
Figure 1: The three post Hartree-Fock methods are based on different

ansatzes: Configuration interaction makes use of the variational principle

by applying it to a linear expansion in Slater determinant space and Møller-

Plesset perturbates the Hartree-Fock solution, while Coupled Cluster ex-

pands the wave function in terms of an exponential of an excitation operator.

Introduction

We have considered two different post Hartree-Fock (HF) methods: (Lin-

ear) Configuration Interaction (CI) based on the linear inclusion of excited

Slater determinants (|ΨCI〉 =
(

1 + Ĉ
)
|Ψ0〉, Ĉ being the excitation operator

generating a sum of all excited determinants) and applying the variational

principle to the extended determinant space, and Møller-Plesset perturbation

theory (Ĥ = Ĥ0 + Ĥ ′, Ĥ0 and Ĥ ′ being the HF and perturbation Hamilto-

nians, respectively). Both methods address the issue of missing dynamical

correlation in the single determinant approach. However, they suffer from

systematic shortcomings. While perturbation theory struggles with degener-

ate orbitals, truncated LCI leads to size-inconsistency due to the exclusion

of simultaneous excitations in case of non-interacting (sub-)systems. Møller-

Plesset perturbation theory succeeds to circumvent this problem by avoiding
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the linear expansion in determinant space entirely and is therefore much

more useful for calculations of physicochemical properties, such as reaction

enthalpies.

Another approach improves upon the LCI expansion by adding in the miss-

ing excitations by hand and moving to higher order polynomials. As these

additional determinants are part of a quadratic expansion for the simplest

case of two non-interacting (sub-)systems, this approach is referred to as QCI

for this case.

EQCISD = EHF +
1

4

∑
ijab

〈ij||ab〉Cij
ab (1)

ECC
i
a = 〈Φa

i | Ĥ
(

1 + Ĉ1 + Ĉ2 + Ĉ1Ĉ2

)
|Ψ0〉 (2)

ECC
ij
ab =

〈
Φab

ij

∣∣ Ĥ (1 + Ĉ1 + Ĉ2 + Ĉ2Ĉ2

)
|Ψ0〉 (3)

In these equations, EQCISD is the QCISD energy, EHF is the HF energy, EC is

the correlation energy, Ĥ is the Hamiltonian, 〈rs||tu〉 is an antisymmetrized

two-electron integral in the physicist’s notation, C are the expansion coef-

ficients of the total wave function |Ψ〉, |Ψ0〉 is the ground state HF wave

function and Φ is any kind of excited slater determinant, obtained from the

HF ground state determinant |Ψ0〉 by switching occupied and virtual or-

bitals. Note that occupied orbitals are denoted by i, j, k, l..., virtual orbitals

by a, b, c, d... and general orbitals by r, s, t, u..., respectively. The red opera-

tor products are the manually added terms. These are decoupled products

of excitations. In the case of more than two non-interacting (sub-)systems,

it becomes necessary to add higher-order terms than quadratic, such as cu-

bic for three non-interacting systems, quarternary for four non-interacting

systems and infinite-order for infinite non-interacting systems. A more rig-

orous and systematic way of forming such an infinite-order polynomial of

the excitation operator in order to recover size consistency for all systems

originates in nuclear physics and is called the coupled cluster (CC) ansatz.

This approach is the third wave function based quantum chemical ansatz.
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General CC

Within the general CC ansatz, the cluster operator eT̂ is applied to the

HF ground state wave function. The exponential eT̂ of the CC excitation

operator T̂ consists of a sum of different n-tuple excitations of the ground

state determinant, i. e. T̂1 is a single excitation, T̂2 is double excitation etc.

Since it is impossible to diagonalize the cluster operator matrix due to the

lack of an analytical representation, the common way to treat the exponential

is to form a complete Taylor expansion which truncates naturally due to the

finite number of electrons and basis functions used in the calculation.

|ΨCC〉 = eT̂ |Ψ0〉 =

(
1 + T̂ +

1

2
T̂ 2 +

1

6
T̂ 3 + ...

)
|Ψ0〉 , (4)

where

T̂ = T̂1 + T̂2 + T̂3 + ... (5)

and it follows that

eT̂ = T̂1 +
1

2
T̂ 2
1 + T̂2 +

1

6
T̂ 3
1 + T̂1T̂2 + T̂3 + ... (6)

As opposed to CI, CC naturally differentiates between coupled and decou-

pled excitations, as is evident from the relationship between the excitation

operators in the two representations.

Ĉ1 = T̂1 (7)

Ĉ2 =
1

2
T̂ 2
1 + T̂2 (8)

Ĉ3 =
1

6
T̂ 3
1 + T̂1T̂2 + T̂3 (9)

Ĉ is the CI excitation operator and T̂ is the CC excitation operator. Note

that single excitations are marked in red, double excitations in green and

triple excitations in blue. Higher excitations are present, but not explicitely

shown.

The wave function within the CC formalism is defined as

|ΨCC〉 = |Ψ0〉+
∑
ia

tia |Φa
i 〉+

∑
ijab

tijab
∣∣Φab

ij

〉
+
∑
ijkabc

tijkabc

∣∣Φabc
ijk

〉
+ ... (10)
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The expansion coefficients t are called amplitudes and our primary goal is to

determine them, similarly to the calculation of the coefficients C in the CI

scheme. In principle, the CC amplitudes could be evaluated variationally.

ECC =
〈ΨCC | Ĥ |ΨCC〉
〈ΨCC |ΨCC〉

=
〈Ψ0| e−T̂ ĤeT̂ |Ψ0〉
〈Ψ0| e−T̂ eT̂ |Ψ0〉

(11)

=

〈(
1 + T̂ + 1

2
T̂ 2 + 1

6
T̂ 3 + ...

)
Ψ0

∣∣∣ Ĥ ∣∣∣(1 + T̂ + 1
2
T̂ 2 + 1

6
T̂ 3 + ...

)
Ψ0

〉
〈(

1 + T̂ + 1
2
T̂ 2 + 1

6
T̂ 3 + ...

)
Ψ0

∣∣∣(1 + T̂ + 1
2
T̂ 2 + 1

6
T̂ 3 + ...

)
Ψ0

〉
It is evident that this approach is computationally demanding and infeasible

since none of the four Taylor expansions of the total CC wave function can be

truncated in this general description (complete basis set, arbitrary number of

electrons). Therefore, it is much more convenient to obtain the amplitudes

non-variationally by projecting the entire Slater determinant space onto the

Schrödinger equation. In following this scheme, one obtains one equation for

every type of Slater determinant projected onto the Schrödinger equation.

As all excited states are orthogonal to the ground state, matrix elements

between excited Slater determinants and the ground state determinant are

0. This condition can directly be applied to the Hamiltonian matrix elements

because eT̂ |Ψ0〉 is an eigenfunction of Ĥ, meaning that the Hamiltonian can

be applied to eT̂ |Ψ0〉, yielding a scalar.

Ĥ |ΨCC〉 = ECC |ΨCC〉 (12)

ĤeT̂ |Ψ0〉 = ECCe
T̂ |Ψ0〉 (13)

〈Ψ0| e−T̂ ĤeT̂ |Ψ0〉 = ECC 〈Ψ0|Ψ0〉 = ECC (14)

R = 〈Φ| e−T̂ ĤeT̂ |Ψ0〉 = ECC 〈Φ|Ψ0〉
!

= 0 (15)

The residuals R in the latter equation are enforced to vanish due to the

orthogonality of the excited states to the ground state based on first principles

of quantum mechanics in order to be able to calculate the CC amplitudes.

The amplitudes are obtained by solving this non-linear set of equations.

Note that, in principle, the CI coefficients can be obtained from the CC

amplitudes, but the reverse is not true. Therefore, CC always yields better

results.
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CCSD

So far we have considered the general CC formalism. Similarly to CI, the

excitation operator, T̂ , in the CC method also has to be truncated in order

to make the calculations feasible. The expansion is commonly truncated at

the double excitations. Applying the Taylor expansion, we obtain

eT̂1+T̂2 = 1 + T̂1 + T̂2 +
1

2
T̂ 2
1 + T̂1T̂2 +

1

2
T̂ 2
2 +

1

2
T̂ 2
1 T̂2 + ... (16)

and the corresponding CCSD energies are

ECCSD = 〈Ψ0| e−THeT |Ψ0〉 = EHF + EC = EHF + 2
∑
ia

Fiat
i
a

+
∑
ijab

[2(ia|jb)− (ib|ja)](tijab + tiat
j
b) .

(17)

Remember that Frs = hrs +
∑

r(2(rr|st)− (rs|rt)) are elements of the Fock

matrix obtained in the HF calculation preceding the CC calculation and EC

is the correlation energy. The integrals hrs, (rr|st) and (rs|rt) are the one-

electron parts of the Fock matrix, the Coulomb and the exchange integrals

in the chemist’s notation, respectively. The residuals

Ri
a = 〈Φa

i | e−T̂ ĤeT̂ |Ψ0〉
!

= 0 (18)

and

Rij
ab =

〈
Φab

ij

∣∣ e−T̂ ĤeT̂ |Ψ0〉
!

= 0 (19)

are necessary to obtain the CCSD amplitudes t. There are many different

ways of solving this coupled set of non-linear equations.

The basic CCSD method scales as O(N6).

Triples Correction

As CCSDT calculations are computationally too demanding (scaling: O(N8)),

the usual way of improving upon the CCSD method is to apply a perturba-

tive ansatz to include triple excitations approximately. This ansatz, denoted
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by CCSD(T), leads to the following triples corrections:

∆E(T ) = − 1

36

∑
ijkabc

tijkabc

(
tijkabc + t̃ ijkabc

)
(εa + εb + εc − εi − εj − εk) (20)

tijkabc = −P̂ (ijk)P̂ (abc)

∑
d t

ij
ad 〈bc||dk〉 −

∑
l t

il
ab 〈lc||jk〉

εa + εb + εc − εi − εj − εk
(21)

t̃ ijkabc = −P̂ (ijk)P̂ (abc)
tia 〈bc||jk〉

εa + εb + εc − εi − εj − εk
(22)

The orbital energies are denoted by εr. The operators P̂ (rst) create a sum

of all six possible permutations of the indices r, s and t.

The perturbative triples correction decreases the scaling from O(N8) to O(N7)

since the perturbative correction scales linearly. CCSD(T) is considered the

gold standard in quantum chemistry due to its high accuracy and reliability

when applied to single-reference systems.

Further Improvements and Applications

The high accuracy and reliability of standard CCSD(T) are accompanied by

a high computational cost, as shown in figure 2. However, the advantages

of the CC approach have motivated scientists around the world to improve

particularly its scaling while conserving as much of the recovered correlation

energy as possible. Many different methods have been derived from basic CC

theory, such as local CCSD(T) and orbital specific virtual CCSD. There are

also CC-based methods which can evaluate excited state energies, such as

CC2 and equations-of-motion CC. Recently, an improved version of CC has

been implemented in ORCA, which is called domain based local pair natu-

ral orbital CC (DLPNO-CC). In this approach, a truncated virtual orbital

space is selected for each pair of electrons in order to describe their correla-

tion more efficiently. Additionally, the contribution of each electron pair to

the correlation energy is prescreened by evaluating a dipole approximation

to the Coulomb integral of the pair. Weakly contributing pairs are neglected,

intermediately interacting pairs are treated perturbatively and strongly in-

teracting ones are included exactly. In this way, a nearly linearly scaling CC
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Figure 2: The three methods HF, CCSD and CCSD(T) scale as O(N4), O(N7)

and O(N8) with respect to the highest order terms. Note that the plot only

shows the leading terms without any prefactors in order to illustrate the

general scaling difference. The HF scaling is depicted in blue, CCSD scaling

in orange and CCSD(T) scaling in red.

method is obtained, which conserves 99.8% of the correlation energy com-

pared to standard CC approaches. Neglecting the contributions of electron

pairs can be dangerous though since it is as of now unclear whether important

contributions, such as van-der-Waals interactions, are lost.

Though methods beyond CCSD(T) are infrequent in use, higher-order CC

truncations, such as CCSDT or CCSDTQ etc., have been implemented in

specialized code packages as e. g. MRCC. Such high truncations are rather

academic as CCSDTQ already scales as O(N10) and the scaling only becomes

even faster for the even higher truncations (the exponent increases by 2 for
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every higher excitation included in T̂ ).
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