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Coupled Cluster Approach

So far, we have considered two different post Hartree-Fock methods: Config-
uration Interaction (CI) based on a linear expansion of the HF and excited

Slater determinants, |Wey) = (1 + C) |W,), where ' is the excitation opera-

tor generating a sum of all excited determinants, and applying the variational
principle to determine the expansion coefficients, and Mgller-Plesset pertur-
bation theory where the Hamiltonian is written as H = HO + H ' with HO
being the effective HF Hamiltonian and H being the correction in order to
recover the exact Hamiltonian. Both methods address the issue of missing
correlation in the single determinant approach. However, they both suffer
from some shortcomings. The perturbation expansion does not in general
converge and problems can arise with degenerate orbitals, while truncated
CI leads to size-inconsistency which is problematic when calculating the bind-
ing energy of molecular fragments. The Q correction in QCISD introduces
approximate size-consistency but only for a dimer. Here the third commonly
used post HF method will be introduced, namely the coupled cluster (CC)
approach. It has the advantage of being size-consistent and can include high
excitation Slater determinants in a consistent way.
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Figure 1: The three most commonly used post Hartree-Fock methods are based
on different approaches: Configuration interaction makes use of the vari-
ational principle to optimise a linear combination of Slater determinants,
perturbation theory estimates the weight on excited Slater determinants at
various levels of an expansion, and coupled cluster expands the wave func-
tion in terms of an exponential of the excitation operator.



The cluster operator is defined as
T=Ti+To+T5+.. (1)

where Ty is the operator that generates a sum over all single excitations,
T, double excitations, etc. Letting |¥g) denote the HF ground state Slater
determinants, the action of the first two operators can be written as

Ty [Wo) = Z > tle) (2)
Ty |Wo) = > ) 12|24 (3)
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The coefficients, ¢!, tffg, etc., are referred to as amplitudes and will be deter-
mined in a special way without carrying out a variational calculation or a

perturbation calculation.

In order to effectively include high order excitations in a systematic way,
the exponential of the cluster operator is defined as e’ and applied to the
HF ground state Slater determinant to give the CC wave function. The
exponential is written out in a Taylor expansion

i S (P
Wee) = e’ |Wo) = <1+T+§T2+6T3+...> W) . (4)

The Taylor expansion truncates naturally due to the finite number of elec-
trons and basis functions used in a practical calculation.

Tt follows that
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eT:1+T1+T2+§T12+§T1T2+§T2T1+§T§+§T13+... (5)
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:1+T1+§T1+T_>+6T1+T1T2+T3+... (6)

Note that single excitations are marked in red, double excitations in green
and triple excitations in blue.

Unlike the CI expansion, CC naturally includes both coupled and decoupled
excitations with certain weights, as is evident from the relationship between



the excitation operators in the two representations. Letting C denote the CI
excitation operator of a certain order and T the CC excitation operator

él - Tl (7>
~ 1 2 ™
Co = 511 + 12 (8)
~ 1. A a ~
Cs = ng’ + TyTy + T; (9)

T

Higher excitations are present in e’ even if only T) and Ty are explicitly

included.

The challenge now is to determine the amplitudes, t. They could be evaluated
variationally as in the CI calculations, but instead the common practice is
to make use of the Schrodinger equation in a non-variational calculation.
There, one equation is obtained for every type of Slater determinant projected
onto the Schrodinger equation. As all excited states are orthogonal to the
ground state, matrix elements between excited Slater determinants and the
ground state determinant are 0. This condition can directly be applied to
the Hamiltonian matrix elements because e’ [¥) is an eigenfunction of H,
meaning that the Hamiltonian can be applied to el |Wo), yielding a scalar.
Starting with the basic CC equation where the energy E¢¢ is obtained when
the Hamiltonian is applied to the CC ket

H|Vee) = Ecc |Vee) (10)
which can be rewritten using |¥oe) = el |¥y) as
HeT |Wy) = Eccel |0g) . (11)
Now, left multiplying with the CC ket
(Wo| e THeET [Ty) = B (To|To) = Eoc (12)

gives the Foo energy again, but left multiplying with any of the excited
Slater determinants, |®), gives zero because of orthogonality

(@ e THeT |Wo) = Ece (®]W) = 0. (13)

This non-linear set of equations is solved to determine the amplitudes, .



The most common form of CC is to truncate at double excitations, the CCSD
approximation, i.e. T = Ty + Ty in which case the equations become

(W ¢~ (N+12) fo(Ti+T2) Vo) = Eccosp (14)
(@9 e—(T1+T2)ﬁe(T1+T2) W) =0 (15)
<<I3 }67(T1+T2)F[6(T1+T2) ‘\Ij0> —0. (16)

There are many different ways of solving this coupled set of non-linear equa-
tions.

The corresponding CCSD energy is

ECCSD = <\I/0| G_THGT |\Ifo> = EHF —f— EC = EHF —|— QZ Fwtfl
o o “ (17)
+ ) [2(ialjb) — (iblja)](t, + toty) -
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where F,y = hys + > (2(rr|st) — (rs|rt)) are elements of the Fock matrix
obtained in the HF calculation preceding the CC calculation and F¢ is the
correlation energy. The integrals h,.s, (rr|st) and (rs|rt) are the one-electron
parts of the Fock matrix, the Coulomb and the exchange integrals in the
chemist’s notation.

The computational effort of the CCSD method scales as O(N®). By ex-
tending this to include triple excitations, CCSDT, the calculations become
significantly more demanding, scaling as O(N®). The usual way of improving
upon the CCSD method is to apply an approximate perturbation correction
due to triple excitations. This method is referred to as CCSD(T). With the
perturbative triples correction the computational effort scales as O(N”) since
the perturbative correction scales linearly. CCSD(T) is considered the ’gold
standard’ of quantum chemistry due to its high accuracy and reliability, but
is still a single-reference method in that it builds on the HF ground state
Slater determinant.

The high accuracy and reliability of standard CCSD(T) are accompanied by
a high computational cost, as shown in figure 2. However, the advantages
of the CC approach have motivated scientists around the world to improve
particularly its scaling while conserving as much of the recovered correlation
energy as possible. Many different methods have been derived from basic
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Figure 2: The computational effort of the three methods HF, CCSD and
CCSD(T) scales as O(N*), O(N") and O(N®). Note that the graph only
shows the leading terms without any prefactors in order to illustrate the
general scaling difference. The HF scaling is depicted in blue, CCSD scaling
in orange and CCSD(T) scaling in red.

CC theory, such as local CCSD(T) and orbital specific virtual CCSD. There
are also CC-based methods which can evaluate excited state energies, such
as equations-of-motion CC. Recently, an improved version of CC has been
implemented in ORCA, which is called domain based local pair natural or-
bital CC (DLPNO-CC). In this approach, a truncated virtual orbital space
is selected for each pair of electrons in order to describe their correlation
more efficiently. Additionally, the contribution of each electron pair to the
correlation energy is prescreened by evaluating a dipole approximation to
the Coulomb integral of the pair. Weakly contributing pairs are neglected,
intermediately interacting pairs are treated perturbatively and strongly in-



teracting ones are included exactly. In this way, a nearly linearly scaling CC
method is obtained, which captures most of the correlation energy compared
to standard CC approaches. The neglect of some of these contributions can
reduce the accuracy, however, and lead to an underestimate of, for example,
the long range attractive dispersion interaction.

Methods beyond CCSD(T) are infrequently used, such as CCSDT, CCSDTQ),
etc. They have been implemented in specialised software packages a e. g.
MRCC. Such high truncations are computationally highly demanding, as
CCSDTQ scales as O(N'?) and the scaling only becomes even faster for the

higher truncations (the exponent increases by 2 for every higher excitation
included in 7).



