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Post Hartree-Fock: B. MPn perturbation theory

While the configuration interaction (CI) method is clearly a rigorous way to add correlation energy to the
Hartree-Fock results, the method is computationally highly demanding because of the large number of excited
Slater determinants that need - at least in principle - to be included. Another commonly used estimate of the
correlation energy is based on perturbation theory rather than variational calculations and is often referred
to as Moller-Plesset perturbation theory, MPn, where n stands for the order of the perturbation included in
the calculations. It is not clear how to reach the exact result with this approach. In fact, the perturbation
expansion has been shown to diverge as m increases in some cases. Still, MP2 and MP4 corresponding
to second and fourth order perturbation, resp., are commonly used approximations. Before discussing the
application of perturbation theory to the electronic structure problem, a review of the basic methodology is
given and simple examples taken to illustrate the approach.

Review of Perturbation Theory

When the task is to estimate properties of a system that cannot be solved easily but is similar to a systems
for which a solution is known, such as the harmonic oscillator, the method of choice is often perturbation
theory rather than variational calculations. The discussion here is limited to stationary states i.e. the bound
state solutions to the time independent Schrodinger equation. Perturbation theory can also be applied to
scattering states and then gives the so-called Born expansion.

Assume Hj is a simple time independent Hamiltonian that can be solved and let |ug > denote the
corresponding stationary states

H0|uk >= Ek|uk >

Let
H=Hy+ H'

be the full time independent Hamiltonian where the H’ term makes the problem too complicated to be
solved exactly. Imagine turning H' on gradually:

H = Hy + \H'
where
A e [01].

In the end we will let A — 1.
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Figure 6.  Left: Illustration of the change from zeroth order Hamiltonian approzimation to the full Hamiltonian
as the parameter X is increased from 0 to 1.
Right: Corresponding change in the energy levels where the estimate is a sum of perturbation corrections.
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Ezxample: The vibration of a diatomic molecule is a good example of the use of perturbation theory. The
zeroth order problem is the harmonic approximation and anharmonicity is then introduced as a perturbation.
Let the minimum energy distance between the atoms be ry and Taylor expand the potential about this point

(7“ - 7“0)2 U”(TO) + (7“ — 7“0)3 U”I(To) ¥

v(r) = v(re) + (r —ro)v'(ro) + D) 31

=ai? +bP + ...

Here, we have chosen the zero of energy such that v(rg) = 0, used the fact that v’(rg) = 0 (v is at a minimum
at rg) and defined 7 = r — rg. Only the quadratic term from the expansion is included in Hy
n% d?

Hy= -2 & 4 4
0 24 deJraT

which gives the harmonic oscillator Hamiltonian, and then the rest of the terms are treated as a perturbation
H' = b + ...

One clear effect of the perturbation is that An = +2 transitions become possible when the perturbation H’
is turned on while they are not allowed for the pure harmonic oscillator.
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Figure 7. Illustration of the harmonic approximation to the energy curve for a diatomic

and the effect anharmonicity has on the energy levels.

We want to find the eigenstates |1) > and eigenvalues W such that
HlYp >=Wl > .
Assume H' is small and expand both |¢) > and W in a power series expansion:
[ >= [1ho > +A[1 > +A2[1hg > +A3|1hg > +...

W =Wy 4+ AWy + N2Ws + X3W5 + ...

These expansions do not always converge, but there are many cases where they converge fast enough that
only the first few terms need to be included. This occurs when H' is sufficiently small. Substitute these
expressions into the Schrodinger equation

H P w »

(Ho+AH') (tho + M1+ N20o +..) = (Wo + AW1 + X2Wa +...) (Yo + Mb1 + Ao + ...

Page 2



Computational Chemistry Univ. of Iceland 2025

This equation holds for any value of )\, so we can equate coefficients of equal powers of .
To 0-th order:
H0|1/10 >= W()l?/Jo > or (Ho — WO)W}O >=0.

To 1-st order:
)\(H0|’(/)1 > -l-HIW}O >) = )\(Wl|¢0 > +WU|’(/J1 >)

or, after rearrangement of terms
(Ho — Wo)[t1 >= (W1 — H')[oo > .
To 2-nd order:
N (Holpg > +H'|¢1 >) = N2(Woltha > + Wiy > +Walio >)

or

(Ho — Wo)|’¢2 >= (Wl — H/)|’(/)1 > —|—W2|w0 > .

etc.
Zeroth order solution: The zeroth order equation is just the Schrodinger equation for the unperturbed
problem. To proceed, one of the unperturbed eigenstates is chosen as the zeroth order approximation

WJO >= |um >
Wo = EO.

Each state needs to be treated separately and the procedure is different depending on whether the energy
level E,, is degenerate or not.

Case A: FE,, is non-degenerate
Consider the case where E,, is non-degenerate. Note that any multiple of |¢)y > can be added to any of
the other terms, |; >, and the equations remain unchanged because

(Ho — Wo)|tbo >= 0.
For example, if |1); > is a solution to the first order equation then so is 1)1 > +a|¢g >
(Ho — Wo)([¢1 > +altpo >) = (Ho — Wo) 1 > +a(Ho — Wo)ltho >

= (Ho — Wo)|yp1 >
= (W1 —H/)|¢0 >

Therefore, we can choose the s-th order correction to the state, where s > 0, to be orthogonal to the zeroth
order estimate, i.e. < iglths >=0.

The first order correction to the energy can be obtained from the first order equation by left multiplying
with < t)g| and using the fact that (Hy — Wy) is Hermitian and can be taken to operate to the left, to give
< tpo|Hog — Woltp1 >= 0. The first order equation then becomes

0 =< o|Wh — H'|thg >= W1 < hg|thg > — < Yo|H'|thg >

So a7
< >
W, = Yo|H' |1 .
< tholtbo >
The calculation of the first order correction to the energy level is therefore quite simple and only requires
knowledge of the zeroth order solution.
Similarly, for the second order equation

0 =< o|W1 — H'|thy > +Wy < toltpg >

= 0— < Yol H' |1 > +Wa < 9hg|thy >
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and the second order correction to the energy is

_ < tolH'[¢y >
< tholpo >

In order to evaluate the second order correction to the energy level, only the zeroth and first order correction
to the state vector are needed. This is a reflection of the fact that the expectation value of the Hamiltonian
is stationary for the eigenstates.

Generally, for any s > 0:

Wo

< to|H'|tps—1 >
Ws _ "/}O| |¢s 1 )
< oltho >
It is sufficient to know |¢) > to order s — 1 in order to finding W to order s.
The perturbation corrections to the wave function, i.e. the state vector, can be found in a similar way.
The first order correction, |11 >, is expanded in the set of the orthonormal eigenstates of Hy

|11 >= Zan\un > .
n

This can be done because the eigenstates of Hj form a complete set for functions satisfying the same boundary
conditions and therefore also the first order correction. The expression above assumes that all the eigenstates
of Hy are bound states, i.e. only discrete spectrum. More generally, there could also be a continuous part of
the spectrum and the expansion would then be of the form

00
|’(/J1 >= Zan|un>+/ dk ak|uk>.
n 0

The , includes the discrete spectrum of the eigenstates and the integral fooo includes the continuum
spectrum.
The expansion of [¢); > can now be substituted into the first order equation

(Ho — Wo)|thy >= (W1 — H')[thg > .

)

Since we are studying how much the E,SS level changes when the perturbation H’ is applied, we take

Wo = B, [tho >= [um >

> @B~ E)lun >= (Wi~ H )l >

n#m
The n = m term is left out in the summation because we must have a,, = 0 since < 1|y >= 0, i.e.,
< 1|y >= 0. Left multiplying with < u,| gives

E an(Ego)—Er(,g))<uz|un > =Wy < ug|um > — < ug|H' |y, >
~—_———
’ﬂ?ﬁm 6@71

a (B — EW) = — < | H'|uy, >
< ug|H e, >

ag = {#m
ED - 50

Having obtained an explicit expression for the first order correction to the state vector, it is now possible
to write the second order correction to the eigenvalue only in terms of the solution to the known, zeroth
order quantities. The second order equation, obtained from the A? terms, is

(Ho — Wo)|tpa >= (W1 — H')[thy > +Walthy >
The second order correction to the energy is

< o|H'|Ypy >
W = p® = <YolHlin >
? < tboltpo >
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It can now be written more explicitly in terms of the zeroth-order states. Using the solution for |[¢; > and
choosing |19 >= |m >,

. < n|H'|m >
|11 >= ap|n >  with a, = —F——+,
2 EORER
gives
!
2) B , < n|H'lm >
=<m|H'| Y ool In >
n#m

B Z <m|H'In ><n|H'|m >

Using the fact that H’ is Hermitian gives

2
@ _ | < n|H'|m > |
B =2 o g0
n#Em m

The second order correction to the state vector is again obtained by expanding in the eigenstates of Hy

[z >= Y alPl|n >
n#m

and substituting into the A% equation

STEY - ED)aPln>= 3" ol (W — B0 > +Walm > .
n#m L#m

Left multiplying by < k| gives

a® — Z < k|H'|n >< n|H'|m > < k|H'|m >< m|H'|n >
o 0 0 0 0 0 0
T (B — EDYER - B (B — B2

Case B: E is two-fold degenerate (optional)
Assume now that the energy level we are studying is two-fold degenerate

Wo = EQ = B,
The unperturbed state can be any linear combination of the two:
[t >= am|m > +agll > .
Substitute this into the first order equation:
(Ho — Wo)|thr >= (W1 — H')|tho >

= (W1 — H')(am|m > +agl >).
(1) Left multiply by < m)|

(B —Wy) < mfipr >= Wilam < mlm > +ay < mll >) — (ap < m|H'|m > +a, < m|H'|0 >)
Similar to the non-degenerate case, we choose |¢); > to be orthogonal to |m > and |¢£ >. So

0=Wiam — ay, < m|H'|m > —ay < m|H'|¢ >
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or
(< m|H'|m > =W1)am+ < m|H'|{ > a; = 0.

(2) Similarly, left multiply by < ¢| and get
</LIH'/m > ay, + (<L H'|{ > —W1)a, = 0.

This set of coupled equations for a,, and a, only has nontrivial solutions when the determinant of the
matrix:
<m|H'|m > -W; <m|H'|{ >

</l|H'|m > </{L|H'|t > -W
vanishes. This determines the first order correction to the energy. By expanding the determinant we get
W2 — (< m|H'|m > + < f|H'|t >)Wi+ < m|H'|m >< (|H'|( > —| < m|H'|¢ > |* = 0.

There are two solutions to this quadratic equation

Wit = % <m|H'|m >+ < (| H'| >) £ /(< m|H'|m > — < {|H'|{ >)2 + 4] < m|H'|( > |2.
If the square root is non-zero, the states are no longer degenerate, i.e. the degeneracy is lifted.

If < m|H'|m >+ < £|H'|¢ >= 0, the splitting is symmetric |W74| = |W;i_|. Under Hy the system can be
in a state that is any linear combination of |m > and |¢ >. As H’ is turned on, only two linear combinations
are allowed. After determining Wi, and W;_, the expansion coefficients a;', aZ and a,,, a, can be found
from equations (1) and (2) above.

The first order correction to the state can again be found by expanding in the complete set of zeroth
order solutions

m?

|ty >= Z apln > .
n#m

)

The ¢ and m terms are excluded in the sum since |[¢); > has been chosen to be orthogonal to those states.
The first order equation is
(Ho — Wo)lyr >= (Wi — H')[tho > .

Left multiplying by < k| gives

Okn

0) _ £(0) _ . /
S (B —EW)a < kin>=Wy <kl > — < k[H'[th >

n

(B0~ BOJay = — < Kl > o < HEE>
< k|H'|m > am+ < k[H'|( > a

ag
EY - EY
If
<m|H'lm >=<(|H'|l >
and
<m|H'|{ >=0
then the degeneracy is not lifted, W;_ = W3, and we need to go to second order.
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C. Many-body Perturbation Method

Now apply perturbation theory to the electronic structure problem, i.e. the task of estimating the energy
of a system of N electrons. The Hamiltonian is partitioned as

H = Hy+ H

where Hj is the Hartree-Fock Hamiltonian

Ho = 32160) = 3206+ (0)

7

_ Zri—jl o ZUHF(i)

1<J

and

is the perturbation. Here, v7¥ (i) denotes the Coulomb and exchange interaction of electron i with the rest

of the electrons in the Hartree-Fock approximation. From the expression for the Hartree-Fock energy, one
can see that

"Xa(z1) Z/d |Xb z2) Xa(21) — Z/dl’zixﬂxfxa(m)xz)(xl)
b 12

and the expectation value of v'F for orbital a is

lalo"|a] = [aalbb] — [ablba] .

b

The indices ¢ and j are used for electrons, while a and b are used for orbitals.
The Hartree-Fock Slater determinant, |V >, is an eigenfunction of Hy

Hy |y > = E” |9y >
with eigenvalue

Eéo) = Zea

where ¢, is the orbital energy for orbital a. This is the zeroth order perturbation energy. Note that this is
not the same as the Hartree-Fock estimate of the energy of the system, EH ¥ =< Wy|H|¥( >, which involves
the exact Hamiltonian.

To first order, the correction to the energy is

EY = < Wo|H'|¥, >

—<\I/0|Z Tij |\Ifo>—<\110|z HF ‘\I/0>

1<J

= 5 32 S (faal] — [abfbal) — S fale" " la]
a b

a

The second sum is just twice the first sum so the final result is
1
1
EM = -3 > laalbb] — [ablba] -
a b
When this correction is added to E((JO), the result is the Hartree-Fock energy

1
EFF = g9 4+ gt Zea— 5 2_laalbb] — [ablbal .
ab
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The first order perturbation result therefore does not add any correlation energy.
In order to get a non-zero estimate of the correlation energy, one needs to go to second order or higher
in the perturbation. The second order correction to the energy of the ground state (setting m=0 in the

equation derived above for Efﬁ)) gives

E® | <O|H'|n > |?
= TEO_ g0

where the sum runs over all states except n=0. Here, |0 > denotes |¥y > and |n > denotes a Slater
determinant corresponding to electron configurations of higher energy where one or more electron has been
promoted to a virtual orbital. It turns out that single excitation Slater determinants do not give a non-zero

contribution to E(Z) ie.

<Uo|H'|¥: >= 0.

This is referred to as Brillouin theorem and can be illustrated as follows. Writing out the expression

< WolH'|W}, >= [alh|r] + Y _(Jar|bb] — [ab|br])
b

=<alflr>

shows that this is an off-diagonal element of the Fock matrix. By choice of the orbitals in the Hartree-Fock
procedure, the Fock matrix is diagonal, i.e. < a|f|r >= €,d4, and here a and r are not the same, so
< a|f|r >= 0. This again shows mathematical advantage of the particular choice of orbitals made when the
Hartree-Fock equations are derived. If the calculations are carried out with a different choice of orbitals (for
example so-called natural orbitals), single excitation Slater determinants do contribute to the correlation
energy.

The triple and higher order excitation determinants also do not give a non-zero contribution because
the perturbation includes only pairwise interactions between the electrons. As a result of this and Brillouin
theorem, only the double excitation determinants, |¥77 >, give a non-zero contribution. The matrix elements
are (note, the one-electron operator, h, does not give a contribution because the determinants differ by two
orbitals)

< Uy Zr;lﬂlgz > = [ar|bs] — [as|br]

i<j
and the energy eigenvalues of the double excitation determinants are Eéo) — €4 — €p + €, + €5, that is
HolWpi > = (B —ea—ep+e+es) W05 >
The expression for the second order energy then becomes

1 2
E(2) _ ZZ | < \IIOI Zz<] H ZZ > |
0 €q + €p — € — €4

a<br<s

ZZ |[ar|bs] — [as|br]|?
- €q T € — € — €

a<br<s

Note that the second-order energy can be expressed as a sum over contributions from each pair of electrons
in occupied orbitals
2
E(g ) = Z €ab

a<b

and the contribution from each pair involves a sum over pairs of virtual orbitals

[ar|bs] — [as|br
o = Nl o]

€p — € — €
r<s até€ T s

| 2
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The estimate of the energy to second order is referred to as the MP2 approximation to the energy of the
system
EMP2 ESO) + E(g2)

since Eél):O.

The MP2 calculations only add single and double excited determinants to the Hartree-Fock estimate.
So, it can be compared with a CI expansion that gets truncated at doubly excited determinants, so-called
CISD. The advantage of MP2 over CISD is that MP2 is size consistent. It is, therefore, more applicable
to calculations of binding energy. However, it is not variational and the energy can therefore become lower
than the true ground state energy. MP2 is currently the most popular post-Hartree-Fock method. The
computational effort scales as the number of basis functions to the fifth power, K°.
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