lowest potential energy position of the atom, and similarly
for xB(t) and xC(t). Analogous to the case of a diatomic molecule, a Taylor expansion

of the potential energy about the optimal configuration of the atoms gives

Ee(xA, xB, xC) =
kAB

2
(xB − xA)2 +

kBC

2
(xC − xB)2 (1)

if third order and higher terms are neglected. This is the harmonic approximation to

the full potential energy surface. The spring constants kAB and kBC are directly related
to the second derivative of the potential energy with respect to the distance between

atoms.
The equation of motion for each one of the atoms is

Fi = miẍi (2)

where i is A, B or C. Using the fact that the force is the negative derivative of the

potential energy, the three equations can be written as

−
∂V

∂xi

= miẍi (3)

where the partial derivative, ∂V
∂xi

, denotes differentiation with respect to xi while the

other variables are kept fixed. In the case of the linear, triatomic molecule the force on
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The force on each atom within the harmonic approximation is: 
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The problem is to solve this set of three, coupled differential equations. One can
attempt to find a solution where all the atoms oscillate with the same frequency, i.e.



























ẍA = −ω2xA

ẍB = −ω2xB

ẍC = −ω2xC .

(6)

Here, ω is some frequency which has the same value in all three equations. To test
if this will work, this form for ∆ẍA can be inserted into the equation of motion to give

(after switching left and right hand sides of each equation)































−kAB

mA
xA +kAB

mA
xB = −ω2 xA

kAB

mB
xA −

(

kAB

mB
+ kBC

mB

)

xB +kBC

mB
xC = −ω2 xB

kBC

mC
xB −kBC

mC
xC = −ω2 xC .

(7)

This set of linear equations can be written in a matrix form as







−kAB

mA

kAB

mA
0

kAB

mB
−kAB

mB
− kBC

mB

kBC

mB

0 kBC

mC
−kBC

mC











xA

xB

xC



 = −ω2





xA

xB

xC



 (8)

This is a matrix eigenvalue problem. The task is to determine the eigenvalue −ω2 and

corresponding eigenvector. As will be discussed below, three different eigenvalues −ω2
i

and eigenvectors vi can be found in this case. A non-trivial solution exists only when
the determinant of the matrix







−kAB

mA
+ ω2 kAB

mA
0

kAB

mB
−kAB

mB
− kBC

mB
+ ω2 kBC

mB

0 kBC

mC
−kBC

mC
+ ω2







(9)

is zero. This gives a third order polynomial equation for ω2 which has three roots.

A special case: A molecule of the type A − A − A

The calculation is simplified greatly if the mass of all three atoms is taken to be the
same, i.e. mA = mB = mC ≡ m, and the two spring constants are taken to be the same,

i.e. kAB = kBC ≡ k. Then the eigenvalue problem becomes

11
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The problem is to solve this set of three, coupled differential equations. One can
attempt to find a solution where all the atoms oscillate with the same frequency, i.e.
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if this will work, this form for ∆ẍA can be inserted into the equation of motion to give

(after switching left and right hand sides of each equation)
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This set of linear equations can be written in a matrix form as







−kAB

mA

kAB

mA
0

kAB

mB
−kAB

mB
− kBC

mB

kBC

mB

0 kBC

mC
−kBC

mC











xA

xB

xC



 = −ω2





xA

xB

xC



 (8)

This is a matrix eigenvalue problem. The task is to determine the eigenvalue −ω2 and

corresponding eigenvector. As will be discussed below, three different eigenvalues −ω2
i

and eigenvectors vi can be found in this case. A non-trivial solution exists only when
the determinant of the matrix
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is zero. This gives a third order polynomial equation for ω2 which has three roots.

A special case: A molecule of the type A − A − A

The calculation is simplified greatly if the mass of all three atoms is taken to be the
same, i.e. mA = mB = mC ≡ m, and the two spring constants are taken to be the same,

i.e. kAB = kBC ≡ k. Then the eigenvalue problem becomes
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The problem is to solve this set of three, coupled differential equations. One can
attempt to find a solution where all the atoms oscillate with the same frequency, i.e.
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
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


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ẍB = −ω2xB

ẍC = −ω2xC .

(6)

Here, ω is some frequency which has the same value in all three equations. To test
if this will work, this form for ∆ẍA can be inserted into the equation of motion to give

(after switching left and right hand sides of each equation)
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




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)
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mB
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mC
xC = −ω2 xC .

(7)

This set of linear equations can be written in a matrix form as
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
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
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xB
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

 = −ω2




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

 (8)

This is a matrix eigenvalue problem. The task is to determine the eigenvalue −ω2 and

corresponding eigenvector. As will be discussed below, three different eigenvalues −ω2
i

and eigenvectors vi can be found in this case. A non-trivial solution exists only when
the determinant of the matrix







−kAB

mA
+ ω2 kAB

mA
0
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−kAB

mB
− kBC

mB
+ ω2 kBC

mB

0 kBC
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mC
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
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

(9)

is zero. This gives a third order polynomial equation for ω2 which has three roots.

A special case: A molecule of the type A − A − A

The calculation is simplified greatly if the mass of all three atoms is taken to be the
same, i.e. mA = mB = mC ≡ m, and the two spring constants are taken to be the same,

i.e. kAB = kBC ≡ k. Then the eigenvalue problem becomes

11





− k
m

k
m

0
k
m

− k
m
− k

m
k
m

0 k
m

− k
m









xA

xB

xC



 = −ω2





xA

xB

xC



 . (10)

After dividing through by k
m

and defining λ ≡ −mω2/k this becomes





−1 1 0
1 −2 1

0 1 −1









xA

xB

xC



 = λ





xA

xB

xC



 (11)

which has a non-trivial solution only when the determinant is zero. The determinant is
the third order polynomial

p(λ) = (−1 − λ)(−2 − λ)(−1 − λ) − (−1 − λ) − (−1 − λ)
= −λ(λ + 1)(λ + 3)

(12)

which has roots at λ1 = 0, λ2 = −1, and λ3 = −3. By inserting the eigenvalues into
the eigenvalue equation one can find the corresponding eigenvectors. The normalized

eigenvectors are

q1 =
1
√

3





1
1

1



 , q2 =
1
√

2





−1
0

1



 , q3 =
1
√

6





1
−2

1



 .

These are the normal mode coordinates. The interpretation of the three solutions are

as follows:

• The first solution corresponds to zero frequency and all three atoms are displaced
in the same way xA = xB = xC . This is simply uniform translation.

AB BCmA mB Cm
kk

• The second solution corresponds to frequency ω2 =
√

k/m. The eigenvector shows

that atom B does not move at all, while A and C move equally much but in
opposite direction. This is the so-called symmetric stretch.

AB BCmA mB Cm
kk

• The third solution corresponds to ω3 =
√

3k/m a higher frequency than the

symmetric stretch. The eigenvector shows that while atoms A and B are displaced
equally much in the same direction, atom B is displaced twice as much in the
opposite direction. This is the so-called asymmetric stretch.

12
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



− k
m

k
m

0
k
m

− k
m
− k

m
k
m

0 k
m

− k
m




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the third order polynomial

p(λ) = (−1 − λ)(−2 − λ)(−1 − λ) − (−1 − λ) − (−1 − λ)
= −λ(λ + 1)(λ + 3)
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which has roots at λ1 = 0, λ2 = −1, and λ3 = −3. By inserting the eigenvalues into
the eigenvalue equation one can find the corresponding eigenvectors. The normalized
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These are the normal mode coordinates. The interpretation of the three solutions are

as follows:

• The first solution corresponds to zero frequency and all three atoms are displaced
in the same way xA = xB = xC . This is simply uniform translation.
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• The second solution corresponds to frequency ω2 =
√

k/m. The eigenvector shows

that atom B does not move at all, while A and C move equally much but in
opposite direction. This is the so-called symmetric stretch.
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• The third solution corresponds to ω3 =
√

3k/m a higher frequency than the

symmetric stretch. The eigenvector shows that while atoms A and B are displaced
equally much in the same direction, atom B is displaced twice as much in the
opposite direction. This is the so-called asymmetric stretch.
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A general solution for the dynamics of the three atoms is some linear combination
of these three normal mode solutions. In a sense, going from the original coordinates,

(xA, xB, xC), to a linear combination of the normal mode vectors is just a coordinate
transformation. The advantage of the normal modes is that they are independent, i.e.

there is no energy flow from one mode to another. If the molecule is vibrating in such a
way that only one mode is active, then the molecule will continue to move according to

that one normal mode forever. The others never come into play. Recall, that the central
approximation here is that the interaction potential is harmonic. For more realistic
anharmonic interaction potentials, such as the Morse potential, the independent normal

modes are only approximate solutions. Energy will then flow between these modes, but
only slowly if the anharmonic corrections are small.

When the mass of the atoms is not the same, for example CO2, the solution of
the eigenvalue problem is a little more complicated, but the normal modes are still a
symmetric stretch and an aymmetric stretch. Also, when the spring constant for the

two bonds is not the same, as a OCS molecule for example, the calculation is much
more tedious and the solutions do not have any symmetry (or antisymmetry). These

problems can, however, easily be solved using Matlab or similar tools.

Quantum mechanical treatment

Quantum mechanical treatment of a polyatomic molecule within the harmonic ap-
proximation can also make use of the simplification that occurs when one uses normal

mode coordinates. The Schroedinger equation separates just as Newton’s equation does
when the normal coordinates are used and one obtains separate, uncoupled harmonic

oscillator equations for each normal mode. The total wavefunction describing the vi-
bration of the molecule is then the product of the normal mode wavefunctions, and the
total vibrational energy is the sum of the energy associated with each normal mode. For

example, the ground state energy is

E =
∑

i

!ωi

2
=

∑

i

!

2

√

k

m
(13)

In absorption spectroscopy, the molecule absorbs energy from the oscillating electric

and magnetic field in the electromagnetic wave only if the frequency matches one of the
vibrational oscillations (such matching of frequencies is called resonance). In order to
excite mode i, the energy of the absorbed photon needs to be

Ei = hνi = !ωi = !

√

ki

mi

. (14)

13
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FIGURE 3. ILLUSTRATION AND ANALYSIS OF THE TIME EVOLUTION OF THE MOLECULE WHEN THE INITIAL
CONDITIONS ARE CHOSEN TO MIMIC ONE OF THE TWO NORMAL MODES. (a) THE SYMMETRIC STRETCH WITH
INITIAL DISPLACEMENTS IN ÅNGSTROMS: xA = – 0.015, xB = – 0.28, xC = 0.21. TWO SNAPSHOTS OF THE
MOLECULE FROM THE ANIMATION WINDOW APPEAR TO THE RIGHT OF THE CONTOUR PLOT. (b) THE VELOCITY
OF ATOM A PLOTTED AS A FUNCTION OF TIME FOR THE TRAJECTORY SHOWN IN (a). (c) THE ANTISYMMETRIC
STRETCH WITH INITIAL ATOMIC DISPLACEMENTS IN ÅNGSTROMS: xA = – 0.005, xB = 0.00, xC = – 0.015. TWO
SNAPSHOTS OF THE MOLECULE FROM THE ANIMATION WINDOW APPEAR TO THE RIGHT OF THE CONTOUR
PLOT. (d) THE VELOCITY OF ATOM A PLOTTED AS A FUNCTION OF TIME FOR THE TRAJECTORY SHOWN IN (c).

levels separated by !!k , where k labels the normal mode. The frequency in the
quantum problem, !k , is the same as the classical frequency of vibration found in the
normal mode analysis.

Vibrations of Complex Molecules
Using the methods described above, the students can extend the calculation to study
larger molecules in one dimension or even three dimensions. For a special project, a
capable student can modify the simulation program to model 4 atoms, for example, and
study such things as intramolecular vibrational energy transfer, the transition from
normal- to local-mode-type behavior, and the onset of chaotic trajectories. Also, we
have developed Mathematica programs for calculating and animating the normal
modes of CO2 and H2O in three-dimensional space. The calculation requires the

The+vibra(onal+normal+modes+do+not+couple+as+long+as+harmonic+
approxima(on+is+valid+

If+the+mo(on+of+the+molecule+is+started+by+exci(ng+the+symmetric+stretch,+then+the++
molecule+will+con(nue+to+vibrate+in+the+symmetric+stretch+only,+no+energy+flow+to+
asymmetric+stretch,+and+vice+versa.+This+makes+normal+modes+convenient(coordinates.+
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A general solution for the dynamics of the three atoms is some linear combination
of these three normal mode solutions. In a sense, going from the original coordinates,

(xA, xB, xC), to a linear combination of the normal mode vectors is just a coordinate
transformation. The advantage of the normal modes is that they are independent, i.e.

there is no energy flow from one mode to another. If the molecule is vibrating in such a
way that only one mode is active, then the molecule will continue to move according to

that one normal mode forever. The others never come into play. Recall, that the central
approximation here is that the interaction potential is harmonic. For more realistic
anharmonic interaction potentials, such as the Morse potential, the independent normal

modes are only approximate solutions. Energy will then flow between these modes, but
only slowly if the anharmonic corrections are small.

When the mass of the atoms is not the same, for example CO2, the solution of
the eigenvalue problem is a little more complicated, but the normal modes are still a
symmetric stretch and an aymmetric stretch. Also, when the spring constant for the

two bonds is not the same, as a OCS molecule for example, the calculation is much
more tedious and the solutions do not have any symmetry (or antisymmetry). These

problems can, however, easily be solved using Matlab or similar tools.

Quantum mechanical treatment

Quantum mechanical treatment of a polyatomic molecule within the harmonic ap-
proximation can also make use of the simplification that occurs when one uses normal

mode coordinates. The Schroedinger equation separates just as Newton’s equation does
when the normal coordinates are used and one obtains separate, uncoupled harmonic

oscillator equations for each normal mode. The total wavefunction describing the vi-
bration of the molecule is then the product of the normal mode wavefunctions, and the
total vibrational energy is the sum of the energy associated with each normal mode. For

example, the ground state energy is

E =
∑
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In absorption spectroscopy, the molecule absorbs energy from the oscillating electric

and magnetic field in the electromagnetic wave only if the frequency matches one of the
vibrational oscillations (such matching of frequencies is called resonance). In order to
excite mode i, the energy of the absorbed photon needs to be

Ei = hνi = !ωi = !
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A+general+vibra(onal+mo(on+is+a+combina(on+of+normal+modes+

Arbitrary+mo(on+of+the+atoms+can+be+described+in+terms+of+normal+mode+coordinates,+
+++++++simply+a+coordinate+transforma(on+from+Cartesian+coordinates+or+spherical+polar+coords.+

Normal+modes+can+be+a+good+choice+because+energy+does+not+flow+between+normal+modes+
++++++if+the+harmonic+approxima(on+is+valid.+
++++++More+generally,+anharmonicity+will+couple+the+normal+modes.++If+anharmonicity+is+large,+
++++++then+other+descrip(ons,+such+as+local(modes(may+be+beaer.+


