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Systems of of many electrons

Exchange of particle labels
Consider a system of N identical particles. By identical particles we mean that all intrinsic properties of

the particles are the same, such as mass, spin, charge, etc.
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Figure 3. A pairwise permutation of the labels on identical particles.

In classical mechanics we can in principle follow the trajectory of each individual particle. They are,
therefore, distinguishable even though they are identical. In quantum mechanics the particles are not dist-
inguishable if they are close enough or if they interact strongly enough. The quantum mechanical wave
function must reflect this fact.

When the particles are indistinguishable, the act of labeling the particles is an arbitrary operation without
physical significance. Therefore, all observables must be unaffected by interchange of particle labels. The
operators are said to be symmetric under interchange of labels. The Hamiltonian, for example, is symmetric,
since the intrinsic properties of all the particles are the same. Let ψ(1, 2, . . . , N) be a solution to the
Schrödinger equation, (Here N represents all the coordinates, both spatial and spin, of the particle labeled
with N). Let Pij be an operator that permutes (or ‘exchanges’) the labels i and j:

Pijψ(1, 2, . . . , i, . . . , j, . . . , N) = ψ(1, 2, . . . , j, . . . , i, . . . , N).

This means that the function Pijψ depends on the coordinates of particle j in the same way that ψ depends
on the coordinates of particle i. Since H is symmetric under interchange of labels:

H(Pijψ) = PijHψ, i.e., [Pij , H] = 0.

Therefore, Pijψ is also a solution of the Schrödinger equation with the same eigenvalue as ψ.
Exchange Degeneracy: There are N ! different permutations of N lables and all the N ! wave functions

have the same energy. Some linear combination of the N ! functions gives the proper description of the
system. Since [Pij , H] = 0, i.e. Pij is a constant of the motion, the linear combination that describes the
system initially, is the proper linear combination for all time.

The density (i.e. probability distribution) must be unaffected by P

|Pijψ|2 = |ψ|2

but that is not the case with the wavefunction, which is not an observable. Therefore, the functions ψ and
Pijψ can differ in phase

Pijψ = eiαψ

where α is a real number. Applying Pij again will undo the permutation, so we must have

Pij(Pijψ) = P 2
ijψ = ψ

that is
(eiα)2 = 1.
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There are only two distinct solutions α = 0 and α = π corresponding to

Pijψ = + ψ symmetric under interchange

− ψ antisymmetric under interchange.
(1)

It turns out that both solutions are found in nature. For some particles, called Fermions, the wavefunction
should be antisymmetric (α = π). Examples are electrons, protons and neutrons. For other particles, called
Bosons, the wavefunction should be symmetric (α = 0). Examples are photons (particles with integral spin).

The behavior of the wavefunction when composite particles (not elementary), such as atoms, are in-
terchanged can be deduced by counting the number of Fermions. For example: When two 4He atoms are
interchanged

2 electrons give factor (−1)(−1) = +1

2 protons give factor (−1)(−1) = +1

2 neutrons give factor (−1)(−1) = +1

So the wavefunction should not change sign, i.e. 4He atoms behave as Bosons.
When two 3He atoms are interchanged:

2 electrons give factor (−1)(−1) = +1

2 protons give factor (−1)(−1) = +1

1 neutron gives factor −1

So the wavefunction should cange sign, 3He atoms are Fermions.
Since hydrogen atoms are very light, one often needs to use a quantum mechanical description of the

motion of the nuclei as well as the elecrons. The wave function changes sign if we interchange labels of two
electrons (electrons are Fermions) and it changes sign if we interchange the lables of two nuclei (the nuclei
consist of one proton which is a Fermion), but if we interchange two H atoms (both electron and proton),
then we pick up a factor of (−1)(−1) = +1, i.e., the wavefunction does not change sign. Hydrogen atoms
behave as Bosons.

When a stationary state wave function is being constructed for a system, for example to evaluate possible
values of the energy, it is not enough to just solve for eigenfunctions of the Hamiltonian operator, one also
needs to build in the right symmetry with respect to the exchange of labels on the particles. For example,
if a given a function ψ(1, 2, . . . , N) is found to satisfy the Schrödinger equation but does not have the right
exchange symmetry, it is necessary to construct a linear combination of permutations of the labels to obtain
a function that is symmetric under the exchange of labels when dealing with Bosons or antisymmetric when
dealing with Fermions. Let P be any one of the N ! permutations. It can be constructed from a sequence of
pairwise permutations. Let the number of pairwise permutations required be rP . For example:

(1, 3, 2) rP = 1 odd

P23 ↗ ↓ P13

(1, 2, 3) (2, 3, 1) rP = 2 even

P12 ↘ ↓ P23

(2, 1, 3) rP = 3 or 1 odd

The normalized symmetric linear combination appropriate for Bosons is

ψ+ =
1√
N !

∑
p

Ppϕ(1, 2, . . . , N) .

The index p runs over all the N ! permutations. Similarly, the normalized antisymmetric linear combination
appropriate for Fermions is:

ψ− =
1√
N !

∑
p

(−1)rpPpϕ(1, 2, . . . , N) .
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The difference in the energy that is obtained from ϕ and that obtained from ψ− is called the exchange energy.
That is

Eexch = < ψ−|H|ψ− > − < ϕ|H|ϕ > .

We can define operators that perform the required linear combination. The symmetrizer, S, is

S ≡ 1√
N !

∑
P

and the antisymmetrizer, A, is

A ≡ 1√
N !

∑
(−1)rpP .

Then ψ+ = Sϕ and ψ− = Aϕ.

Independent electrons: (the simplest system containing several electrons)
If the Hamiltonian of the system separates, i.e. can be written as a sum of terms, each term acting only

on a single electron
H = H1 +H2 + . . . HN

then a solution to the Schrödinger equation can be found that is a product of one electron functions

ϕ(1, 2, . . . , N) = χa(1)χb(2) . . . χ0(N) .

The one electron functions are called spin-orbitals (this is the terminology in chemistry but in physics they
are called single particle wavefunctions). Spin-orbitals depend both on spin and spatial coordinates and the
product function, χ(1, 2, 3, . . . , N), is called a Hartree Product. The properly antisymmetrized many electron
wavefunction is:

ψ−(1, 2, . . . , N) = A ϕ(1, 2, 3, . . . , N)

=
1√
N !

χa(1) χb(1) χc(1) . . . χ0(1)
χa(2) χb(2) χc(2) . . . χ0(2)
χa(3) χb(3) χc(3) . . . χ0(3)

...
...

...
...

...
χa(N) χb(N) χc(N) . . . χ0(N)

Applying some general rules about determinants, we can see that this wavefunction has the required
properties: When the determinant is expanded out there are N ! terms half of which have a minus sign. A
permutation Pij corresponds to interchanging the rows i and j, which causes the determinant to change sign.
Therefore the antisymmetry is built in. We will frequently be dealing with determinantal wave functions in
this section. It is therefore essential to have a convenient short hand notation for such functions. We will
use the notation

ψ−(1, 2, . . . , N) = |χa(1)χb(2) . . . χ0(N) > .

The pointed bracket will therefore have a different meaning in this section than it had previously.
If two spin orbitals are equal, for example χa = χb then twof columns are the same and the determinant

vanishes, ψ = 0. That is, two electrons cannot be in the same spin-orbital. This is referred to as Pauli
exclusion.

Assuming the Hamiltonian does not couple spatial coordinates and spin, the spin-orbitals can be written
as a product of spatial and spin functions. For example, if electron 1 is in spatial orbital a and has spin up,
the spin-orbital is

χa(1) = ϕI(r⃗1)α(ω1) .

Since we have used the symbols of the ket notation to mean a determinantal wave function in this section, we
will be explicitly dealing with functions rather than kets. To deal with the spin, we therefore imagine having
functions α(ω) for spin up and β(ω) for spin down and introduce, purely for convenience, a hypothetical
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variable, ω. Eventually, we will always integrate over expressions involving the functions α and β and the
important thing to remember is that they are orthonormal∫

dω α∗(ω) β(ω) = 0

and ∫
dω α∗(ω) α(ω) = 1.

The Hartree product is truly an independent electron wavefunction. But the antisymmetrized wavefunction
obtained by constructing the Slater determinant has introduced some, limited correlation between any pair
of lelectrons that have parallel spin. This is called the exchange correlation (not to be confused with the
’correlation energy’ which is the difference between the Hartree-Fock estimate of the energy and the exact
value of the energy). The effect can be seen by looking at the electron density in configuration space.
Consider a two electron Slater determinant:

ψ−(1, 2) = A{χa(1)χb(2)} = |χa(1)χb(2) > .

Example a. First, assume the two electrons have opposite spins and occupy different spatial orbitals

χa(1) = ϕI(r⃗1)α(ω1)

and
χb(2) = ϕII(r⃗2) β(ω2) .

(α means spin up and β spin down). By expanding the determinant, we get:

ψ−(1, 2) =
1√
2
(ϕI(r⃗1)α(ω1)ϕII(r⃗2)β(ω2)− ϕI(r⃗2)α(ω2)ϕII(r⃗1)β(ω1)) .

The simultaneous probability of finding one of the two electron near a point r⃗1 and the other near a point
r⃗2 (that is, one of the electrons is in an interval between r⃗1 and r⃗1 + dr⃗ and the other electron in an interval
between r⃗2 and r⃗2+dr⃗ is obtained from the magnitude squared of the wave function |ψ(1, 2)|2 by integrating
out the ‘spin variables’:

P (r⃗1, r⃗2)dr⃗1dr⃗2 =

∫
dω1

∫
dω2 |ψ(1, 2)|2dr⃗1dr⃗2

=
1

2

[
|ϕI(r⃗1)|2|ϕII(r⃗2)|2 + |ϕI(r⃗2)|2|ϕII(r⃗1)|2

]
dr⃗1dr⃗2 .

By setting r⃗1 = r⃗s and r⃗2 = r⃗t, the first term is the product of the probability of finding electron 1 within
r⃗s and (r⃗s + dr⃗) times the probability of finding electron 2 within r⃗t and (r⃗t + dr⃗) as electron 1 occupies
orbital ϕI and electron 2 occupies orbital ϕII . The second term has electron 2 occupying ϕI and electron
1 occupying ϕII . Since the electrons are indistinguishable, the correct probability is the average of the two
terms. Therefore, two electrons with opposite spin are fully uncorrelated at this level of theory.
Example b. Secondly, assume the two electrons have the same spin, say spin up. Then

χa(1) = ϕI(r⃗1)α(ω1)

χb(2) = ϕII(r⃗2)α(ω2) .

Then, the probability distribution becomes:

P (r⃗1, r⃗2) =
1

2

[
|ϕI(r⃗1)|2|ϕII(r⃗2)|2 + |ϕI(r2)|2|ϕII(r⃗1)|2

− 2Re
{
ϕ∗I(r⃗1)ϕII(r⃗1)ϕ

∗
II(r⃗2)ϕI(r⃗2)

}]
.

The extra term that has appeared as compared with example a introduces correlation in the distribution
of the two electrons. In particular P (r⃗1 = r⃗, r⃗2 = r⃗) = 0, i.e., two electrons with parallel spin cannot be
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found at the same point in space. A Fermi hole is said to exist around each electron, a region from which
other electrons of the same spin are excluded. The presence of the Fermi hole is an important consideration.
It results, for example, in a substantial difference in the accuracy of the Hartree-Fock approximation for
singlet states and for triplet states, since the presence of the extra Fermi hole in the triplet tends to keep
the electrons apart and, thereby, lower the Coulomb repulsion between them.

Calculation of Matrix Elements using Slater Determinants:
Let ψ(1, 2, 3, . . . , N) be a normalized Slater determinant

ψ(1, 2, . . . , N) =
1√
N !

χi(1) χj(1) . . . χk(1)
χi(2) χj(2) . . . χk(2)

...
...

...
...

χi(N) χj(N) . . . χk(N)

where the χi are spin-orbitals. We will use the shorthand notation

ψ(1, 2, . . . , N) = |χiχj . . . χk >

where it is understood that the electron labels are in the order 1, 2, . . . , N . Because of the antisymmetry we
have, for example:

| . . . χm . . . χn · · · >= −| . . . χn . . . χm · · · > .

Various calculations in quantum mechanics involve the evaluation of matrix elements of an operator with the
wavefunction. It, therefore, becomes important to develop expressions for matrix elements of various types
of operators when the wavefunction is of the form of a Slater determinant. Given an operator O and two
N -electron determinants |K > and |L >, the problem now is to evaluate the matrix element < K|O |L >.
We need to obtain an expression involving integrals over the individual spin-orbitals. In particular, we need
to evaluate the energy, < H >=< K|H|L >.

There are two types of operators that are relevant:

One electron operators are of the form

O1 =

N∑
i=1

h(i)

where h(i) only involves the i − th electron and the summation index, i, runs over all electrons. For a
molecule, the one electron part of the Hamiltonian is (in atomic units)

h(i) = −1

2
∇2

i −
∑
A

ZA

riA

Two electron operators are of the form

O2 =

N∑
i=1

N∑
j>i

v(i, j) ≡
∑
i<j

v(i, j)

where v(i, j) is an operator that depends on the coordinates of both electrons, i and j. An important example
is the Coulomb interaction which has the form of 1/rij and will be used in the following discussion.

Regarding the determinants |K > and |L >, there are three different situations:
Case 1: The two determinants are equal, i.e.,

|L >= |K >= | . . . χmχn · · · > .

Case 2: The two determinants differ by one spin-orbital: For example, replacing χm by χp in |L >

|K >= | . . . χmχn · · · >
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|L >= | . . . χpχn · · · > .

Case 3: The two determinants differ by two spin-orbitals: For example, replacing χm by χp and χn by χq

in |L >
|K >= | . . . χmχn · · · >

|L >= | . . . χpχq · · · > .

It can easily be shown that the matrix elements of O1 are zero if |K > and |L > differ by more than
one spin-orbital, and that the matrix elements of O2 are zero if |K > and |L > differ by more than two
spin-orbitals.

It is essential to use some convenient shorthand notation for the various integrals. Unfortunately, there are
two different notations in common use, that are sometimes referred to as ‘chemists notation’ and ‘physicists
notation’. We will use the former and denote integrals over spin-orbitals with square brackets, [ ]. The
definitions are as follows:

[i|h|j] ≡
∫
dx1χ

∗
i (1)h(r⃗1)χj(1)

and
[ij|kℓ] ≡

∫
dx1

∫
dx2 χ

∗
i (1)χj(1)

1

r12
χ∗
k(2)χℓ(2)

The integration variable xi denotes both the spatial and spin coordinates of electron i (note, we assume the
Hamiltonian does not depend on spin and therefore denote the variable there as r⃗1).

The following table gives the matrix elements of one-electron operators for determinant wave functions in
terms of the integrals over spin-orbitals.

_______________________________________________________________________________________________________

Table 1 : Matrix elements of one electron operators of the form O1 =

N∑
i=1

h(i)

Case1 : |K >= | . . .mn · · · >
< K|O1|K >=

∑N
m [m|h|m]

Case 2 : |K >= | . . .mn · · · >
|L >= | . . . pn · · · >

< K|O1|L >= [m|h|p]
Case 3 : |K >= | . . .mn · · · >

|L >= | . . . pq · · · >
< K|O1|L >= 0

_______________________________________________________________________________________________________

The following table gives the matrix elements of the two-electron operator representing Coulomb interaction
of N electrons in terms of the spin-orbitals of the determinants.
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_______________________________________________________________________________________________________________

Table 2 : Matrix elements of two electron operators of the form O2 =

N∑
i=1

N∑
j>i

r−1
ij

Case1 : |K >= | . . . nm · · · >
< K|O2|K >= 1

2

∑N
m

∑N
n [mm|nn]− [mn|nm]

Case 2 : |K >= | . . .mn · · · >
|L >= | . . . pn · · · >

< K|O2|L >=
∑N

n [mp|nn]− [mn|np]

Case 3 : |K >= | . . .mn · · · >
|L >= | . . . pq · · · >

< K|O2|L >= [mp|nq]− [mq|np]
_______________________________________________________________________________________________________________

To illustrate how the rules in the table come about, calculations of some of the matrix elements are
presented below for some of the possible choices of Slater determinants.

Example 1: The simplest case is when the same Slater determinant appears on the left and right hand side
of the matrix element (case 1)

|ψ >= |χ1χ2 >

1.a For a one-electron operator:

< ψ|h(1)|ψ > =

∫
dx⃗1

∫
dx⃗2

1√
2

(
χ1(x⃗1)χ2(x⃗2)− χ2(x⃗1)χ1(x⃗2)

)∗

h(r⃗1)
1√
2

(
χ1(x⃗1)χ2(x⃗2)− χ2(x⃗1)χ1(x⃗2)

)
=

1

2

∫
dx⃗1

∫
dx⃗2

(
χ∗
1(x⃗1)χ

∗
2(x⃗2)h(r⃗1)χ1(x⃗1)χ2(x⃗2)

+ χ∗
2(x⃗1)χ

∗
1(x⃗2)h(r⃗1)χ2(x⃗1)χ1(x⃗2)

− χ∗
1(x⃗1)χ

∗
2(x⃗2)h(r⃗1)χ2(x⃗1)χ1(x⃗2)

− χ∗
2(x⃗1)χ

∗
1(x⃗2)h(r⃗1)χ1(x⃗1)χ2(x⃗2)

)
.

Since the operator h(1) does not involve coordinates of electron 2 we can easily carry out the x⃗2 integration.
In the first two terms, x⃗2 only appears in the same spin-orbital within each term. Therefore using the fact
that both χ1 and χ2 are normalized, the integration over x⃗2 gives 1 in the first two terms. However, in the
last two terms, x⃗2 appears in both χ1 and χ2 within each term. The integration over x⃗2 then gives zero
because the spin-orbitals are orthogonal. We are left with

< ψ|h(1)|ψ > =
1

2

∫
dx⃗1χ

∗
1(x⃗1)h(r⃗1)χ1(x⃗1)

+
1

2

∫
dx⃗1χ

∗
2(x⃗1)h(r⃗1)χ2(x⃗1)

=
1

2

2∑
m

[m|h|m].

Similarly

< ψ|h(2)|ψ >= 1

2

2∑
m

[m|h|m].

Page 7



Computational Chemistry Univ. of Iceland 2023

Adding the two gives case 1 in the table for the one-electron operator, O1.
1.b For the two-electron operator O2 = 1/r12:

< ψ| 1

r12
|ψ > =

1

2

∫
dx⃗1

∫
dx⃗2

(
χ∗
1(x⃗1)χ

∗
2(x⃗2)

1

r12
χ1(x⃗1)χ2(x⃗2)

+ χ∗
2(x⃗1)χ

∗
1(x⃗2)

1

r12
χ2(x⃗1)χ1(x⃗2)

− χ∗
1(x⃗1)χ

∗
2(x⃗2)

1

r12
χ2(x⃗1)χ1(x⃗2)

− χ∗
2(x⃗1)χ

∗
1(x⃗2)

1

r12
χ1(x⃗1)χ2(x⃗2)

)
Since 1/r12 = 1/r21, the indices can be interchanged on the dummy integration variables. Therefore, the
first term is the same as the second and the third term is the same as the fourth.

< ψ| 1

r12
|ψ > = [11|22]− [12|21].

This illustrates case 1 in the table for the two-electron operator, O2.

Example 2: Now use determinants that differ by two spin-orbitals (case 3). Again, the Slater determinants
are constructed by using two spin-orbitals but different spin-orbitals are chosen for the two determinants:

|ψA >= |χ1χ2 >

and
|ψB >= |χ3χ4 > .

We clearly have
< ψA|h(1)|ψB >= 0

because the x⃗2 integration gives zero in all terms,

0 =

∫
dx⃗2χi(x⃗2)χj(x⃗2) when i ̸= j.

This illustrates case 3 in the table for the one electron operator, O1.
The two-electron matrix element is, by definition,

< ψA|
1

r12
|ψB >= [13|24]− [14|23].

The energy of a determinantal wavefunction:
Using the tables, we can readily find the expectation value of the total energy in a single determinant

state |K > of N electrons

< H > =< K|H|K >=< K|O1 +O2|K >

=

N∑
m

[m|h|m] +
1

2

N∑
m

N∑
n

[mm|nn]− [mn|nm]

The sums run over all the occupied spin-orbitals. The one electron operator h inclues the kinetic energy of
the electron and the interaction with all the nuclei

h(i) = −1

2
∇2

i −
∑
A

ZA

riA
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The summation index A runs over all nuclei that electron i interacts with. Here the electron charge has been
set to one, e = 1, and ZA is the nuclear charge in units of the electron charge, e. Each occupied spin-orbital
χi in |K > contributes [i|h|i] to the energy and every unique pair of occupied spin-orbitals χi, χj contributes
[ii|jj]− [ij|ji]. Note that

1

2

N∑
m

N∑
n

[mm|nn]− [mn|nm] =
∑
m

∑
n>m

[mm|nn]− [mn|nm]

since
[ij|ji] = [ji|ij] and [ii|jj] = [jj|ii]

and terms with n = m cancel out.
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