
Ib. The Hartree-Fock Approximation:

The Hartree-Fock approximation underlies the most commonly used method in chem-
istry for calculating electron wave functions of atoms and molecules. It is the best approx-
imation to the true wave function where each electron is occupying an orbital, the picture
that most chemists use to rationalize chemistry. The Hartree-Fock approximation is, fur-
thermore, the usual starting point for more accurate calculations that can, in principle,
become exact.

It is most convenient to use ’atomic units’ in calculations of electronic wave functions
for atoms and molecules. The unit chosen for

length is the Bohr radius a0,
mass is the electron mass me,
charge is the electron charge e,
energy is the Hartree = 27.211 eV = 2 EI ,

where EI is the energy of the ground state of the hydrogen atom with respect to separated
electron and proton. In these units, h̄ becomes unity.

The full Hamiltonian for a system of N electrons in the presence of M nuclei with
charge ZA then becomes

H =
N∑
i

h(i) +
N∑
i

N∑
j>i

1

rij

where

h(i) ≡ −1

2
∇2

i −
M∑
A

ZA

riA
.

and riA is the distance between nucleus A and electron i.
Solving the Schrödinger equation with this Hamiltonian is very difficult because the

1/rij terms correlate the distribution of all the electrons. As is frequently done with such
many body problems, we will seek a mean field approximation, where each electron is
treated separately and the effect of all the other electrons is included in an average way.
The way this is done is to carry out a variational calculation where the trial function is of
the form of a single Slater determinant

|ψ0 > = |ψ0(1, 2, . . . , n) > =
1√
n!

∣∣∣∣∣∣∣∣
χa(1) χb(1) . . . χ0(1)
χa(2) χb(2) . . . χ0(2)

...
...

...
...

χa(n) χb(n) . . . χ0(n)

∣∣∣∣∣∣∣∣ ≡ |χ1χ2 . . . χN >

The one-electron wave functions, χ, are called orbitals and they in general depend both on
the spatial coordinates, r, of the electron, and the spin. The name ’spin-orbital’ emphasizes
that spin is inlcuded. The spin is specified by the projection onto the z-axis and is either
’up’ denoted by α, or ’down’, denoted by β. The Slater determinant is the simplest form
for a wave function of many electrons, but is only exact for independent electrons, i.e. a
Hamiltonian that separates into terms, each involving just coordinates of one electron

Happ = H1 + H2 . . . HN
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In the Hartree-Fock calculation, the expectation value of the true Hamiltonian using a
Slater determinant trial function

< H > = < ψ0|H|ψ0 >

is minimized with respect to the orbitals in order to get an approximation to the ground
state energy, E0. In the process an optimal single determinant approximation to the
stationary state wave function is obtained. Such a form of the function can, however,
never give an exact wave function for the full Hamiltonian because it contains terms of
the form 1/rij , which necessarily involves coordinates of two electrons at a time. But, the
Hartree-Fock approximation can be a useful first approximation and underlies how chemists
typically think about electronic structure of atoms and molecules. Various corrections, so-
called post-Hartree-Fock methods, can then be applied to get better estimates of the wave
function.

One can better understand the approximation being made here by thinking of the
resulting eigen function as an exact solution to a different problem, one where the Hamil-
tonian is an approximation to the true Hamiltonian

Happ =
N∑
i

(
h(i)+v

HF
i (i)

)
= H1 +H2 + . . . HN .

Here, vHF
i (i) is an effective potential experienced by the i− th electron due to the presence

of the other electrons, but it cannot depend on the coordinates of the other electrons and
thus represents a spatially averaged interaction. During the variational optimization of the
spin-orbitals an optimal effective interaction vHF

i (i) is obtained as well as the stationary
state wave functions. Since the approximate Hamiltonian Happ separates, its eigenfunc-
tions can indeed be written as a Slater determinant formed from spin-orbitals

|ψ0 >= |χ1χ2 . . . χN > .

The variational minimization of the energy with respect to arbitrary variations of the
spin-orbitals leads to equations for the spin-orbitals and the optimal, effective potential.
The derivation of these equations, called the Hartree-Fock equations is given below. The
expectation value of the Hamiltonian for a Slater determinant wave function can be shown
to be

< H >=
N∑
a

[χa|h|χa] +
1

2

N∑
a

N∑
b

[χaχa|χbχb]− [χaχb|χbχa]

where

[χi|h|χj ] ≡
∫
dx1χ

∗
i (1)h(~r1)χj(1)

and

[χiχj |χkχ`] ≡
∫
dx1

∫
dx2 χ

∗
i (1)χj(1)

1

r12
χ∗k(2)χ`(2)
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The integration variable xi denotes both the spatial and spin coordinates of electron i
(note, we assume the Hamiltonian does not depend on spin and therefore denote the
variable there as ~r1) and the summation indices a and b range over all occupied spin-
orbitals. In searching for the optimal wave function, we must impose the constraint that
all the spin-orbitals remain orthonormal, i.e.

[χa|χb]− δab = 0

for a = 1, 2, . . . , N and b = 1, 2, . . . , N , a total of N2 constraints.
The standard method for finding an extremum (minimum or maximum) subject to

a constraint is Lagrange’s method of undetermined multipliers: The constraint equations
are each multiplied by some constant and added to the expression to be optimized. Thus,
we define a new functional L:

L ≡< H > −
N∑
a

N∑
b

εba

(
[χa|χb]− δab

)
.

When the constraints are satisfied, this new quantity equals the expectation value of the
Hamiltonian, < H >. The unknown constants εba are the Lagrange multipliers. The
quantity L (as well as < H >) is a functional of the spin-orbitals χa, χb, . . . , χN and
the problem is to find stationary points of L. That is, given infinitesimal change in the
spin-orbitals, χa → χa + δχa, the change in L, (L→ L + δL), should be zero, i.e.:

0 = δL = δ < H > −
N∑

a=1

N∑
b=1

εba δ[χa|χb] .

We now evaluate the terms on the right hand side of this expression. By inserting the
new spin-orbitals χa + δχa, etc. into the expression for < H >, and using the fact that
the integration indicated by [ ] is a linear operation, the change in < H > is to first order:

δ < H > =
N∑

a=1

([δχa|h|χa] + [χa|h|δχa])

+
1

2

N∑
a=1

N∑
b=1

{
[δχaχa|χbχb] + [χaδχa|χbχb] + [χaχa|δχbχb] + [χaχa|χbδχb]

− [δχaχb|χbχa]− [χaδχb|χbχa]− [χaχb|δχbχa]− [χaχb|χbδχa]
}
.

From the definition of the integrals it is clear that [δχa|h|χa]∗ = [χa|h|δχa] and [δχaχa|χbχb]
∗ =

[χaδχa|χbχb], etc. Furthermore, [δχaχa|χbχb] = [χbχb|δχaχa] as can be seen by relabeling
the integration variables representing the electron coordinates. The change in < H > can
therefore be rewritten as:

δ < H > =
N∑

a=1

[δχa|h|χa] +
N∑

a=1

N∑
b=1

[δχaχa|χbχb]− [δχaχb|χbχa] + c.c.
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The notation c.c. stands for complex conjugate.
Using the factor rule of differentiation on the second term in the expression for δL

δ[χa|χb] = [δχa|χb] + [χa|δχb]

gives ∑
ab

εbaδ[χa|χb] =
∑
ab

εba[δχa|χb] +
∑
ab

εba[χa|δχb] .

Interchanging the summation indices a and b in the second sum on the right hand side
gives: ∑

ab

εbaδ[χa|χb] =
∑
ab

εba[δχa|χb] +
∑
ab

εab[χb|δχa] .

L is a real quantity and by taking the complex conjugate of the expression defining L, it
can be shown that εba = ε∗ab, that is the Lagrange multipliers are elements of a Hermitian
matrix. This means the second sum is just the complex conjugate of the first, and we have∑

ab

εbaδ[χa|χb] =
∑
ab

εba[δχa|χb] + c.c..

Finally, the expression for δL becomes:

δL =

N∑
a=1

[δχa|h|χa] +

N∑
a=1

N∑
b=1

{
[δχaχa|χbχb]− [δχaχb|χbχa]− εba[δχa|χb]

}
+ c.c.

In this expression we have [δχa appearing on the left hand side of each term. We can
symbolically rewrite

δL =
N∑

a=1

[δχa

(
|h|χa] +

N∑
b=1

{χa|χbχb]− χb|χbχa]− εba|χb]}

)
+ c.c.

More explicitly, the expresssion for δL is

δL =
N∑

a=1

∫
d~x1δχ

∗
a

(
h(1)χa(1) +

N∑
b=1

{
(
Jb(1)−Kb(1)

)
χa(1)− εbaχb(1)}

)
+ c.c.

where we have defined two new operators, J and K. The Coulomb operator, Jb, is defined
as

Jb(1) ≡
∫
d~x2 |χb(2)|2 1

r12

such that

Jb(1)χa(1) =

[∫
d~x2χ

∗
b(2)

1

r12
χb(2)

]
χa(1)
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and, in particular we have∫
d~x1 χ

∗
a(1)Jb(1)χa(1) = [χaχa|χbχb] .

The exchange operator, Kb(1), is defined such that

Kb(1)χa(1) ≡
[∫

d~x2χ
∗
b(2)

1

r12
χa(2)

]
χb(1) .

Note how the labels a and b on spin-orbitals for electron 1 get interchanged. In particular,
we have ∫

d~x1 χ
∗
a(1)Kb(1)χa(1) = [χaχb|χbχa] .

Note that the exchange operator is a non-local operator in that there does not exist
a simple potential function giving the action of the operator at a point ~x1. The result of
operating with Kb(1) on χa(1) depends on χa throughout all space (not just at ~x1).

Now set δL = 0 to obtain the optimal spin-orbitals. Since δχ∗a is arbitrary, we must
have [

h(1) +
N∑
b=1

{Jb(1)−Kb(1)}

]
χa(1) =

N∑
b=1

εbaχb(1)

for each spin-orbital χa with a = 1, 2, . . . , N . Defining the Fock operator as

f(1) ≡ h(1) +
N∑
b

{Jb(1)−Kb(1)} ,

the solution to the optimization problem, i.e. the optimal spin-orbitals, satisfy

f χa =
N∑
b=1

εba χb .

This equation can be diagonalized, i.e., we can find a unitary transformation of the
spin-orbitals that diagonalizes the matrix ε which has matrix elements εba. The Fock
operator is invariant under a unitary transformation, that is a transformation where a
new set of spin-orbitals is defined by taking linear combinations of orbitals in the original
orbitals. The new set of spin-orbitals is defined as

χ′a =
∑
b

χbUba

where U† = U−1 such that ε̃′ = U†ε̃ U is diagonal. Then

f χ′a = ε′a χ
′
a .
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This is the Hartree-Fock equation, a one electron equation for the optimal spin-orbitals. It
is non-linear, since the Fock operator, f , itself depends on the spin-orbitals χa.

Occupied and Virtual Orbitals:
From the Hartree-Fock equation we get a set of spin-orbitals (dropping the primes

now):
fχj = εjχj j = 1, 2, . . . ,∞.

By solving this equation we can generate an infinit number of spin-orbitals. The Fock op-
erator, f , depends on the N spin-orbitals that have electrons, the occupied orbitals. Those
will be labeled with a, b, c, .... Once the occupied orbitals have been found, the Hartree-
Fock equation becomes an ordinary, linear eigenvalue equation and an infinit number of
spin-orbitals with higher energies can be generated. Those are called virtual orbitals and
will be labeled with r, s, ....

The orbital energy

What is the significance of the orbital energies εi? Left multiplying the Hartree-Fock
equation with < χi| gives

< χi|f |χj >= εi < χi|χj >= εjδij .

Therefore
εi = [χi|f |χi]

= [χi|h+
N∑
b

(Jb −Kb)|χi]

= [χi|h|χi] +
∑
b

[χiχi|χbχb]− [χiχb|χbχi]

where the summation index, b, runs over all occupied spin-orbitals.
The first term [i|h|i] is a one body energy, the electron kinetic energy and the attractive

interaction with the fixed nuclei. The second term, the sum over all occupied spin-orbitals,
is a sum of two body interactions, the Coulomb and exchange interaction between electron
i and the electrons in all occupied spin-orbitals. The total energy of the system is not just
the sum of εi for all occupied orbitals, because then the pairwise terms would be double
counted. Recall the expression for < H >:

< H >=
N∑
a

[χa|h|χa] +
1

2

N∑
a

N∑
b

[χaχa|χbχb]− [χaχb|χbχa] 6=
∑
a

εa .

The factor 1/2 prevents double counting the two electron integrals.
The significance of the εi becomes apparent when we add or subtract an electron to

the N electron system. Let E0 now denote the energy obtained for the ground state,
E0 =< H >. If we assume the spin-orbitals do not change when we, for example, remove
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an electron from spin-orbital χc, then the determinant describing the N−1 electron system
is

|N−1ψc >= |χ1χ2 . . . χc−1χc+1 . . . χN >

with energy

N−1Ec =<N−1 ψc|H|ψN−1
c >

=
∑
a 6=c

[χa|h|χa] +
1

2

∑
a6=c

∑
b 6=c

[χaχa|χbχb]− [χaχb|χbχa].

The energy required to remove the electron, which is called the ionization energy, is:

IP =N−1 Ec − E0

= −[χc|h|χc]−
1

2

( N∑
b

[χcχc|χbχb]− [χcχb|χbχc] +
N∑
a

[χaχa|χcχc]− [χaχc|χcχa]
)
.

We do not need to restrict the summation to exclude c since the [cc|cc] term cancels out.
Using the fact that [ac|ac] = [ca|ca] this can be rewritten as

IP = −[χc|h|χc]−
N∑
b

[χcχc|χbχb]− [χcχb|χbχc]

= −εc .

So, the orbital energy is simply the ionization energy.
Similarly, after adding an electron to the N -electron system into a virtual orbital χr,

the state is
|N+1ψr >= |χ1χ2 . . . χNχr >

and the energy is
N+1Er = <N+1 ψr|H|ψN+1

r > .

The energy difference is called the electron affinity, EA. Assuming the spin-orbitals stay
the same, we have

EA = E0 − N+1Er = − εr.

Koopman’s Rule:
The orbital energy εi is the ionization energy corresponding to removing an electron

from an occupied orbital χi or the electron affinity for adding an electron into virtual
orbital χi. In either case the assumption is that the spin-orbitals do not change when the
number of electrons is changed. This turns out to be a remarkably good approximation due
to cancellations of corrections due to adjustments in the orbitals and the errors inherent
in Hartree-Fock (the missing correlation energy).
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Restricted Hartree-Fock:

For computational purposes, we would like to integrate out the spin functions α and β.
This is particularly simple when we have spatial orbitals that are independent of spin, in
the sense that a given spatial orbital can be used twice, once for spin up and once for spin
down. For example, from a spatial orbital ψa we can generate two orthogonal spin-orbitals
χ1 and χ2:

χ1(~x) = ψa(~r)α(ω)

χ2(~x) = ψa(~r)β(ω) .

Determinants constructed from such spin-orbitals are called restricted determinants.

Integration over spin to get purely spatial orbitals:

The restricted determinant can be written as

|ψ > = |χ1χ2χ3 . . . χN−1χN >

= |ψ1ψ̄1ψ2ψ̄2 . . . ψN/2ψ̄N/2 >

where the ψi denote spatial orbitals occupied by a spin-up electron and ψ̄i denote the same
spatial orbitals occupied by a spin-down electron.

The energy of a determinant wave function is

E =< ψ|H|ψ >=

N∑
a

[χa|h|χa] +
1

2

N∑
a

N∑
b

[χaχa|χbχb]− [χaχb|χbχa].

We will, furthermore, assume here that all the electrons are paired (closed shell). The
wave function then contains N/2 spin orbitals with spin up and N/2 spin orbitals with
spin down, and we can write:

N∑
a

χa =

N/2∑
a

(ψa + ψ̄a ).

Any one electron integral involving spin-orbitals with opposite spin vanishes because of
the orthogonality of the spin functions,

∫
α∗β dω = 0. For example,

[ψi|h|ψ̄j ] = [ψ̄i|h|ψj ] = 0 .

Since the spin functions are normalized,
∫
|α|2dw = 1, the integration over spin does not

affect the value of non-vanishing matrix elements. We therefore define yet another notation
for matrix elements

(ψi|h|ψj) ≡ [ψi|h|ψj ] = [ψ̄i|h|ψ̄j ].

The round brackets indicate spatial integration only. Spin has already been integrated out.
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Similarly, for two electron integrals:

[ψiψj |ψkψ`] = [ψiψj |ψ̄kψ̄`]

= [ψ̄iψ̄j |ψkψ`]

= [ψ̄iψ̄j |ψ̄kψ̄`]

≡ (ψiψj |ψkψ`).

Any two electron integral with only one bar on either side vanishes, for example:

[ψiψ̄j |ψkψl] = [ψψ̄j |ψkψ̄l] = 0.

The energy for a single determinant wave function were all the electrons are paired becomes

< H >= 2

N/2∑
a

(ψa|h|ψa) +

N/2∑
a

N/2∑
b

2(ψaψa|ψbψb)− (ψaψb|ψbψa)

with the summation being over the spatial orbitals only. The first type of two electron
integrals, Jij ≡ (ii|jj), is called the Coulomb integral since it represents the classical
Coulomb repulsion between the charge clouds |ψi(~r)|2 and |ψj(~r)|2. The second type,
Kij ≡ (ij|ji), is called exchange integral and does not have a classical interpretation but
arises from the antisymmetrization of the wave function. It results from the exchange
correlation. The energy of two electrons in orbitals ψ1 and ψ2 is

< H > (↑↓) = h11 + h22 + J12

if their spin is antiparallel, but

< H > (↑↑) = h11 + h22 + J12 −K12

if their spin is parallel. The energy is lower when the spin is parallel (K12 > 0) because
the antisymmetrization prevents the electrons from being at the same location.

In summary: Given a determinant wave function, the energy can be obtained in the
following way:

(1) each electron in spatial orbital ψi contributes hii to the energy,
(2) each unique pair of electrons contributes Jij (irrespective of spin),
(3) each pair of electons with parallel spin contributes −Kij .

Restricted Hartree-Fock equation

Using the above expression for the energy, the Hartree-Fock equation becomes:

f(1)ψj(1) = εjψj(1)

18



where the Fock operator can now be expressed as:

f(1) = h(1) +

N/2∑
a

2Ja(1)−Ka(1)

and the restricted Coulomb and exchange operators are:

Ja(1) =

∫
d~r2ψ

∗
a(~r2)

1

r12
ψa(~r2)

and

Ka(1)ψi(1) =
(∫

d~r2ψ
∗
a(~r2)

1

r12
ψi(~r2)

)
ψa(~r1) .

The total energy of the system can be written as:

E = 2

N/2∑
a

(ψa|h|ψa) +

N/2∑
a

N/2∑
b

2(ψaψa|ψbψb)− (ψaψb|ψbψa)

= 2

N/2∑
a

haa +
∑
a

∑
b

2Jab −Kab

and the orbital energies are:

εi = (ψi|h|ψi) +

N/2∑
b

2(ψiψi|ψbψb)− (ψiψb|ψbψi) = hii +

N/2∑
b

2Jib −Kib

All these expresssions are in terms of the spatial orbitals only, there is no explicit reference
to spin.
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